地学前缘 ›› 2022, Vol. 29 ›› Issue (4): 123-135.DOI: 10.13745/j.esf.sf.2022.1.6
邹建军1,2(), 宗娴1, 朱爱美1, 豆汝席1, 林锦辉1, 冯旭光1, 董智1, Sergey A. GORBARENKO3, 郑立伟4, 石学法1,2,*(
)
收稿日期:
2021-09-30
修回日期:
2021-11-10
出版日期:
2022-07-25
发布日期:
2022-07-28
通信作者:
石学法
作者简介:
邹建军(1979—),男,博士,研究员,主要从事中高纬海洋沉积和古环境研究。E-mail: zoujianjun@fio.org.cn
基金资助:
ZOU Jianjun1,2(), ZONG Xian1, ZHU Aimei1, DOU Ruxi1, LIN Jinhui1, FENG Xuguang1, DONG Zhi1, Sergey A. GORBARENKO3, ZHENG Liwei4, SHI Xuefa1,2,*(
)
Received:
2021-09-30
Revised:
2021-11-10
Online:
2022-07-25
Published:
2022-07-28
Contact:
SHI Xuefa
摘要:
海洋沉积物有机质碳氮稳定同位素(δ13C、δ15N)广泛用于有机质来源示踪、古生产力和古海洋环境重建。日本海沉积物δ13C和δ15N值一个显著特征是在末次冰盛期(LGM)同步负偏,但是对这一现象产生的原因以及他们的演化过程的认识仍然存在明显不足。在本研究中,我们详细调查了37 ka以来日本海中部LV53-23-1岩心沉积物δ13C和δ15N演化历史。结果显示,沉积物δ13C和δ15N分别介于-26.3‰至-22.5‰和1.6‰至6.1‰,低值出现在LGM(26.5~17 ka)暗色层状泥发育时期,指示较强的陆源输入贡献。在Heinrich冰阶1时期(17~14.5 ka),δ13C和δ15N快速正偏,表明日本海海洋环境发生了明显的转换,对应于对马海峡淹没及对马暖流入侵。14.5 ka之后,沉积物δ15N值恢复到5‰,与开阔大洋海水硝酸盐的δ15N值近似。我们采用二端员混合模型粗略地估算了有机质来源的相对贡献。LGM时期陆源有机质贡献介于65%至80%,14.5 ka以后海源有机质贡献介于60%至80%。除了增加的陆源有机质贡献以外,LGM时期沉积物δ15N亏损还涉及如下过程:(1)较高的含Fe沙尘供给提高日本海表层海洋生物固氮效率;(2)缺氧环境盛行减弱成岩作用对沉积物δ15N影响。37 ka以来,日本海沉积物δ13C和δ15N变化与有机质来源、营养盐的供给、表层生产力和沉积物氧化还原条件相关,实际受海平面和全球气候制约。
中图分类号:
邹建军, 宗娴, 朱爱美, 豆汝席, 林锦辉, 冯旭光, 董智, Sergey A. GORBARENKO, 郑立伟, 石学法. 37 ka以来日本海沉积物有机质碳和氮稳定同位素变化及其古海洋学意义[J]. 地学前缘, 2022, 29(4): 123-135.
ZOU Jianjun, ZONG Xian, ZHU Aimei, DOU Ruxi, LIN Jinhui, FENG Xuguang, DONG Zhi, Sergey A. GORBARENKO, ZHENG Liwei, SHI Xuefa. Stable carbon and nitrogen isotope variations in sedimentary organic matter in the Sea of Japan since 37 ka: Paleoceanographic implications[J]. Earth Science Frontiers, 2022, 29(4): 123-135.
图1 研究站位和日本海内及周围海域表层环流示意图 a,b,c,d,e和f分别代表岩心(+)KCES1、96EBP4、ODP797、KT92-13P5、GH99-1246和GH99-1239。白色×代表沉积物捕获器站位。带箭头实线代指表层流系。图中缩写如下:SPF—亚极地锋带,LC—利曼寒流,TsWC—对马暖流,YSWC—黄海暖流,YSCC—黄海沿岸流,CDW—长江冲淡水,ZFCC—浙闽沿岸流,TwWC—台湾暖流,KC—黑潮。▲处为研究站位。
Fig.1 Location of the study area and surface circulation in and around the Sea of Japan
层位 /cm | 测试材料和地层标志层 | AMS 14C 年龄/a | 日历年 龄/ka | 沉积速率 /(cm·ka-1) |
---|---|---|---|---|
31 | TL1 | 11.40 | ||
40 | N.pachyderma+G.bulloides | 12 000±50 | 13.32 | 4.69 |
60 | N.pachyderma s.+G.bulloides | 15 200±45 | 17.58 | 4.69 |
80 | N.pachyderma sin | 19 100±85 | 22.18 | 4.35 |
110 | N.pachyderma sin | 23 500±140 | 26.91 | 6.34 |
128-131 | A-Tn | 29.40 | 7.24 | |
158 | N.pachyderma+G.bulloides | 29 300±270 | 32.80 | 7.94 |
208 | N.pachyderma+G.bulloides | 34 200±200 | 38.33 | 9.04 |
表1 LV53-23-1岩心的年龄控制点
Table 1 Age control points of core LV53-23-1
层位 /cm | 测试材料和地层标志层 | AMS 14C 年龄/a | 日历年 龄/ka | 沉积速率 /(cm·ka-1) |
---|---|---|---|---|
31 | TL1 | 11.40 | ||
40 | N.pachyderma+G.bulloides | 12 000±50 | 13.32 | 4.69 |
60 | N.pachyderma s.+G.bulloides | 15 200±45 | 17.58 | 4.69 |
80 | N.pachyderma sin | 19 100±85 | 22.18 | 4.35 |
110 | N.pachyderma sin | 23 500±140 | 26.91 | 6.34 |
128-131 | A-Tn | 29.40 | 7.24 | |
158 | N.pachyderma+G.bulloides | 29 300±270 | 32.80 | 7.94 |
208 | N.pachyderma+G.bulloides | 34 200±200 | 38.33 | 9.04 |
图2 LV53-23-1岩心沉积物有机质时间序列剖面 a—TOC;b—TN;c—TOC/TN(质量分数比);d—CaCO3;e—δ13C;f—δ15N。灰色垂直条带代指不同的气候时期。浅蓝色垂直条带代指火山灰层A-Tn。图2c中虚线指示TOC/TN比值为10。图2f中虚线指δ15N=5‰,横轴上部为沉积岩性图。H-LD—全新世-晚冰消期,HS1—Heinrich冰阶1事件,LGM—末次冰盛期。
Fig.2 Temporal profiles of sedimentary organic proxies of core LV53-23-1
图3 TOC-TN(a), TOC-平均粒径[47](b), TOC-绿素[25](c)相关散点图
Fig.3 Scatter plots of (a) TOC vs. TN, (b) TOC vs. mean grain size (adapted from [47]), and (c) TOC vs. chlorin (adapted from [25])
图4 δ15N-δ13C (a), δ15N-绿素[25](b), δ13C-TOC/TN (c)相关散点图
Fig.4 Scatter plots of (a) δ15N vs. δ13C, δ15N vs. chlorin (adapted from [25]), and (c) δ13C vs. TOC/TN
图5 LV53-23-1岩心沉积物有机质δ13C和δ15N与沉积物捕获器[51-52](a)和其他沉积岩心[7-8,39](b)比较
Fig.5 Comparisons of temporal profiles between sedimentary organic matter δ13C, δ15N in core LV53-23-1 and in (a) sediment trap (adapted from [51-52]) or (b) in other cores (adapted from [7,8,39])
图7 与LV53-23-1岩心其代用指标记录比较 a—δ15N;b—δ13C;c—δ18 OPF[25];d—Mo/Mn;e—U/Th[48];f—绿素含量[25];g—磁化率[25];h—TOC。垂直条带指示意义同图2。
Fig.7 Comparisons of temporal profiles between sedimentary organic matter δ13C, δ15N and other sedimentary proxies of core LV53-23-1
图8 与其他气候环境代用指标记录比较 a—海平面[68];b—中国东部石笋δ18O[69],指示东亚夏季风强度;c—中国黄土平均粒径[73],指示东亚冬季风强度;d—浮游有孔虫壳体δ18O[23,25,70-71],指示表层海水盐度;e—粉砂平均粒径[74]指示西风路径/强度;f—Zr/Sc比值[21]指示对马暖流动力;g—长链烷烃含量[6]指示陆源有机质相对丰度;h—Mo/Mn比值[48],指示底层水缺氧程度;i,j—沉积物δ13C和δ15N。
Fig.8 Comparisons of temporal profiles between sedimentary organic matter δ13C, δ15N and climate and environmental proxies
图9 末次盛冰期(a)和14.5 ka以来(b)日本海海洋环境演化示意图
Fig.9 A Schematic illustration of the environmental evolutions in the Sea of Japan during the Last Glacial Maximum (a) and since 14.5 ka (b)
[1] | FARRELL J W, PEDERSEN T F, CALVERT S E, et al. Glacial-interglacial changes in nutrient utilization in the equatorial Pacific Ocean[J]. Nature, 1995, 377(6549): 514-517. |
[2] | PELTO B M, CAISSIE B E, PETSCH S T, et al. Oceanographic and climatic change in the Bering Sea, Last Glacial Maximum to Holocene[J]. Paleoceanography and Paleoclimatology, 2018, 33(1): 93-111. |
[3] | ZHENG L W, HSIAO S S Y, DING X D, et al. Isotopic composition and speciation of sedimentary nitrogen and carbon in the Okinawa Trough over the past 30 ka[J]. Paleoceanography and Paleoclimatology, 2015, 30(10): 1233-1244. |
[4] | JENNERJAHN T C, ITTEKKOT V, ARZ H W, et al. Asynchronous terrestrial and marine signals of climate change during Heinrich events[J]. Science, 2004, 306(5705): 2236-2239. |
[5] | SHEMESH A, MACKO S A, CHARLES C D, et al. Isotopic evidence for reduced productivity in the glacial southern ocean[J]. Science, 1993, 262(5132): 407-410. |
[6] | ISHIWATARI R, HIRAKAWA Y, UZAKI M, et al. Organic geochemistry of the Japan Sea sediments: 1. Bulk organic matter and hydrocarbon analyses of core KH-79-3, C-3 from the Oki Ridge for paleoenvironment assessments[J]. Journal of Oceanography, 1994, 50(2): 179-195. |
[7] | KHIM B K, BAHK J J, HYUN S, et al. Late Pleistocene dark laminated mud layers from the Korea Plateau, western East Sea/Japan Sea, and their paleoceanographic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(1/2): 74-87. |
[8] | KHIM B K, IKEHARA K, BAHK J J, et al. Increased negative anomalies of sedimentary organic matter δ13C and δ15N values in the East Sea (Sea of Japan) during the full glaciation of the Late Quaternary[J]. Quaternary International, 2008, 176: 25-35. |
[9] | KAO S J, LIU K K, HSU S C, et al. North Pacific-wide spreading of isotopically heavy nitrogen during the last deglaciation: evidence from the western Pacific[J]. Biogeosciences, 2008, 5(6): 1641-1650. |
[10] | LAMB A L, WILSON G P, LENG M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews, 2006, 75(1): 29-57. |
[11] | HAYES J M. Factors controlling 13C contents of sedimentary organic compounds: principles and evidence[J]. Marine Geology, 1993, 113(1): 111-125. |
[12] | GALBRAITH E D, SIGMAN D M, ROBINSON R S, et al. Nitrogen in past marine environments[M]//CAPONE D G, BRONK D A, MULHOLLAND M R, et al. Nitrogen in the marine environment (Second Edition). San Diego: Academic Press, 2008: 1497-1535. |
[13] | MEYERS P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3): 289-302. |
[14] | ALTABET M A, FRANCOIS R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization[J]. Global Biogeochemical Cycles, 1994, 8(1): 103-116. |
[15] | MEYERS P A, ISHIWATARI R. Lacustrine organic geochemistry: an overview of indicators of organic matter sources and diagenesis in lake sediments[J]. Organic Geochemistry, 1993, 20(7): 867-900. |
[16] |
ROBINSON R S, KIENAST M, LUIZA ALBUQUERQUE A, et al. A review of nitrogen isotopic alteration in marine sediments[J]. Paleoceanography, 2012, 27(4): PA4203, doi: 4210.1029/2012PA002321.
DOI URL |
[17] | OBA T, KATO M, KITAZATO H, et al. Paleoenvironmental changes in the Japan Sea during the last 85 000 years[J]. Paleoceanography, 1991, 6(4): 499-518. |
[18] | TADA R. Paleoceanographic evolution of the Japan Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3/4): 487-508. |
[19] | WANG P X. Response of western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features[J]. Marine Geology, 1999, 156(1-4): 5-39. |
[20] | LIU Y, SHA L, SHI X, et al. Depositional environment in the southern Ulleung Basin, East Sea (Sea of Japan), during the last 48 000 years[J]. Acta Oceanologica Sinica, 2010, 29(5): 52-64. |
[21] | ZOU J, SHI X, ZHU A, et al. Paleoenvironmental implications of Sr and Nd isotopes variability over the past 48 ka from the southern Sea of Japan[J]. Marine Geology, 2021, 432: 106393, https://doi.org/106310.101016/j.margeo.102020.106393. |
[22] | ZOU J, SHI X, LIU Y, et al. Reconstruction of environmental changes using a multi-proxy approach in the Ulleung Basin (Sea of Japan) over the last 48 ka[J]. Journal of Quaternary Science, 2012, 27(9): 891-900. |
[23] | WU Y, SHI X, GONG X, et al. Evolution of the upper ocean stratification in the Japan Sea since the last glacial[J]. Geophysical Research Letters, 2020, 47(16): e2020GL088255. |
[24] | LIU Y, CHEN J, CHEN J, et al. Variations of alkenone temperature in the Sea of Japan during the last 170 ka and its paleoceanographic implications[J]. Chinese Science Bulletin, 2014: 1-12. |
[25] | GORBARENKO S, SHI X, RYBIAKOVA Y, et al. Fine structure of dark layers in the central Japan Sea and their relationship with the abrupt climate and sea level changes over the last 75 ka inferred from lithophysical, geochemical and pollen results[J]. Journal of Asian Earth Sciences, 2015, 114: 476-487. |
[26] |
GORBARENKO S, SHI X, BOSIN A, et al. Timing and mechanisms of the formation of the dark layers in the Sea of Japan during the last 40 kyr[J]. Frontiers in Earth Science, 2021, 9(410), doi: 10. 3389/feart.2021.647495.
DOI URL |
[27] | GE S, SHI X, LIU Y, et al. Turbidite and bottom-current evolution revealed by anisotropy of magnetic susceptibility of redox sediments in the Ulleung Basin, Sea of Japan[J]. Chinese Science Bulletin, 2012, 57(6): 660-672. |
[28] |
DOU R, ZOU J, SHI X, et al. Geochemical and isotopic evidence for provenance of the western Sea of Japan over the last 30 000 years[J]. Frontiers in Earth Science, 2021, 9(198), doi: 10.3389/feart.2021.638178.
DOI URL |
[29] | DONG Z, SHI X, ZOU J, et al. Paleoceanographic insights on meridional ventilation variations in the Japan Sea since the Last Glacial Maximum: a radiolarian assemblage perspective[J]. Global and Planetary Change, 2021, 200: 103456, https://doi.org/103410.101016/j.gloplacha.102021.103456. |
[30] | DONG Z, SHI X, ZOU J, et al. Drastic hydrographic changes inferred from radiolarian assemblages in the central Japan Sea since the Last Glacial Maximum[J]. Marine Geology, 2020, 429: 106295, https://doi.org/106210.101016/j.margeo.102020.106295. |
[31] | CHEN J, LIU Y, SHI X, et al. Climate and environmental changes for the past 44 ka clarified by pollen and algae composition in the Ulleung Basin, East Sea (Japan Sea)[J]. Quaternary International, 2017, 441, Part A: 162-173. |
[32] | STAX R, STEIN R. Quaternary organic-carbon cycles in the Japan Sea (Odp-Site 798) and their paleoceanographic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3/4): 509-521. |
[33] | KIDO Y, MINAMI I, TADA R, et al. Orbital-scale stratigraphy and high-resolution analysis of biogenic components and deep-water oxygenation conditions in the Japan Sea during the last 640 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(1/2): 32-49. |
[34] | YAMADA K, ISHIWATARI R. Carbon isotopic compositions of long-chain n-alkanes in the Japan Sea sediments: implications for paleoenvironmental changes over the past 85 kyr[J]. Organic Geochemistry, 1999, 30(5): 367-377. |
[35] | XING L, ZHANG R, LIU Y, et al. Biomarker records of phytoplankton productivity and community structure changes in the Japan Sea over the last 166 kyr[J]. Quaternary Science Reviews, 2011, 30(19/20): 2666-2675. |
[36] | ZHAO M X, ZHANG R P, XING L, et al. The changes of phytoplanktonic productivity and community structure in the Japan Sea since the Last Glacial Maximum[J]. Journal of Ocean University of China, 2009, 39(5): 1093-1099. |
[37] | GORBARENKO S A, NAM S I, RYBIAKOVA Y V, et al. High resolution climate and environmental changes of the northern Japan (East) Sea for the last 40 kyr inferred from sedimentary geochemical and pollen data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414(0): 260-272. |
[38] | KHIM B K, IKEHARA K, IRINO T. Orbital-and millennial-scale paleoceanographic changes in the north-eastern Japan Basin, East Sea/Japan Sea during the Late Quaternary[J]. Journal of Quaternary Science, 2012, 27(3): 328-335. |
[39] | KIM J H, KONG G S, RYU J S, et al. Revisiting the origin of organic matter and depositional environment of sediment in the central Ulleung Basin, East Sea since the Late Quaternary[J]. Quaternary International, 2014, 344: 181-191. |
[40] | TALLEY L D, MIN D H, LOBANOV V B, et al. Japan/East Sea water masses and their relation to the sea’s circulation[J]. Oceanography, 2006, 19(3): 32-49. |
[41] | GAMO T, NAKAYAMA N, TAKAHATA N, et al. The Sea of Japan and its unique chemistry revealed by time-series observations over the last 30 years[J]. Monographs on Environment, Earth and Planets, 2014, 2(1): 1-22. |
[42] | GAMO T, NOZAKI Y, SAKAI H, et al. Spacial and temporal variations of water characteristics in the Japan Sea bottom layer[J]. Journal of Marine Research, 1986, 44(4): 781-793. |
[43] |
NAGASHIMA K, TADA R, TANI A, et al. Contribution of aeolian dust in Japan Sea sediments estimated from ESR signal intensity and crystallinity of quartz[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(2): 13, doi: 10.1029/2006gc001364.
DOI URL |
[44] | TADA R. Onset and evolution of millennial-scale variability in the Asian monsoon and its impact on paleoceanography of the Japan Sea[M]//CLIFT P, KUHNT W, WANG P, et al. Continent-Ocean Interactions within East Asian marginal seas. Washington DC: American Geophysical Union, 2004, 149: 283-298. |
[45] | XIAO J, AN Z. Three large shifts in East Asian monsoon circulation indicated by loess-paleosol sequences in China and Late Cenozoic deposits in Japan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 154(3): 179-189. |
[46] | OBA T, PEDERSEN T F. Paleoclimatic significance of eolian carbonates supplied to the Japan Sea during the last glacial maximum[J]. Paleoceanography, 1999, 14(1): 34-41. |
[47] | 董智, 石学法, 葛晨东, 等. 日本海中部60 ka以来的风尘沉积对西风环流演化的指示[J]. 科学通报, 2017(11): 1172-1184. |
[48] | 石学法, 邹建军, 姚政权, 等. 日本海末次冰期以来沉积作用和环境演化及其控制要素[J]. 海洋地质与第四纪地质, 2019, 39(3): 1-11. |
[49] | STUIVER M, REIMER P J, REIMER R W. CALIB 8.2[CP]. [2021-08-16]. http://calib.org. |
[50] | REDFIELD A C. The biological control of chemical factors in the environment[J]. American Scientist, 1958, 46: 205-221. |
[51] | KWAK J H, HAN E, HWANG J, et al. Flux and stable C and N isotope composition of sinking particles in the Ulleung Basin of the East/Japan Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2017, 143: 62-72. |
[52] | NAKANISHI T, MINAGAWA M. Stable carbon and nitrogen isotopic compositions of sinking particles in the northeast Japan Sea[J]. Geochemical Journal, 2003, 37(2): 261-275. |
[53] | MINOURA K, HOSHINO K, NAKAMURA T, et al. Late Pleistocene-Holocene paleoproductivity circulation in the Japan Sea: sea-level control on δ13C and δ15N records of sediment organic material[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 135(1-4): 41-50. |
[54] | HU B, LI J, ZHAO J, et al. Late Holocene elemental and isotopic carbon and nitrogen records from the East China Sea inner shelf: implications for monsoon and upwelling[J]. Marine Chemistry, 2014, 162: 60-70. |
[55] | RIETHDORF J R, THIBODEAU B, IKEHARA M, et al. Surface nitrate utilization in the Bering sea since 180 ka BP: insight from sedimentary nitrogen isotopes[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 125-126: 163-176. |
[56] | LEHMANN M F, BERNASCONI S M, BARBIERI A, et al. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis[J]. Geochimica et Cosmochimica Acta, 2002, 66(20): 3573-3584. |
[57] | FREUDENTHAL T, WAGNER T, WENZHÖFER F, et al. Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: evidence from stable nitrogen and carbon isotopes[J]. Geochimica et Cosmochimica Acta, 2001, 65(11): 1795-1808. |
[58] | SIGMAN D M, FRIPIAT F, Nitrogen Isotopes in the Ocean[M]//COCHRAN J K, BOKUNIEWICZ H J, YAGER P L. Encyclopedia of Ocean Sciences (Third Edition). Oxford: Academic Press, 2019: 263-278. |
[59] | DUBOIS N, KIENAST M, KIENAST S, et al. Millennial-scale variations in hydrography and biogeochemistry in the Eastern Equatorial Pacific over the last 100 kyr[J]. Quaternary Science Reviews, 2011, 30(1): 210-223. |
[60] | QUAN T M, WRIGHT J D, FALKOWSKI P G. Co-variation of nitrogen isotopes and redox states through glacial-interglacial cycles in the Black Sea[J]. Geochimica et Cosmochimica Acta, 2013, 112: 305-320. |
[61] | ALTABET M A, FRANCOIS R, MURRAY D W, et al. Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios[J]. Nature, 1995, 373(6514): 506-509. |
[62] | SOHM J A, WEBB E A, CAPONE D G. Emerging patterns of marine nitrogen fixation[J]. Nature Reviews Microbiology, 2011, 9(7): 499-508. |
[63] | TANITA I, SHIOZAKI T, KODAMA T, et al. Regionally variable responses of nitrogen fixation to iron and phosphorus enrichment in the Pacific Ocean[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(9): e2021JG006542, https://doi.org/006510.001029/002021JG006542. |
[64] |
SOMES C J, SCHMITTNER A, ALTABET M A. Nitrogen isotope simulations show the importance of atmospheric iron deposition for nitrogen fixation across the Pacific Ocean[J]. Geophysical Research Letters, 2010, 37: L23605, doi: 23610.21029/22010GL044537.
DOI URL |
[65] |
ZEHR J P, CAPONE D G. Changing perspectives in marine nitrogen fixation[J]. Science, 2020, 368(6492): eaay9514, DOI: 9510.1126/science.aay9514.
DOI URL |
[66] | IRINO T, TADA R. High-resolution reconstruction of variation in aeolian dust (Kosa) deposition at ODP site 797, the Japan Sea, during the last 200 ka[J]. Global and Planetary Change, 2003, 35(1/2): 143-156. |
[67] | NAGASHIMA K. Last glacial to Holocene variations of the westerly jet path based on aeolian dust in Japan Sea sediments and SG 06 core from Lake Suigetsu[J]. Quaternary International, 2012, 279-280: 346-361. |
[68] | SPRATT R M, LISIECKI L E. A Late Pleistocene sea level stack[J]. Climate of the Past, 2016, 12(4): 1079-1092. |
[69] | CHENG H, EDWARDS R L, SINHA A, et al. The Asian monsoon over the past 640 000 years and ice age terminations[J]. Nature, 2016, 534: 640-646. |
[70] | CRUSIUS J, PEDERSEN T F, CALVERT S E, et al. A 36 kyr geochemical record from the Sea of Japan of organic matter flux variations and changes in intermediate water oxygen concentrations[J]. Paleoceanography, 1999, 14(2): 248-259. |
[71] | DOMITSU H, ODA M. Linkages between surface and deep circulations in the southern Japan Sea during the last 27 000 years: evidence from planktic foraminiferal assemblages and stable isotope records[J]. Marine Micropaleontology, 2006, 61(4): 155-170. |
[72] | LEE E, NAM S. Low sea surface salinity in the East Sea during the Last Glacial Maximum: review on freshwater supply[J]. Geosciences Journal, 2004, 8(1): 43-49. |
[73] | SUN Y, CLEMENS S C, MORRILL C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2011, 5: 46-49. |
[74] | NAGASHIMA K, TADA R, MATSUI H, et al. Orbital- and millennial-scale variations in Asian dust transport path to the Japan Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(1/2): 144-161. |
[75] | DENTON G H, ANDERSON R F, TOGGWEILER J R, et al. The Last Glacial Termination[J]. Science, 2010, 328(5986): 1652-1656. |
[76] | WANG Y J, CHENG H, EDWARDS R L, et al. A High-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294: 2345-2348. |
[77] | CHIANG J C H, FUNG I Y, WU C-H, et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate[J]. Quaternary Science Reviews, 2015, 108: 111-129. |
[78] | CLARK P U, DYKE A S, SHAKUN J D, et al. The Last Glacial Maximum[J]. Science, 2009, 325: 710-714. |
[79] | ZOU J, CHANG Y P, ZHU A, et al. Sedimentary mercury and antimony revealed orbital-scale dynamics of the Kuroshio Current[J]. Quaternary Science Reviews, 2021, 265: 107051, https://doi.org/107010.101016/j.quascirev.102021.107051. |
[80] | SHI X, WU Y, ZOU J, et al. Multiproxy reconstruction for Kuroshio responses to northern hemispheric oceanic climate and the Asian monsoon since marine isotope stage 5.1 (-88 ka)[J]. Climate of the Past, 2014, 10(5): 1735-1750. |
[81] | TALLEY L D. Distribution formation of North Pacific intermediate water[J]. Journal of Physical Oceanography, 1993, 23(3): 517-537. |
[82] |
ITOU M, ONO T, NORIKI S. Provenance of intermediate waters in the western North Pacific deduced from thermodynamic imprint on δ13C of DIC[J]. Journal of Geophysical Research, 2003, 108(C11): 3347, DOI: 3310.1029/2002jc001746.
DOI URL |
[83] | OKAZAKI Y, TIMMERMANN A, MENVIEL L, et al. Deepwater formation in the North Pacific during the Last Glacial Termination[J]. Science, 2010, 329(5988): 200-204. |
[84] | ZOU J, SHI X, ZHU A, et al. Millennial-scale variations in sedimentary oxygenation in the western subtropical North Pacific and its links to North Atlantic climate[J]. Climate of the Past, 2020, 16(1): 387-407. |
[1] | 沈禄银, 潘仁芳, 吕海涛, 段太忠, 贺婷婷, 刘义生, 赵磊. 基于沉积模拟的总可容空间定量分析[J]. 地学前缘, 2024, 31(2): 391-401. |
[2] | 沈禄银, 潘仁芳, 段太忠, 刘彦锋, 李蒙, 廉培庆, 黄渊, 张德民. 基于地层沉积反演的深时海平面变化曲线恢复方法[J]. 地学前缘, 2023, 30(2): 109-121. |
[3] | 贾永刚, 阮文凤, 胡乃利, 乔玥, 李正辉, 胡聪. 现代暖期气候变暖对南海北部陆坡天然气水合物分解潜在影响[J]. 地学前缘, 2022, 29(4): 191-201. |
[4] | 张兰兰, 邱卓雅, 向荣, 杨艺萍, 陈木宏. 基于生物硅记录的孟加拉湾东南部末次冰期以来的古生产力变化[J]. 地学前缘, 2022, 29(4): 136-143. |
[5] | 胡钊彬, 尉建功, 谢志远, 张伙带, 钟广法. 国际大洋钻探全球海平面变化研究进展[J]. 地学前缘, 2022, 29(4): 10-24. |
[6] | 席党鹏, 唐自华, 王雪娇, 覃祚焕, 曹文心, 江湉, 吴宝旭, 栗源浩, 张赢月, 姜文彬, KAMRAN Muhammad, 方小敏, 万晓樵. 塔里木盆地西部白垩纪—古近纪海相地层框架及对重大地质事件的记录[J]. 地学前缘, 2020, 27(6): 165-198. |
[7] | 张振,程日辉,许中杰,李双林. 下扬子区上石炭统船山组碳酸盐台地层序与相对海平面变化控制:以句容剖面为例[J]. 地学前缘, 2018, 25(2): 232-245. |
[8] | 邹建军,石学法. 末次冰期以来北太平洋中层水演化:研究进展与展望[J]. 地学前缘, 2017, 24(4): 141-151. |
[9] | 陈芳,周洋,吴聪,刘坚,苏新,庄畅,陆红锋,余少华. 珠江口盆地东部陆坡末次冰期天然气水合物冷泉活动的记录与时间[J]. 地学前缘, 2017, 24(4): 66-77. |
[10] | 武思琴,颜佳新,刘柯,严雅娟. 黔西南二叠纪早期陆源碎屑沉积体系对冈瓦纳冰川发育的响应[J]. 地学前缘, 2016, 23(6): 299-311. |
[11] | 朱东亚, 金之钧, 张荣强, 张殿伟, 何治亮, 李双建. 震旦系灯影组白云岩多级次岩溶储层叠合发育特征及机制[J]. 地学前缘, 2014, 21(6): 335-345. |
[12] | 李铁刚, 常凤鸣, 于心科. Younger Dryas事件与北黄海泥炭层的形成[J]. 地学前缘, 2010, 17(1): 322-330. |
[13] | 余克服 陈特固. 南海北部晚全新世高海平面及其波动的海滩沉积证据[J]. 地学前缘, 2009, 16(6): 138-145. |
[14] | 倪云燕. 浮游有孔虫个体大小对硼同位素分析的影响[J]. 地学前缘, 2009, 16(1): 363-372. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||