地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 408-424.DOI: 10.13745/j.esf.sf.2025.3.35
刘文奇1(), 王柱红2, 刘洋1, 马宁1, 陈岩3, 郑旺1, 刘红4, 陈玖斌1,*(
)
收稿日期:
2025-02-07
修回日期:
2025-02-21
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*陈玖斌(1971—),男,博士,教授,博士生导师,主要从事金属稳定同位素地球化学研究。E-mail: 作者简介:
刘文奇(1999—),男,硕士研究生,主要从事环境同位素地球化学研究。E-mail: 335148517@qq.com
基金资助:
LIU Wenqi1(), WANG Zhuhong2, LIU Yang1, MA Ning1, CHEN Yan3, ZHENG Wang1, LIU Hong4, CHEN Jiubin1,*(
)
Received:
2025-02-07
Revised:
2025-02-21
Online:
2025-03-25
Published:
2025-04-20
摘要:
微量金属元素在生命过程中扮演重要角色,其含量和分布由生物系统严格调节,并直接受到外部环境的影响。铜和锌在免疫调节、蛋白质合成和催化反应等方面发挥特定作用,其稳态失衡可能导致氧化应激反应、炎症损伤甚至疾病。研究表明,金属稳定同位素在地质、环境过程中普遍发生分馏,成为环境金属来源的有效示踪手段。而生物新陈代谢过程中,氧化还原反应、配体结合能改变等也会造成明显金属稳定同位素分馏。因此,研究生物体金属稳定同位素的组成、分布与平衡,有助于深入理解金属稳态及相关代谢过程。本文在系统总结了人体铜、锌同位素分布特征,阐述了性别、年龄、饮食习惯和环境暴露等因素对铜、锌同位素分馏影响的基础上,主要总结和讨论了癌症演进过程中人体铜、锌同位素稳态失衡的过程机制。结果表明,在癌症发展过程中,铜和锌同位素除分别受到性别和饮食习惯影响外,癌症患者相对健康人群血液明显富集轻铜同位素,而尿液富集轻锌同位素,展示了金属稳定同位素在癌症诊断和预后方面的巨大潜力。未来,应在标准化样品处理流程的基础上,完善人体金属同位素数据库,明确生命过程金属同位素分馏机理,为金属稳定同位素在临床疾病如癌症中的诊断应用奠定理论基础。
中图分类号:
刘文奇, 王柱红, 刘洋, 马宁, 陈岩, 郑旺, 刘红, 陈玖斌. 铜锌稳定同位素对特殊生命过程:癌症的指示意义[J]. 地学前缘, 2025, 32(3): 408-424.
LIU Wenqi, WANG Zhuhong, LIU Yang, MA Ning, CHEN Yan, ZHENG Wang, LIU Hong, CHEN Jiubin. The indicative significance of copper and zinc stable isotopes in special life processes: Cancer[J]. Earth Science Frontiers, 2025, 32(3): 408-424.
图1 健康人体不同组织铜同位素组成(数据来源于文献[38,43,45,66⇓-68,71⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓-83])
Fig.1 Summary of reported isotope ratio data of copper for tissue samples of healthy humans (data from [38,43,45,66⇓-68,71⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓-83] )
图2 男性(a)和女性(b)血液铜同位素组成与年龄变化(数据来源于文献[45,67,72⇓-74,76])
Fig.2 Isotope ratio data of copper in blood of males (a) and females (b) by age(data from [45,67,72⇓-74,76] )
图3 健康人体不同组织锌同位素组成(数据来源于文献[42-43,45,66-67,71-72,75⇓-77,129,132⇓⇓⇓⇓⇓-138])
Fig.3 Summary of reported isotope ratio data of zinc for tissue samples of healthy humans (data from [42-43,45,66-67,71-72,75⇓-77,129,132⇓⇓⇓⇓⇓-138])
图4 男性(a)和女性(b)血液和尿液锌同位素组成与年龄变化(数据来源于文献[42,45,67,72,76,134⇓-136])
Fig.4 Isotope ratio data of zinc in blood and urine of males (a) and females (b) by age(data from [42,45,67,72,76,134⇓-136] )
图5 不同癌症患者与对照组体液铜同位素组成(数据来源于文献[44⇓-46,73-74,94,158])
Fig.5 Summary of reported isotope ratio data of copper in body fluids of different cancer patients compared to the healthy control (data from [44⇓-46,73-74,94,158] )
图6 不同癌症患者与对照组体液锌同位素组成(数据来源于文献[41⇓-43,45,134])
Fig.6 Summary of reported isotope ratio data of zinc in body fluids of different cancer patients compared to the healthy control (data from [41⇓-43,45,134] )
[1] | FRAGA C G. Relevance, essentiality and toxicity of trace elements in human health[J]. Molecular Aspects of Medicine, 2005, 26(4/5): 235-244. |
[2] | COVERDALE J P C, POLEPALLI S, ARRUDA M A Z, et al. Recent advances in metalloproteomics[J]. Biomolecules, 2024, 14(1): 104. https://doi.org/10.3390/biom14010104. |
[3] |
PAJARILLO E A B, LEE E, KANG D K. Trace metals and animal health: interplay of the gut microbiota with iron, manganese, zinc, and copper[J]. Animal Nutrition, 2021, 7(3): 750-761.
DOI PMID |
[4] |
SHAUL O. Magnesium transport and function in plants: the tip of the iceberg[J]. Biometals, 2002, 15(3): 309-323.
DOI PMID |
[5] |
PERUTZ M F. Structure and mechanism of haemoglobin[J]. British Medical Bulletin, 1976, 32(3): 195-208.
PMID |
[6] |
HARAGUCHI H. Metallomics: the history over the last decade and a future outlook[J]. Metallomics, 2017, 9(8): 1001-1013.
DOI PMID |
[7] | MARET W. The quintessence of metallomics: a harbinger of a different life science based on the periodic table of the bioelements[J]. Metallomics, 2022, 14(8): mfac051. |
[8] |
MARET W, BLOWER P. Teaching the chemical elements in biochemistry: elemental biology and metallomics[J]. Biochemistry and Molecular Biology Education, 2022, 50(3): 283-289.
DOI PMID |
[9] |
MAHAN B, CHUNG R S, POUNTNEY D L, et al. Isotope metallomics approaches for medical research[J]. Cellular and Molecular Life Sciences, 2020, 77(17): 3293-3309.
DOI PMID |
[10] | BARTNICKA J J, BLOWER P J. Insights into trace metal metabolism in health and disease from PET: “PET metallomics”[J]. Journal of Nuclear Medicine, 2018, 59(9): 1355-1359. |
[11] | FUKASAWA H, FURUYA R, KANEKO M, et al. Clinical significance of trace element zinc in patients with chronic kidney disease[J]. Journal of Clinical Medicine, 2023, 12(4): 1667. https://doi.org/10.3390/jcm12041667. |
[12] |
BOST M, HOUDART S, OBERLI M, et al. Dietary copper and human health: current evidence and unresolved issues[J]. Journal of Trace Elements in Medicine and Biology, 2016, 35: 107-115.
DOI PMID |
[13] | FIORENTINI D, CAPPADONE C, FARRUGGIA G, et al. Magnesium: biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency[J]. Nutrients, 2021, 13(4): 1136. https://doi.org/10.3390/nu13041136. |
[14] | JOMOVA K, VALKO M. Advances in metal-induced oxidative stress and human disease[J]. Toxicology, 2011, 283(2/3): 65-87. |
[15] | JOMOVA K, VONDRAKOVA D, LAWSON M, et al. Metals, oxidative stress and neurodegenerative disorders[J]. Molecular and Cellular Biochemistry, 2010, 345(1/2): 91-104. |
[16] | LELIÈVRE P, SANCEY L, COLL J L, et al. The multifaceted roles of copper in cancer: a trace metal element with dysregulated metabolism, but also a target or a bullet for therapy[J]. Cancers, 2020, 12(12): 3594. https://doi.org/10.3390/cancers12123594. |
[17] | CORADDUZZA D, CONGIARGIU A, AZARA E, et al. Heavy metals in biological samples of cancer patients: a systematic literature review[J]. Biometals, 2024, 37(4): 803-817. |
[18] | QU Z, LIU Q, KONG X Y, et al. A systematic study on zinc-related metabolism in breast cancer[J]. Nutrients, 2023, 15(7): 1703. https://doi.org/10.3390/nu15071703. |
[19] |
KOHZADI S, SHEIKHESMAILI F, RAHEHAGH R, et al. Evaluation of trace element concentration in cancerous and non-cancerous tissues of human stomach[J]. Chemosphere, 2017, 184: 747-752.
DOI PMID |
[20] | SOHRABI M, NIKKHAH M, SOHRABI M, et al. Evaluating tissue levels of the eight trace elements and heavy metals among esophagus and gastric cancer patients: a comparison between cancerous and non-cancerous tissues[J]. Journal of Trace Elements in Medicine and Biology, 2021, 68: 126761. |
[21] | YI G H, LUO H X, ZHENG Y L, et al. Exosomal proteomics: unveiling novel insights into lung cancer[J]. Aging and Disease, 2024. http://dx.doi.org/10.14336/AD.2024.0409. |
[22] | WU G, BAJESTANI N, PRACHA N, et al. Hepatocellular carcinoma surveillance strategies: major guidelines and screening advances[J]. Cancers, 2024, 16(23): 3933. |
[23] | ALBARÈDE F. Metal stable isotopes in the human body: a tribute of geochemistry to medicine[J]. Elements, 2015, 11(4): 265-269. |
[24] |
ALBARÈDE F, TÉLOUK P, BALTER V, et al. Medical applications of Cu, Zn, and S isotope effects[J]. Metallomics, 2016, 8(10): 1056-1070.
PMID |
[25] |
SELDEN C R, SCHILLING K, GODFREY L, et al. Metal-binding amino acid ligands commonly found in metalloproteins differentially fractionate copper isotopes[J]. Scientific Reports, 2024, 14(1): 1902.
DOI PMID |
[26] |
刘嘉文, 田世洪, 王玲. 镁同位素体系在重要地质过程中的应用[J]. 地学前缘, 2023, 30(3): 399-424.
DOI |
[27] | 韩嫣, 胡雅婷, 王倩, 等. 铜同位素及其在环境污染示踪中的应用进展[J]. 地质科技通报, 2023, 42(1): 378-387. |
[28] | 黄施棋, 龚迎莉, 田世洪, 等. 锌同位素在地球科学研究中的新进展[J]. 地质学报, 2023, 97(4): 1002-1029. |
[29] | HORNER T J, LITTLE S H, CONWAY T M, et al. Bioactive trace metals and their isotopes as paleoproductivity proxies: an assessment using GEOTRACES-Era data[J]. Global Biogeochemical Cycles, 2021, 35(11): e2020GB006814. |
[30] | WIGGENHAUSER M, MOORE R E T, WANG P, et al. Stable isotope fractionation of metals and metalloids in plants: a review[J]. Frontiers in Plant Science, 2022, 13: 840941. |
[31] |
SKULAN J, DEPAOLO D J. Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24): 13709-13713.
PMID |
[32] |
WALCZYK T, VON BLANCKENBURG F. Natural iron isotope variations in human blood[J]. Science, 2002, 295(5562): 2065-2066.
PMID |
[33] | MOREL J D, SAUZÉAT L, GOEMINNE L J E, et al. The mouse metallomic landscape of aging and metabolism[J]. Nature Communications, 2022, 13(1): 607. |
[34] | GRIGORYAN R, COSTAS-RODRÍGUEZ M, VAN LAECKE S, et al. Multi-collector ICP-mass spectrometry reveals changes in the serum Mg isotopic composition in diabetes type I patients[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(7): 1514-1521. |
[35] | EISENHAUER A, MÜLLER M, HEUSER A, et al. Calcium isotope ratios in blood and urine: a new biomarker for the diagnosis of osteoporosis[J]. Bone Reports, 2019, 10: 100200. |
[36] |
ARANAZ M, COSTAS-RODRÍGUEZ M, LOBO L, et al. Homeostatic alterations related to total antioxidant capacity, elemental concentrations and isotopic compositions in aqueous humor of glaucoma patients[J]. Analytical and Bioanalytical Chemistry, 2021, 414(1): 515-524.
DOI PMID |
[37] | HOBIN K, COSTAS-RODRÍGUEZ M, VAN WONTER-GHEM E, et al. High-precision isotopic analysis of Cu and Fe multi-collector inductively coupled plasma-mass spectrometry reveals lipopolysaccharide-induced inflammatory effects in blood plasma and brain tissues[J]. Frontiers in Chemistry, 2022, 10: 896279. |
[38] | WANG W C, LI Z W, LU Q, et al. Natural copper isotopic abnormity in maternal serum at early pregnancy associated to risk of spontaneous preterm birth[J]. Science of the Total Environment, 2022, 849: 157872. |
[39] | LING W B, ZHAO G, WANG W C, et al. Metallomic profiling and natural copper isotopic signatures of childhood autism in serum and red blood cells[J]. Chemosphere, 2023, 330: 138700. |
[40] |
TANAKA Y K, YAJIMA N, HIGUCHI Y, et al. Calcium isotope signature: new proxy for net change in bone volume for chronic kidney disease and diabetic rats[J]. Metallomics, 2017, 9(12): 1745-1755.
DOI PMID |
[41] | SULLIVAN K V, MOORE R E T, CAPPER M S, et al. Zinc stable isotope analysis reveals Zn dyshomeostasis in benign tumours, breast cancer, and adjacent histologically normal tissue[J]. Metallomics, 2021, 13(6): mfab027. |
[42] | SCHILLING K, MOORE R E T, SULLIVAN K V, et al. Zinc stable isotopes in urine as diagnostic for cancer of secretory organs[J]. Metallomics, 2021, 13(5): mfab020. |
[43] | LARNER F, WOODLEY L N, SHOUSHA S, et al. Zinc isotopic compositions of breast cancer tissue[J]. Metallomics, 2015, 7(1): 107-112. |
[44] | TÉLOUK P, PUISIEUX A, FUJII T, et al. Copper isotope effect in serum of cancer patients: a pilot study[J]. Metallomics, 2015, 7(2): 299-308. |
[45] |
HASTUTI A A M B, COSTAS-RODRÍGUEZ M, MATSUNAGA A, et al. Cu and Zn isotope ratio variations in plasma for survival prediction in hematological malignancy cases[J]. Scientific Reports, 2020, 10(1): 16389.
DOI PMID |
[46] | KAZI TANI L S, GOURLAN A T, DENNOUNI-MEDJATI N, et al. Copper isotopes and copper to zinc ratio as possible biomarkers for thyroid cancer[J]. Frontiers in Medicine, 2021, 8: 698167. |
[47] | MARÉCHAL C N, TÉLOUK P, ALBARÈDE F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999, 156(1-4): 251-273. |
[48] |
YANG L. Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review[J]. Mass Spectrometry Reviews, 2009, 28(6): 990-1011.
DOI PMID |
[49] | YANG L, TONG S Y, ZHOU L, et al. A critical review on isotopic fractionation correction methods for accurate isotope amount ratio measurements by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(11): 1849-1861. |
[50] | BARBER R G, GRENIER Z A, BURKHEAD J L. Copper toxicity is not just oxidative damage: zinc systems and insight from Wilson Disease[J] Biomedicines, 2021, 9(3): 316. |
[51] | ROSS A C, CABALLERO B, COUSINS R J, et al. Modern nutrition in health and disease[M]. 11th ed. Philadelphia: Lippincott Williams & Wilkins, 2012. |
[52] | TANG J Y, FU O Y, HOU M F, et al. Oxidative stress-modulating drugs have preferential anticancer effects - involving the regulation of apoptosis, DNA damage, endoplasmic reticulum stress, autophagy, metabolism, and migration[J]. Seminars in Cancer Biology, 2019, 58: 109-117. |
[53] |
CHEN J, JIANG Y H, SHI H, et al. The molecular mechanisms of copper metabolism and its roles in human diseases[J]. Pflugers Archiv: European Journal of Physiology, 2020, 472(10): 1415-1429.
DOI PMID |
[54] | KIELA P R, GHISHAN F K. Physiology of intestinal absorption and secretion[J]. Best Practice & Research Clinical Gastroenterology, 2016, 30(2): 145-159. |
[55] |
OHGAMI R S, CAMPAGNA D R, MCDONALD A, et al. The Steap proteins are metalloreductases[J]. Blood, 2006, 108(4): 1388-1394.
DOI PMID |
[56] | SHAWKI A, ANTHONY S R, NOSE Y, et al. Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese[J]. American Journal of Physiology: Gastrointestinal and Liver Physiology, 2015, 309(8): G635-G647. |
[57] | TURNLUND J R. Human whole-body copper metabolism[J]. American Journal of Clinical Nutrition, 1998, 67(5): 960s-964s. |
[58] | ROBERTS E A, SARKAR B. Liver as a key organ in the supply, storage, and excretion of copper[J]. American Journal of Clinical Nutrition, 2008, 88(3): 851s-854s. |
[59] | PEÑA M M O, LEE J, THIELE D J. A delicate balance: homeostatic control of copper uptake and distribution[J]. The Journal of Nutrition, 1999, 129(7): 1251-1260. |
[60] | WANG X D, ZHOU M, LIU Y, et al. Cope with copper: from copper linked mechanisms to copper-based clinical cancer therapies[J]. Cancer Letters, 2023, 561: 216157. |
[61] | ALBARÈDE F, TÉLOUK P, BALTER V. Medical applications of isotope metallomics[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 851-885. |
[62] |
FLÓREZ M R, COSTAS-RODRÍGUEZ M, GROOTAERT C, et al. Cu isotope fractionation response to oxidative stress in a hepatic cell line studied using multi-collector ICP-mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2018, 410(9): 2385-2394.
DOI PMID |
[63] |
PAREDES E, AVAZERI E, MALARD V, et al. Impact of uranium uptake on isotopic fractionation and endogenous element homeostasis in human neuron-like cells[J]. Scientific Reports, 2018, 8: 17163.
DOI PMID |
[64] | LARNER F, MCLEAN C A, HALLIDAY A N, et al. Copper isotope compositions of superoxide dismutase and metallothionein from post-mortem human frontal cortex[J]. Inorganics, 2019, 7(7): 86. |
[65] | VAN HEGHE L, DELTOMBE O, DELANGHE J, et al. The influence of menstrual blood loss and age on the isotopic composition of Cu, Fe and Zn in human whole blood[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(3): 478-482. |
[66] |
JAOUEN K, BALTER V, HERRSCHER E, et al. Fe and Cu stable isotopes in archeological human bones and their relationship to sex[J]. American Journal of Physical Anthropology, 2012, 148(3): 334-340.
DOI PMID |
[67] |
ALBARÈDE F, TÉLOUK P, LAMBOUX A, et al. Isotopic evidence of unaccounted for Fe and Cu erythropoietic pathways[J]. Metallomics, 2011, 3(9): 926-933.
DOI PMID |
[68] |
JAOUEN K, BALTER V. Menopause effect on blood Fe and Cu isotope compositions[J]. American Journal of Physical Anthropology, 2014, 153(2): 280-285.
DOI PMID |
[69] |
GAIER E D, EIPPER B A, MAINS R E. Copper signaling in the mammalian nervous system: synaptic effects[J]. Journal of Neuroscience Research, 2013, 91(1): 2-19.
DOI PMID |
[70] | MOYNIER F, CREECH J, DALLAS J, et al. Serum and brain natural copper stable isotopes in a mouse model of Alzheimer’s disease[J]. Scientific Reports, 2019, 9: 11894. |
[71] | VAN HEGHE L, ENGSTRÖM E, RODUSHKIN I, et al. Isotopic analysis of the metabolically relevant transition metals Cu, Fe and Zn in human blood from vegetarians and omnivores using multi-collector ICP-mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(8): 1327-1334. |
[72] |
JAOUEN K, GIBERT M, LAMBOUX A, et al. Is aging recorded in blood Cu and Zn isotope compositions?[J]. Metallomics, 2013, 5(8): 1016-1024.
DOI PMID |
[73] | TOUBHANS B, GOURLAN A T, TÉLOUK P, et al. Cu isotope ratios are meaningful in ovarian cancer diagnosis[J]. Journal of Trace Elements in Medicine and Biology, 2020, 62: 126611. |
[74] |
WANG W C, LIU X, ZHANG C W, et al. Identification of two-dimensional copper signatures in human blood for bladder cancer with machine learning[J]. Chemical Science, 2022, 13(6): 1648-1656.
DOI PMID |
[75] |
JAOUEN K, HERRSCHER E, BALTER V. Copper and zinc isotope ratios in human bone and enamel[J]. American Journal of Physical Anthropology, 2017, 162(3): 491-500.
DOI PMID |
[76] | MILLER K, DAY P L, BEHL S, et al. Isotopic composition of serum zinc and copper in healthy children and children with autism spectrum disorder in North America[J]. Frontiers in Molecular Neuroscience, 2023, 16: 1133218. |
[77] | RODIOUCHKINA K, RODUSHKIN I, GODERIS S, et al. Longitudinal isotope ratio variations in human hair and nails[J]. Science of the Total Environment, 2022, 808: 152059. |
[78] |
LAUWENS S, COSTAS-RODRÍGUEZ M, DELANGHE J, et al. Quantification and isotopic analysis of bulk and of exchangeable and ultrafiltrable serum copper in healthy and alcoholic cirrhosis subjects[J]. Talanta, 2018, 189: 332-338.
DOI PMID |
[79] |
SAUZÉAT L, BERNARD E, PERRET-LIAUDET A, et al. Isotopic evidence for disrupted copper metabolism in amyotrophic lateral sclerosis[J]. iScience, 2018, 6: 264-271.
DOI PMID |
[80] | MOYNIER F, LE BORGNE M, LAOUD E, et al. Copper and zinc isotopic excursions in the human brain affected by Alzheimer’s disease[J]. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 2020, 12(1): e12112. |
[81] | LAUWENS S, COSTAS-RODRÍGUEZ M, VAN VLIERBERGHE H, et al. High-precision isotopic analysis of Cu in blood serum multi-collector ICP-mass spectrometry for clinical investigation: steps towards improved robustness and higher sample throughput[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(3): 597-608. |
[82] | ARAMENDÍA M, RELLO L, RESANO M, et al. Isotopic analysis of Cu in serum samples for diagnosis of Wilson’s disease: a pilot study[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(5): 675-681. |
[83] |
LAMBOUX A, COUCHONNAL-BEDOYA E, GUILLAUD O, et al. The blood copper isotopic composition is a prognostic indicator of the hepatic injury in Wilson disease[J]. Metallomics, 2020, 12(11): 1781-1790.
DOI PMID |
[84] | KEMPSON I M, SKINNER W M, KIRKBRIDE K P. The occurrence and incorporation of copper and zinc in hair and their potential role as bioindicators: a review[J]. Journal of Toxicology and Environmental Health, Part B: Critical Reviews, 2007, 10(8): 611-622. |
[85] | THOMPSON A H, WILSON A, EHLERINGER J R. Hair as a geochemical recorder: ancient to modern[J]. Treatise on Geochemistry, 2014, 14: 371-393. |
[86] | OLASINSKA-WISNIEWSKA A, URBANOWICZ T, HANC A, et al. The diagnostic value of trace metal concentrations in hair in carotid artery disease[J]. Journal of Clinical Medicine, 2023, 12(21): 6794. |
[87] |
TANAKA Y K, HIRATA T. Stable isotope composition of metal elements in biological samples as tracers for element metabolism[J]. Analytical Sciences, 2018, 34(6): 645-655.
DOI PMID |
[88] | ISHIKAWA A, MATSUSHITA H, SHIMIZU S, et al. Impact of menopause and the menstrual cycle on oxidative stress in Japanese women[J]. Journal of Clinical Medicine, 2023, 12(3): 829. |
[89] |
KUMAKLI H, DUNCAN A V, MCDANIEL K, et al. Environmental biomonitoring of essential and toxic elements in human scalp hair using accelerated microwave-assisted sample digestion and inductively coupled plasma optical emission spectroscopy[J]. Chemosphere, 2017, 174: 708-715.
DOI PMID |
[90] | GONZÁLEZ-REIMERS E, MARTÍN-GONZÁLEZ C, GALINDO-MARTÍN L, et al. Hair copper in normal individuals: relationship with body mass and dietary habits[J]. Trace Elements and Electrolytes, 2014, 31(2): 67-72. |
[91] | LAHOUD E, MOYNIER F, LUU T H, et al. Impact of aging on copper isotopic composition in the murine brain[J]. Metallomics, 2024, 16(5): mfae008. |
[92] | HOBIN K, COSTAS-RODRÍGUEZ M, VAN WONTERGHEM E, et al. Alzheimer’s disease and age-related changes in the Cu isotopic composition of blood plasma and brain tissues of the APP Murine Model Revealed by multi-collector ICP-mass spectrometry[J]. Biology, 2023, 12(6): 857. |
[93] |
JOMOVA K, RAPTOVA R, ALOMAR S Y, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging[J]. Archives of Toxicology, 2023, 97(10): 2499-2574.
DOI PMID |
[94] |
BALTER V, DA COSTA A N, BONDANESE V P, et al. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(4): 982-985.
DOI PMID |
[95] |
ENGE T G, ECROYD H, JOLLEY D F, et al. Longitudinal assessment of metal concentrations and copper isotope ratios in the G93A SOD1 mouse model of amyotrophic lateral sclerosis[J]. Metallomics, 2017, 9(2): 161-174.
DOI PMID |
[96] | SAUZÉAT L, EYCHENNE J, GURIOLI L, et al. Metallome deregulation and health-related impacts due to long-term exposure to recent volcanic ash deposits: new chemical and isotopic insights[J]. Science of the Total Environment, 2022, 829: 154383. |
[97] | ZHENG X D, HAN G L, SONG Z L, et al. Biogeochemical cycle and isotope fractionation of copper in plant-soil systems: a review[J]. Reviews in Environmental Science and Bio-Technology, 2024, 23(1): 21-41. |
[98] | WANG R R, YU H M, CHENG W H, et al. Copper migration and isotope fractionation in a typical paddy soil profile of the Yangtze Delta[J]. Science of the Total Environment, 2022, 821: 153201. |
[99] | MILLER K A, VICENTINI F A, HIROTA S A, et al. Antibiotic treatment affects the expression levels of copper transporters and the isotopic composition of copper in the colon of mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(13): 5955-5960. |
[100] |
HASTUTI A A M B, COSTAS-RODRÍGUEZ M, ANOSHKINA Y, et al. High-precision isotopic analysis of serum and whole blood Cu, Fe and Zn to assess possible homeostasis alterations due to bariatric surgery[J]. Analytical and Bioanalytical Chemistry, 2020, 412(3): 727-738.
DOI PMID |
[101] |
CHASAPIS C T, NTOUPA P S A, SPILIOPOULOU C A, et al. Recent aspects of the effects of zinc on human health[J]. Archives of Toxicology, 2020, 94(5): 1443-1460.
DOI PMID |
[102] |
CHASAPIS C T, LOUTSIDOU A C, SPILIOPOULOU C A, et al. Zinc and human health: an update[J]. Archives of Toxicology, 2012, 86(4): 521-534.
DOI PMID |
[103] |
BERGER M M, SHENKIN A, SCHWEINLIN A, et al. ESPEN micronutrient guideline[J]. Clinical Nutrition, 2022, 41(6): 1357-1424.
DOI PMID |
[104] | WESSELS I, MAYWALD M, RINK L. Zinc as a gatekeeper of immune function[J]. Nutrients, 2017, 9(12): 1286. |
[105] | EIDE D J. Zinc transporters and the cellular trafficking of zinc[J]. Biochimica Et Biophysica Acta-Molecular Cell Research, 2006, 1763(7): 711-722. |
[106] | PAN Z, CHOI S Y, OUADID-AHIDOUCH H, et al. Zinc transporters and dysregulated channels in cancers[J]. Frontiers in Bioscience-Landmark, 2017, 22: 623-643. |
[107] |
BONAVENTURA P, BENEDETTI G, ALBARÈDE F, et al. Zinc and its role in immunity and inflammation[J]. Autoimmunity Reviews, 2015, 14(4): 277-285.
DOI PMID |
[108] | WANG J, ZHAO H H, XU Z L, et al. Zinc dysregulation in cancers and its potential as a therapeutic target[J]. Cancer Biology & Medicine, 2020, 17(3): 612-625. |
[109] | JEONG J, EIDE D J. The SLC39 family of zinc transporters[J]. Molecular aspects of medicine, 2013, 34(2/3): 612-619. |
[110] |
VON BÜLOW V, DUBBEN S, ENGELHARDT G, et al. Zinc-dependent suppression of TNF-alpha production is mediated by protein kinase A-induced inhibition of Raf-1, I kappa B kinase beta, and NF-kappa B[J]. Journal of Immunology, 2007, 179(6): 4180-4186.
PMID |
[111] |
LIYANAGE P Y, HETTIARACHCHI S D, ZHOU Y Q, et al. Nanoparticle-mediated targeted drug delivery for breast cancer treatment[J]. Biochimica Et Biophysica Acta-Reviews on Cancer, 2019, 1871(2): 419-433.
DOI PMID |
[112] |
STEFANIDOU M, MARAVELIAS C, DONA A, et al. Zinc: a multipurpose trace element[J]. Archives of Toxicology, 2006, 80(1): 1-9.
PMID |
[113] |
MARET W, VALLEE B L. Thiolate ligands in metallothionein confer redox activity on zinc clusters[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(7): 3478-3482.
DOI PMID |
[114] |
COLVIN R A, HOLMES W R, FONTAINE C P, et al. Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis[J]. Metallomics, 2010, 2(5): 306-317.
DOI PMID |
[115] |
MARET W. Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules[J]. Metallomics, 2015, 7(2): 202-211.
DOI PMID |
[116] |
CHOI S Y, LIU X, PAN Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases[J]. Acta Pharmacologica Sinica, 2018, 39(7): 1120-1132.
DOI PMID |
[117] | MARET W. Zinc in cellular regulation: the nature and significance of “zinc signals”[J]. International Journal of Molecular Sciences, 2017, 18(11): 2285. |
[118] |
WEISS A, MURDOCH C C, EDMONDS K A, et al. Zn-regulated GTPase metalloprotein activator 1 modulates vertebrate zinc homeostasis[J]. Cell, 2022, 185(12): 2148-2163.
DOI PMID |
[119] | MARET W. Escort proteins for cellular zinc ions[J]. Nature, 2022, 608(7921): 38-39. |
[120] |
STILES L I, FERRAO K, MEHTA K J. Role of zinc in health and disease[J]. Clinical and Experimental Medicine, 2024, 24(1): 38.
DOI PMID |
[121] | MAMMADOVA-BACH E, BRAUN A. Zinc homeostasis in platelet-related diseases[J]. International Journal of Molecular Sciences, 2019, 20(21): 5258. |
[122] |
ROOHANI N, HURRELL R, KELISHADI R, et al. Zinc and its importance for human health: an integrative review[J]. Journal of Research in Medical Sciences, 2013, 18(2): 144-157.
PMID |
[123] | MAARES M, HAASE H. A guide to human zinc absorption: general overview and recent advances of in vitro intestinal models[J]. Nutrients, 2020, 12(3): 762. |
[124] | KOCHANCZYK T, DROZD A, KREZEL A. Relationship between the architecture of zinc coordination and zinc binding affinity in proteins: insights into zinc regulation[J]. Metallomics, 2015, 7(2): 244-257. |
[125] |
MOYNIER F, FUJII T, SHAW A S, et al. Heterogeneous distribution of natural zinc isotopes in mice[J]. Metallomics, 2013, 5(6): 693-699.
DOI PMID |
[126] |
MARET W. New perspectives of zinc coordination environments in proteins[J]. Journal of Inorganic Biochemistry, 2012, 111: 110-116.
DOI PMID |
[127] | FUJII T, MOYNIER F, BLICHERT-TOFT J, et al. Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments[J]. Geochimica Et Cosmochimica Acta, 2014, 140: 553-576. |
[128] |
TANG Y, CHAPPELL H F, DOVE M T, et al. Zinc incorporation into hydroxylapatite[J]. Biomaterials, 2009, 30(15): 2864-2872.
DOI PMID |
[129] | JAOUEN K, TROST M, BOURGON N, et al. Zinc isotope variations in archeological human teeth (Lapa do Santo, Brazil) reveal dietary transitions in childhood and no contamination from gloves[J]. Plos One, 2020, 15(5): e0232379. |
[130] | JAOUEN K, PONS M L. Potential of non-traditional isotope studies for bioarchaeology[J]. Archaeological and Anthropological Sciences, 2017, 9(7): 1389-1404. |
[131] |
JAOUEN K, POUILLOUX L, BALTER V, et al. Dynamic homeostasis modeling of Zn isotope ratios in the human body[J]. Metallomics, 2019, 11(6): 1049-1059.
DOI PMID |
[132] | OHNO T, SHINOHARA A, CHIBA M, et al. Precise Zn isotopic ratio measurements of human red blood cell and hair samples by multiple collector ICP mass spectrometry[J]. Analytical Sciences, 2005, 21(4): 425-428. |
[133] |
STENBERG A, MALINOVSKY D, ÖHLANDER B, et al. Measurement of iron and zinc isotopes in human whole blood: preliminary application to the study of HFE genotypes[J]. Journal of Trace Elements in Medicine and Biology, 2005, 19(1): 55-60.
PMID |
[134] |
SCHILLING K, LARNER F, SAAD A, et al. Urine metallomics signature as an indicator of pancreatic cancer[J]. Metallomics, 2020, 12(5): 752-757.
DOI PMID |
[135] |
SULLIVAN K, MOORE R E T, REHKÄMPER M, et al. Postprandial zinc stable isotope response in human blood serum[J]. Metallomics, 2020, 12(9): 1380-1388.
DOI PMID |
[136] |
MOORE R E T, REHKÄMPER M, MARET W, et al. Assessment of coupled Zn concentration and natural stable isotope analyses of urine as a novel probe of Zn status[J]. Metallomics, 2019, 11(9): 1506-1517.
DOI PMID |
[137] | BOURGON N, JAOUEN K, BACON A M, et al. Trophic ecology of a Late Pleistocene early modern human from tropical Southeast Asia inferred from zinc isotopes[J]. Journal of Human Evolution, 2021, 161: 103075. |
[138] | MOUBTAHIJ Z, MCCORMACK J, BOURGON N, et al. Isotopic evidence of high reliance on plant food among Later Stone Age hunter-gatherers at Taforalt, Morocco[J]. Nature Ecology & Evolution, 2024, 8(5): 1035-1045. |
[139] |
KAMBE T, TSUJI T, HASHIMOTO A, et al. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism[J]. Physiological Reviews, 2015, 95(3): 749-784.
DOI PMID |
[140] | MAHAN B, MOYNIER F, JORGENSEN A L, et al. Examining the homeostatic distribution of metals and Zn isotopes in Gottingen minipigs[J]. Metallomics, 2018, 10(9): 1264-1281. |
[141] | COSTAS-RODRÍGUEZ M, VAN HEGHE L, VANHAECKE F. Evidence for a possible dietary effect on the isotopic composition of Zn in blood isotopic analysis of food products by multi-collector ICP-mass spectrometry[J]. Metallomics, 2014, 6(1): 139-146. |
[142] |
JAOUEN K, COLLETER R, PIETRZAK A, et al. Tracing intensive fish and meat consumption using Zn isotope ratios: evidence from a historical Breton population (Rennes, France)[J]. Scientific Reports, 2018, 8: 5077.
DOI PMID |
[143] | JAOUEN K, PONS M L, BALTER V. Iron, copper and zinc isotopic fractionation up mammal trophic chains[J]. Earth and Planetary Science Letters, 2013, 374: 164-172. |
[144] | JAOUEN K, SZPAK P, RICHARDS M P. Zinc isotope ratios as indicators of diet and trophic level in Arctic marine mammals[J]. Plos One, 2016, 11(3): e0152299. |
[145] |
JAOUEN K, BEASLEY M, SCHOENINGER M, et al. Zinc isotope ratios of bones and teeth as new dietary indicators: results from a modern food web (Koobi Fora, Kenya)[J]. Scientific Reports, 2016, 6: 26281.
DOI PMID |
[146] | TURNLUND J R, KING J C, KEYES W R, et al. A stable isotope study of zinc absorption in young men: effects of phytate and a-cellulose[J]. The American Journal of Clinical Nutrition, 1984, 40(5): 1071-1077. |
[147] | BOURGON N, TACAIL T, JAOUEN K, et al. Dietary and homeostatic controls of Zn isotopes in rats: a controlled feeding experiment and modeling approach[J]. Metallomics, 2024, 16(6): mfae026. |
[148] | SULLIVAN K V, MOORE R E T, VANHAECKE F. The influence of physiological and lifestyle factors on essential mineral element isotopic compositions in the human body: implications for the design of isotope metallomics research[J]. Metallomics, 2023, 15(3): mfad012. |
[149] | SOUTO-OLIVEIRA C E, BABINSKI M, ARAÚJO D F, et al. Multi-isotope approach of Pb, Cu and Zn in urban aerosols and anthropogenic sources improves tracing of the atmospheric pollutant sources in megacities[J]. Atmospheric Environment, 2019, 198: 427-437. |
[150] |
CIKOMOLA J C, FLÓREZ M R, COSTAS-RODRÍGUEZ M, et al. Whole blood Fe isotopic signature in a sub-Saharan African population[J]. Metallomics, 2017, 9(8): 1142-1149.
DOI PMID |
[151] | VAN HEGHE L. The development and evaluation of analytical methods based on multi-collector - inductively coupled plasma - mass spectrometry (MC-ICP-MS) for high-precision isotopic analysis of Cu, Fe and Zn in human blood, applicable in medical diagnosis[D]. Ghent: Ghent University, 2013. |
[152] | HAN R Y, LIU W J, XU Z F. The constraint of soil Zn isotope compositions by diverse land utilizations: evidence from geochemical fingerprint in a typical karst area[J]. Catena, 2024, 240: 108005. |
[153] | LIANG B, HAN G L, ZHAO Y. Zinc isotopic signature in tropical soils: a review[J]. Science of the Total Environment, 2022, 820: 153303. |
[154] | MICHALCZYK K, CYMBALUK-PLOSKA A. The role of zinc and copper in gynecological malignancies[J]. Nutrients, 2020, 12(12): 3732. |
[155] | SHANBHAG V C, GUDEKAR N, JASMER K, et al. Copper metabolism as a unique vulnerability in cancer[J]. Biochimica et Biophysica Acta - Molecular Cell Research, 2021, 1868(2): 118893. |
[156] | DENOYER D, MASALDAN S, LA FONTAINE S, et al. Targeting copper in cancer therapy:[J]. Metallomics, 2015, 7(11): 1459-1476. |
[157] |
MAJUMDER S, CHATTERJEE S, PAL S, et al. The role of copper in drug-resistant murine and human tumors[J]. Biometals, 2009, 22(2): 377-384.
DOI PMID |
[158] | TÉLOUK P, PLISSONNIER M L, MERLE P, et al. Copper isotope evidence of oxidative stress-induced hepatic breakdown and the transition to hepatocellular carcinoma[J]. Gastro Hep Advances, 2022, 1(3): 480-486. |
[159] |
LOBO L, COSTAS-RODRÍGUEZ M, DE VICENTE J C, et al. Elemental and isotopic analysis of oral squamous cell carcinoma tissues using sector-field and multi-collector ICP-mass spectrometry[J]. Talanta, 2017, 165: 92-97.
DOI PMID |
[160] |
LIBERTI M V, LOCASALE J W. The Warburg effect: how does it benefit cancer cells?[J]. Trends in Biochemical Sciences, 2016, 41(3): 211-218.
DOI PMID |
[161] |
BONDANESE V P, LAMBOUX A, SIMON M, et al. Hypoxia induces copper stable isotope fractionation in hepatocellular carcinoma, in a HIF-independent manner[J]. Metallomics, 2016, 8(11): 1177-1184.
PMID |
[162] | CHAMEL G, GOURLAN A T, TÉLOUK P, et al. Retrospective evaluation of blood copper stable isotopes ratio 65Cu/63Cu as a biomarker of cancer in dogs[J]. Veterinary and Comparative Oncology, 2016, 15(4): 1323-1332. |
[163] |
GOURLAN A T, DOUAY G, TÉLOUK P. Copper isotopes as possible neoplasia biomarkers in captive wild felids[J]. Zoo Biology, 2019, 38(4): 371-383.
DOI PMID |
[164] | SI M F, LANG J H. The roles of metallothioneins in carcinogenesis[J]. Journal of Hematology & Oncology, 2018, 11: 107. |
[165] | MIAOU E, TISSOT F L H. Copper isotope ratios in serum do not track cancerous tumor evolution, but organ failure[J]. Metallomics, 2023, 15(11): mfad060. |
[166] | HEDERA P. Clinical management of Wilson disease[J]. Annals of Translational Medicine, 2019, 7: S66. |
[167] | GARCÍA-POYO M C, BÉRAIL S, RONZANI A L, et al. Laser ablation of microdroplets for copper isotopic analysis via MC-ICP-MS. Analysis of serum microsamples for the diagnosis and follow-up treatment of Wilson’s disease[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(5): 968-980. |
[168] |
VAN CAMPENHOUT S, HASTUTI A A M B, LEFERE S, et al. Lighter serum copper isotopic composition in patients with early non-alcoholic fatty liver disease[J]. BMC Research Notes, 2020, 13(1): 225.
DOI PMID |
[169] | COSTAS-RODRÍGUEZ M, ANOSHKINA Y, LAUWENS S, et al. Isotopic analysis of Cu in blood serum by multi-collector ICP-mass spectrometry: a new approach for the diagnosis and prognosis of liver cirrhosis?[J]. Metallomics, 2015, 7(3): 491-498. |
[170] | ZHANG Y T, TIAN Y Y, ZHANG H W, et al. Potential pathways of zinc deficiency-promoted tumorigenesis[J]. Biomedicine & Pharmacotherapy, 2021, 133: 110983. |
[171] |
KAGARA N, TANAKA N, NOGUCHI S, et al. Zinc and its transporter ZIP10 are involved in invasive behavior of breast cancer cells[J]. Cancer Science, 2007, 98(5): 692-697.
DOI PMID |
[172] | BAFARO E, LIU Y T, XU Y, et al. The emerging role of zinc transporters in cellular homeostasis and cancer[J]. Signal Transduction and Targeted Therapy, 2017, 2: e17029. |
[173] |
ALAM S, KELLEHER S L. Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer[J]. Nutrients, 2012, 4(8): 875-903.
PMID |
[174] |
GIFFORD V, ITOH Y. MT1-MMP-dependent cell migration: proteolytic and non-proteolytic mechanisms[J]. Biochemical Society Transactions, 2019, 47: 811-826.
DOI PMID |
[175] |
FERRARI R, MARTIN G, TAGIT O, et al. MT1-MMP directs force-producing proteolytic contacts that drive tumor cell invasion[J]. Nature Communications, 2019, 10: 4886.
DOI PMID |
[176] |
NUGENT W H, MISHRA N, STRAUSS J F, et al. Matrix metalloproteinase 1 causes vasoconstriction and enhances vessel reactivity to angiotensin ii via protease-activated receptor 1[J]. Reproductive Sciences, 2016, 23(4): 542-548.
DOI PMID |
[177] | CONLON G A, MURRAY G I. Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis[J]. Journal of Pathology, 2019, 247(5): 629-640. |
[178] | NISSINEN L, KÄHÄRI V M. Matrix metalloproteinases in inflammation[J]. Biochimica Et Biophysica Acta-General Subjects, 2014, 1840(8): 2571-2580. |
[179] | SCHILLING K, HARRIS A L, HALLIDAY A N, et al. Investigations on zinc isotope fractionation in breast cancer tissue using cell culture uptake: efflux experiments[J]. Frontiers in Medicine, 2022, 8: 746532. |
[1] | 张辉善, 宋玉财, 李文昌, 马中平, 张晶, 洪俊, 刘磊, 吕鹏瑞, 王志华, 张海迪, 杨博, Naghmah HAIDER, Yasir Shaheen KHALIL, Asad Ali NAREJO. 巴基斯坦铅、锌地球化学分布特征与成矿潜力及对特提斯带沉积岩容矿铅锌找矿勘查的启示[J]. 地学前缘, 2025, 32(1): 105-126. |
[2] | 张辉善, 张晶, 洪俊, 葸得华, 马中平, 孟广路, 罗彦军, 张海迪, 刘明义, 吕鹏瑞, 杨博, 曹积飞. 塔吉克斯坦帕米尔地区铁铜多金属矿化体的发现及对古特提斯VMS型铜铅锌矿找矿勘查的启示[J]. 地学前缘, 2025, 32(1): 142-161. |
[3] | 吴发富, 赵凯, 宋松, 罗军强, 张辉善, 于文明, 刘江涛, 程湘, 刘浩, 曾雄伟, 何垚砚, 向鹏, 王建雄, 胡鹏. 摩洛哥大阿特拉斯构造带东段铅、锌地球化学分布与找矿远景区优选[J]. 地学前缘, 2025, 32(1): 162-182. |
[4] | 胡庆海, 王学求, 张必敏, 迟清华, 王强, 孙彬彬, 周建, 王玮, Igor ESPINOZA VERDE, Alex AGURTO CORNEJO, Joel OTERO AGUILAR, 盘炜, 刘汉粮, 田密, 吴慧. 秘鲁铜元素地球化学空间分布及对成矿远景区的预测[J]. 地学前缘, 2025, 32(1): 205-218. |
[5] | 姚春彦, 姜瀚涛, 朱意萍, 郑璐, 李汉武, 王天刚, 刘君安, Uribe Luna JESUS. 墨西哥全球尺度土壤铜地球化学背景与异常特征[J]. 地学前缘, 2025, 32(1): 236-243. |
[6] | 郑澳月, 费金娜, 陈永清, 宁妍云, 曹一琳, 赵鹏大. 应用奇异值分解(SVD)-主成分分析(PCA)组合模型定量圈定与评价腾冲地块锡钨和铅锌多金属找矿靶区[J]. 地学前缘, 2025, 32(1): 283-301. |
[7] | 张必敏, 王学求, 周建, 王玮, 刘汉粮, 刘东盛, Sounthone LAOLO, Phomsylalai SOUKSAN, 谢淼, 董春放, 柳青青, 鲁岳鑫, 王浩楠, 贺彬. 老挝铜资源成矿规律与基于机器学习的远景预测[J]. 地学前缘, 2025, 32(1): 61-77. |
[8] | 张晶, 李天虎, 王志华, Naghmah HAIDER, 洪俊, 张辉善, 梁楠. 巴基斯坦斑岩型铜矿地球化学特征与成矿潜力分析[J]. 地学前缘, 2025, 32(1): 91-104. |
[9] | 李亮, 姜志伟, 吴秉津, 韦栋文, 王文海. 开放系统下铅锌对地质碳汇的影响研究[J]. 地学前缘, 2024, 31(5): 421-429. |
[10] | 张前龙, 周永章, 郭兰萱, 原桂强, 虞鹏鹏, 王汉雨, 朱彪彪, 韩枫, 龙师尧. 找矿知识图谱的智能化应用:以钦杭成矿带斑岩铜矿为例[J]. 地学前缘, 2024, 31(4): 7-15. |
[11] | 李方兰, 刘学龙, 周云满, 赵成峰, 李守奎, 王基元, 陆波德, 李庆锐, 张卫文, 王海, 曹振梁, 周杰虎. 滇西保山地块陡崖铁铜多金属矿床石榴子石年代学及其地球化学特征[J]. 地学前缘, 2024, 31(3): 113-132. |
[12] | 字艳梅, 田世洪, 陈欣阳, 侯增谦, 杨志明, 龚迎莉, 唐清雨. 埃达克岩与热液成矿过程中钾镁同位素分馏及其指示意义:以驱龙斑岩铜矿床为例[J]. 地学前缘, 2024, 31(3): 150-169. |
[13] | 柏铖璘, 谢桂青, 赵俊康, 李伟, 朱乔乔. 试论中亚造山带东部多宝山矿田斑岩铜-浅成低温金系统成矿特征与矿床模型[J]. 地学前缘, 2024, 31(3): 170-198. |
[14] | 陈可, 邵拥军, 刘忠法, 张俊柯, 李永顺, 陈雨莹. 岩浆因素对中国东部铜陵矿集区差异性矿化的控制作用:来自角闪石、斜长石矿物学证据[J]. 地学前缘, 2024, 31(3): 199-217. |
[15] | 王建, 杨言辰, 李爱, 袁海齐. 吉林红旗岭晚三叠世镁铁-超镁铁质侵入体矿物化学和岩石地球化学特征:对镍-铜成矿的启示[J]. 地学前缘, 2024, 31(2): 249-269. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||