地学前缘 ›› 2022, Vol. 29 ›› Issue (4): 113-122.DOI: 10.13745/j.esf.sf.2022.1.12
胡栟铫1,2,3(), 龙飞江1,2,3, 韩喜彬2,3,*(
), 张泳聪2,3, 胡良明2,3, 向波1,2,3, 葛倩2,3, 边叶萍2,3
收稿日期:
2021-09-22
修回日期:
2021-12-19
出版日期:
2022-07-25
发布日期:
2022-07-28
通信作者:
韩喜彬
作者简介:
胡栟铫(1997—),男,硕士研究生,古生物学与地层学专业,主要从事海洋沉积研究。E-mail: 1564779815@qq.com
基金资助:
HU Bingyao1,2,3(), LONG Feijiang1,2,3, HAN Xibin2,3,*(
), ZHANG Yongcong2,3, HU Liangming2,3, XIANG Bo1,2,3, GE Qian2,3, BIAN Yeping2,3
Received:
2021-09-22
Revised:
2021-12-19
Online:
2022-07-25
Published:
2022-07-28
Contact:
HAN Xibin
摘要:
本文通过对南极宇航员海ANT36-C4-05岩心的放射性核素210Pb、AMS14C测年、XRF岩心扫描、多参数物性扫描和主、微量元素的测试分析,重建了该海区中全新世(6 500 Cal a BP)以来的古生产力演变及其制约因素。研究结果表明,中全新世以来宇航员海古生产力波动较强,其演变趋势与南极气温变化基本一致,受海冰范围变化制约较大。在6 500~5 200 Cal a BP期间宇航员海古生产力随着温度升高和海冰范围减小而快速上升;在5 200~3 350 Cal a BP期间宇航员海的古生产力处于高值期,波动较小;在3 350~2 000 Cal a BP期间随着温度降低和海冰范围的扩大,硅质、钙质生产力下降;在2 000~0 Cal a BP期间古生产力水平变化复杂,变化程度相较于之前小。同时,中全新世以来宇航员海区沉积记录较好地反映了5 500 Cal a BP冷事件、DACP冷事件、MWP暖期和LIA冷事件的气候变化,受冷、暖事件影响导致的古生产力的变化最为明显。
中图分类号:
胡栟铫, 龙飞江, 韩喜彬, 张泳聪, 胡良明, 向波, 葛倩, 边叶萍. 中全新世以来南极宇航员海的古生产力演变[J]. 地学前缘, 2022, 29(4): 113-122.
HU Bingyao, LONG Feijiang, HAN Xibin, ZHANG Yongcong, HU Liangming, XIANG Bo, GE Qian, BIAN Yeping. The evolution of paleoproductivity since the Middle Holocene in the Cosmonaut Sea, Antarctic[J]. Earth Science Frontiers, 2022, 29(4): 113-122.
图1 ANT36-C4-05岩心位置及宇航员海域环流、锋面、现代冬夏季海冰范围示意图(据文献[25-26]补充修改)
Fig.1 Location of sediment core ANT36-C4-05, oceanic circulation and front in the Cosmonaut Sea, and modern-day sea ice range during summer and winter in Antarctica. Modified after [25-26]. EDML-EPICA ice cores from Dronning Maud Land
实验室编号 | 样品深 度编号 | 测试 材料 | 测试值/ a BP | 校正年 龄/a | 老碳年 龄/a | 日历年龄/ Cal a BP |
---|---|---|---|---|---|---|
Beta-567729 | C4-05-00 | 有机碳 | 3 820±30 | 2 233 | 2 233 | 0 |
Beta-567729 | C4-05-05 | 有机碳 | 5 700±30 | 4 512 | 2 233 | 2 279 |
Beta-567729 | C4-05-11 | 有机碳 | 8 280±30 | 7 432 | 2 233 | 5 199 |
Beta-567729 | C4-05-17 | 有机碳 | 9 860±40 | 9 200 | 2 233 | 6 967 |
Beta-567729 | C4-05-23 | 有机碳 | 9 490±40 | 8 733 | 2 233 | 6 500 |
表1 ANT36-C4-05岩心AMS14C测年数据及其校正年龄
Table 1 AMS14C dating results and calibrated ages of sediment samples from core ANT36-C4-05
实验室编号 | 样品深 度编号 | 测试 材料 | 测试值/ a BP | 校正年 龄/a | 老碳年 龄/a | 日历年龄/ Cal a BP |
---|---|---|---|---|---|---|
Beta-567729 | C4-05-00 | 有机碳 | 3 820±30 | 2 233 | 2 233 | 0 |
Beta-567729 | C4-05-05 | 有机碳 | 5 700±30 | 4 512 | 2 233 | 2 279 |
Beta-567729 | C4-05-11 | 有机碳 | 8 280±30 | 7 432 | 2 233 | 5 199 |
Beta-567729 | C4-05-17 | 有机碳 | 9 860±40 | 9 200 | 2 233 | 6 967 |
Beta-567729 | C4-05-23 | 有机碳 | 9 490±40 | 8 733 | 2 233 | 6 500 |
图4 ANT36-C4-05古生产力替代指标与65°S一月光照、海洋表层温度变化、EDML CH4、EDML ssNa+、EDML δ18O、Taylor Dome δ18O对比图 1—5 500 Cal a BP冷事件;2—黑暗时代冷期;3—中世纪暖期;4—小冰期;a—65°S一月光照[40];b—南极半岛JPC-10站位SST[41];c—EDML C H 4 [ 42 ];d—EDML ssN a + [ 43 ];e—EDML δ18O[42];f—Taylor Dome δ18O[44];g至m各古生产力替代指标。
Fig.4 Paleoproductivity proxies in core ANT36-C4-05 (g-m) compared with solar insolation (a), sea surface temperature change (b), EDML CH4 (c), EDML ssNa+(d), EDML δ18O (e), and Taylor Dome δ18O (f)
[1] | EDDES J, MOORE G W K. A climatology of sea ice embayments in the Cosmonaut Sea, Antarctica[J]. Geophysical Research Letters, 2007, 34(2): 155-164. |
[2] | HUNT B P V, PAKHOMOV E A, TROTSENKO B G. The macrozooplankton of the Cosmonaut Sea, east Antarctica (30°E-60°E), 1987-1990[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2007, 54(7): 1042-1069. |
[3] | 董军社, 万晓樵. 珠江口盆地晚第三纪古生产力的初步研究[M]//郝诒纯, 徐钰林, 徐世策. 南海珠江口盆地第三纪微体古生物及古海洋学研究. 武汉: 中国地质大学出版社, 1996: 129-136. |
[4] | EMERSON S, HEDGES J I. Processes controlling the organic carbon content of open ocean sediments[J]. Paleoceanography, 1988, 3(5): 621-634. |
[5] | 苏纪兰, 李炎, 王启. 我国21世纪初海洋科学研究中的若干重要问题[J]. 地球科学进展, 2001, 16(5): 658-663. |
[6] | LIN H L, LAI C T, TING H C, et al. Late Pleistocene nutrients and sea surface productivity in the South China Sea: a record of teleconnections with Northern hemisphere events[J]. Marine Geology, 1999, 156(1): 197-210. |
[7] | SIGMAN D M, BOYLE E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407: 859-869. |
[8] | 汪品先. 气候演变中的冰和碳[J]. 地学前缘, 2002, 9(1): 85-93. |
[9] | STUDER A S, SIGMAN D M, MARTíNEZ-GARCíA A, et al. Antarctic Zone nutrient conditions during the last two glacial cycles[J]. Paleoceanography, 2015, 30(7): 845-862. |
[10] | ANDERSON R F, BARKER S, FLEISHER M, et al. Biological response to millennial variability of dust and nutrient supply in the Subantarctic South Atlantic Ocean[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372: 30054. |
[11] | WU L, WANG R, XIAO W, et al. Productivity-climate coupling recorded in Pleistocene sediments off Prydz Bay (East Antarctica)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 260-270. |
[12] | BONN W J, GINGELE F X, GROBE H, et al. Palaeoproductivity at the Antarctic continental margin: opal and barium records for the last 400 ka[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 139(3/4): 195-211. |
[13] | LI Q, XIAO W, WANG R, et al. Diatom based reconstruction of climate evolution through the Last Glacial Maximum to Holocene in the Cosmonaut Sea, East Antarctica[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2021, 68(1): 104960. |
[14] | 王绍武. 古气候研究进展[J]. 气象科技进展, 2011, 1(2): 20-25. |
[15] | 施雅风, 孔昭宸, 王苏民, 等. 中国全新世大暖期的气候波动与重要事件[J]. 中国科学: B辑, 1992, 12: 1300-1308. |
[16] | BOND G, SHOWERS W, CHESEBY M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278(5341): 1257-1266. |
[17] | WONG A P S, BINDOFF N L, FORBES A. Ocean-Iceshelf interaction and possible bottom water Formation in Prydz Bay, Antarctica[C]//JACOBS S S, WEISS R F. Ocean, ice and atmosphere:interactions at the Antarctic continental margin, antarctic research series. Washington: American Geophysical Union, 1998: 173-187. |
[18] | SOLLI K, KUVAAS B, KRISTOFFERSEN Y, et al. Seismic morphology and distribution of inferred glaciomarine deposits along the East Antarctic continental margin, 20°E-60°E[J]. Marine Geology, 2007, 237(3/4): 207-223. |
[19] | MEIJERS A J S, KLOCKER A, BINDOFF N L, et al. The circulation and water masses of the Antarctic shelf and continental slope between 30 and[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(9/10): 723-737. |
[20] | POLLARD R T, LUCAS M I, READ J F. Physical controls on biogeochemical zonation in the Southern Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(16): 3289-3305. |
[21] | ORSI A H, WHITWORTH T, NOWLIN W D. On the meridional extent and fronts of the Antarctic Circumpolar Current[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1995, 42: 641-673. |
[22] | ACOBS S S. On the nature and significance of the Antarctic Slope Front[J]. Marine Chemistry, 1991, 35(1/2/3/4): 9-24. |
[23] | AINLEY D G, JACOBS S S. Sea-bird affinities for ocean and ice boundaries in the Antarctic[J]. Deep Sea Research Part l: Oceanographic Research Papers, 1981, 28(10): 1173-1185. |
[24] | HEYWOOD K J, SPARROW M D, BROWN J, et al. Frontal structure and Antarctic Bottom Water flow through the Princess Elizabeth Trough, Antarctica[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1999, 46(7): 1181-1200. |
[25] | WILLIAMS G D, NICOL S, AOKI S, et al. Surface oceanography of BROKE-West, along the Antarctic margin of the south-west Indian Ocean (30-80°E)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(9/10): 738-757. |
[26] | COMISO J C. Large-scalecharacteristics and variability of the Global Sea Ice Cover[M]//THOMAS D N, DIECKMANN G S. Sea ice:an introduction to its physics, chemistry, biology and geology. Oxford: Blackwell, 2003: 112-142. |
[27] | GERSONDE R, CROSTA X, ABELMANN A, et al. Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum: a circum-Antarctic view based on siliceous microfossil records[J]. Quaternary Science Reviews, 2005, 24(7/8/9): 869-896. |
[28] | COMISO J C, GORDON A L. Recurring polynyas over the Cosmonaut Sea and the Maud Rise[J]. Journal of Geophysical Research Oceans, 1987, 92(C3): 2819-2833. |
[29] | COMISO J C, GORDON A L. Cosmonaut polynya in the Southern Ocean: structure and variability[J]. Journal of Geophysical Research Oceans, 1996, 101(C8): 18297-18313. |
[30] | ARBETTER T E, LYNCH A H, BAILEY D A. Relationship between synoptic forcing and polynya formation in the Cosmonaut Sea: 1. Polynya climatology[J]. Journal of Geophysical Research, 2004, 109: C04022. |
[31] | PRASAD T G, MCCLEAN J L, HUNKE E C, et al. A numerical study of the western Cosmonaut polynya in a coupled ocean-sea ice model[J]. Journal of Geophysical Research, 2005, 110: C10008. |
[32] | HEATON T J, KÖHLER P, BUTZIN M, et al. Marine 20: the marine radiocarbon are calibrtion curve (0-55000 Cal BP)[J]. Radiocarbon, 2020, 62(4): 779-820. |
[33] | AGNIHOTRI R, ALTABET M A, HERBERT T D, et al. Subdecadally resolved paleoceanography of the Peru margin during the last two millennia[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5): Q05013. |
[34] | REBOLLEDO L, SEPúLVEDA J, LANGE C B, et al. Late Holocene marine productivity changes in Northern Patagonia-Chile inferred from a multi-proxy analysis of Jacaf channel sediments[J]. Estuarine Coastal and Shelf Science, 2008, 80(3): 314-322. |
[35] | WU L, WANG R, KRIJGSMAN W, et al. Decipheringcolor reflectance data of a 520-kyr sediment core from the Southern Ocean: method application and paleoenvironmental implications[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(6): 2808-2826. |
[36] | HILLENBRAND C D, KUHN G, FREDERICHS T. Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: an indicator for ice-sheet collapse?[J]. Quaternary Science Reviews, 2009, 28(13/14): 1147-1159. |
[37] | DYMOND J, SUESS E, LYLE M. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity[J]. Paleoceanography, 1992, 7(2): 163-181. |
[38] | YOSHIDA Y, MORIWAKI K. Some consideration on elevated coastal features and their dates around Syowa station, Antarctica[J]. Memoirs of National Institute of Polar Research Special issue, 1979, 13: 220-226. |
[39] | AKANO Y, TYLER J J, KOJIMA H, et al. Holocene lake development and glacial-isostatic uplift at Lake Skallen and Lake Oyako, Lützow-Holm Bay, East Antarctica: based on biogeochemical facies and molecular signatures[J]. Applied Geochemistry, 2012, 27(12): 2546-2559. |
[40] | LASKAR J, ROBUTEL P, JOUTEL F, et al. A long-term numerical solution for the insolation quantities of the earth[J]. Astronomy and Astrophysics, 2004, 428(2): 261-285. |
[41] | ETOURNEAU J, COLLINS L G, WILLMOTT V, et al. Holocene climate variations in the western Antarctic Peninsula: evidence for sea ice extent predominantly controlled by changes in insolation and ENSO variability[J]. Climate of the Past, 2013, 9(4): 1431-1446. |
[42] | BARBANTE C, BARNOLA J M, BECAGLI S, et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica[J]. Nature, 2006, 444(7116): 195-198. |
[43] | FISCHER H, FUNDEL F, RUTH U, et al. Reconstruction of millennial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica[J]. Earth and Planetary Science Letters, 2007, 260(1): 340-354. |
[44] | STEIG E J, MORSE D L, WADDINGTON E D, et al. Wisconsinan and Holoceneclimate history from an ice core at Taylor Dome, Western Ross Embayment, Antarctica[J]. Geografiska Annaler Series A: Physical Geography, 2000, 82(2/3): 213-225. |
[45] | ANDERSON R F, CHASE Z, FLEISHER M Q, et al. The Southern Ocean's biological pump during the Last Glacial Maximum[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(9/10): 1909-1938. |
[46] | KAISER E A, BILLUPS K, BRADTMILLER L. A 1 million year record of biogenic silica in the Indian Ocean Sector of the Southern Ocean: regional versus global forcing of primary productivity[J]. Paleoceanography and Paleoclimatology, 2021, 36(3): e2020PA004033. |
[47] | WOLFF E W, FISCHER H, FUNDEL F, et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles[J]. Nature, 2006, 440(7083): 491-496. |
[48] | BUIZERT C, ADRIAN B, AHN J, et al. Precise interpolar phasing of abrupt climate change during the last ice age[J]. Nature, 2015, 520(7549): 661-665. |
[49] | BECK J, BOCK M, SCHMITT J, et al. Bipolar carbon and hydrogen isotope constraints on the Holocene methane budget[J]. Biogeosciences, 2018, 15(23): 7155-7175. |
[50] | HODELL D A, KANFOUSH S L, SHEMESH A, et al. Abruptcooling of antarctic surface waters and sea ice expansion in the South Atlantic Sector of the Southern Ocean at 5000 cal yr B. P[J]. Quaternary Research, 2001, 56(2): 191-198. |
[51] | NOON P E, LENG M J, JONES V J. Oxygen-isotope (δ18O) evidence of Holocene hydrological changes at Signy Island, maritime Antarctica[J]. Holocene, 2003, 13(2): 251-263. |
[52] | STEIG E J, HART C P, WHITE J, et al. Changes in climate, ocean and ice-sheet conditions in the Ross embayment, Antarctica, at 6 ka[J]. Annals of Glaciology, 1998, 27: 305-310. |
[53] | YOUNG S B, SCHOFIELD E K. Pollen evidence for Late Quaternary climate changes on Kerguelen Islands[J]. Nature, 1973, 245(5424): 311-312. |
[54] | PORTER S C. Onset of neoglaciation in the Southern Hemisphere[J]. Journal of Quaternary Science, 2000, 15(4): 395-408. |
[55] | MAGNY M, HAAS J N. A major widespread climatic change around 5300 cal. yr BP at the time of the Alpine Iceman[J]. Journal of Quaternary Science, 2004, 19(5): 423-430. |
[56] | LAMY F, RÜHLEMANN C, HEBBELN D, et al. High- and low-latitude climate control on the position of the southern Peru-Chile Current during the Holocene[J]. Paleoceanography and Paleoclimatology, 2002, 17(2): 1028. |
[57] | WESTWOOD K J, GRIFFITHS F B, MEINERS K M, et al. Primary productivity off the Antarctic coast from 30°-80°E; BROKE-West survey, 2006[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(9/10): 794-814. |
[58] | MINZONI R T, ANDERSON J B, FERNANDEZ R, et al. Marine record of Holocene climate, ocean, and cryosphere interactions: Herbert Sound, James Ross Island, Antarctica[J]. Quaternary Science Reviews, 2015, 129: 239-259. |
[59] | KAPLAN M R, STRELIN J A, SCHAEFER J M, et al. Holocene glacier behavior around the northern Antarctic Peninsula and possible causes[J]. Earth and Planetary Science Letters, 2020, 534: 116077. |
[60] | STRELIN J A, SONE T, MORI J, et al. New data related to holocene landform development and climatic change from James Ross Island, Antarctic Peninsula[M]//FÜTTERER D K, DAMASKE D, KLEINSCHMIDT G, et al. Antarctica:contributions to global earth sciences. Berlin, Heidelberg: Springer. 2006: 455-459. |
[61] | CHISHOLM S W. Stirring times in the Southern Ocean[J]. Nature, 2000, 407: 685-687. |
[62] | BIDLE K D, AZAM F. Accelerated dissolution of diatom silica by marine bacterial assemblages[J]. Nature, 1999, 397: 508-512. |
[63] | ZOLITSCHKA B, FEY M, JANSSEN S, et al. Southern Hemispheric Westerlies control sedimentary processes of Laguna Azul (south-eastern Patagonia, Argentina)[J]. The Holocene, 2019, 29(3): 403-420. |
[64] | WALDMANN N, ARIZTEGUI D, ANSELMETTI F S, et al. Holocene climatic fluctuations and positioning of the Southern Hemisphere westerlies in Tierra del Fuego (54° S), Patagonia[J]. Journal of Quaternary Science, 2010, 25(7): 1063-1075. |
[65] | DOMACK E, LEVENTER A, DUNBAR R, et al. Chronology of the Palmer Deep site, Antarctic Peninsula: a Holocene palaeoenvironmental reference for the circum-Antarctic[J]. Holocene, 2001, 11(1): 1-9. |
[66] | BERTLER N, MAYEWSKI P A, CARTER L. Cold conditions in Antarctica during the Little Ice Age: implications for abrupt climate change mechanisms[J]. Earth and Planetary Science Letters, 2011, 308(1-2): 41-51. |
[67] | DOMACK E W, LEVENTER A, ROOT S, et al. Marinesedimentary record of natural environmental variability and recent warming in the Antarctic Peninsula[C]//DOMACK E W, LEVENTER A, BURNET A, et al. Antarctic Peninsula climate variability:historical and paleoenvironmental perspectives. Washington: American Geophysical Union. 2003: 205-224. |
[1] | 梁文翔, 骆震, 陈伏龙, 王统霞, 安杰, 龙爱华, 何朝飞. 基于CMIP6多模式集合的内陆河径流模拟及预估[J]. 地学前缘, 2024, 31(6): 450-461. |
[2] | 杨志波, 季汉成, 鲍志东, 史燕青, 赵雅静, 向鹏飞. 白云石晶体结构和地球化学特征对沉积环境响应:以扬子地台晚埃迪卡拉纪灯影组白云岩为例[J]. 地学前缘, 2024, 31(3): 68-79. |
[3] | 何雁兵, 雷永昌, 邱欣卫, 肖张波, 郑仰帝, 刘冬青. 珠江口盆地陆丰南地区文昌组沉积古环境恢复及烃源岩有机质富集主控因素研究[J]. 地学前缘, 2024, 31(2): 359-376. |
[4] | 王鹏寿, 许民, 韩海东, 李振中, 宋轩宇, 周卫永. 天山南坡阿克苏流域冰川物质平衡及其融水径流对气候变化的响应研究[J]. 地学前缘, 2024, 31(2): 435-446. |
[5] | 陈践发, 许锦, 王杰, 刘鹏, 陈斐然, 黎茂稳. 塔里木盆地西北缘玉尔吐斯组黑色岩系沉积环境演化及其对有机质富集的控制作用[J]. 地学前缘, 2023, 30(6): 150-161. |
[6] | 夏敦胜, 杨军怀, 王树源, 刘鑫, 陈梓炫, 赵来, 牛潇毅, 金明, 高福元, 凌智永, 王飞, 李再军, 王鑫, 贾佳, 杨胜利. 雅鲁藏布江流域风成沉积空间格局、沉积模式及其环境效应[J]. 地学前缘, 2023, 30(4): 229-244. |
[7] | 宋轩宇, 许民, 康世昌, 孙立平. 基于机器学习的冰冻圈典型流域水文过程模拟研究[J]. 地学前缘, 2023, 30(4): 451-469. |
[8] | 何朝飞, 骆成彦, 陈伏龙, 龙爱华, 唐豪. 基于CMIP6多模式的和田河流域未来气候变化预估[J]. 地学前缘, 2023, 30(3): 515-528. |
[9] | 翟咏荷, 何登发, 开百泽. 鄂尔多斯盆地及邻区早二叠世构造-沉积环境与原型盆地演化[J]. 地学前缘, 2023, 30(2): 139-153. |
[10] | 孙辉, 刘晓东. 青藏高原隆升气候效应的数值模拟研究进展概述[J]. 地学前缘, 2022, 29(5): 300-309. |
[11] | 刘志飞, 陈建芳, 石学法. 深海沉积与全球变化研究的前缘与挑战[J]. 地学前缘, 2022, 29(4): 1-9. |
[12] | 胡钊彬, 尉建功, 谢志远, 张伙带, 钟广法. 国际大洋钻探全球海平面变化研究进展[J]. 地学前缘, 2022, 29(4): 10-24. |
[13] | 张兰兰, 邱卓雅, 向荣, 杨艺萍, 陈木宏. 基于生物硅记录的孟加拉湾东南部末次冰期以来的古生产力变化[J]. 地学前缘, 2022, 29(4): 136-143. |
[14] | 张宗言, 刘祥, 李响, 柯学, 张楗钰, 徐亚东. 广东雷州半岛晚渐新世—早更新世孢粉共存因子分析及古气候变化重建[J]. 地学前缘, 2022, 29(2): 303-316. |
[15] | 凌媛, 王永, 王淑贤, 孙青, 李海兵. 生物标志物在海洋和湖泊古生态系统和生产力重建中的应用[J]. 地学前缘, 2022, 29(2): 327-342. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||