地学前缘 ›› 2024, Vol. 31 ›› Issue (2): 249-269.DOI: 10.13745/j.esf.sf.2023.5.31
收稿日期:
2022-10-28
修回日期:
2023-04-24
出版日期:
2024-03-25
发布日期:
2024-04-18
作者简介:
王 建(1964—),男,教授,博士生导师,主要从事岩石地球化学、矿床地球化学研究工作。E-mail: wangjian304@jlu.edu.cn
基金资助:
WANG Jian1,2(), YANG Yanchen1,2, LI Ai3, YUAN Haiqi1
Received:
2022-10-28
Revised:
2023-04-24
Online:
2024-03-25
Published:
2024-04-18
摘要:
吉林红旗岭镁铁-超镁铁质侵入岩群位于中亚造山带东段南缘,由3个北西向岩带(I、II、III)组成,包括30多个小岩株,其中 I-岩带的部分岩体伴有铜镍矿化,并且其1和7号岩体分别形成了中型和大型岩浆铜镍硫化物型矿床。矿床主要容矿岩石为辉橄岩、橄辉岩、斜方辉石岩、二辉石岩、苏长岩和辉长岩。主量元素方面,红旗岭岩群具有富镁(w(MgO)=20.7%~31.1%)、低钛(w(TiO2)=0.33%~0.79%)、低碱(w(K2O+Na2O)=0.60%~2.29%)和硅(w(SiO2)=40.0%~53.0%)变化范围大的特征;微量元素方面,红旗岭岩群呈现弱富集LREE和LILE(Th)以及亏损HREE和HFSE(Nb-Ta-Ti)。岩相学、地球化学和矿物(橄榄石、斜方辉石、单斜辉石、尖晶石、斜长石和角闪石)主微量元素特征表明,红旗岭岩群明显不同于洋岛型玄武岩、阿拉斯加型环状杂岩和科马提岩,但与岛弧玄武岩以及中亚造山带西段的“黄山西”和“黄山东”铜镍硫化物矿床的容矿超镁铁质岩相似,其母岩浆是一种富Mg、亏损Nb-Ta的岛弧拉斑玄武质熔体,形成于晚三叠世古亚洲洋闭合后伸展环境,演化过程中经历了地壳混染和分离结晶作用,含矿母岩浆可能经历了硫化物的“二次熔离”,最终形成了铂族元素(PGE)亏损型岩浆铜镍硫化物矿床。
中图分类号:
王建, 杨言辰, 李爱, 袁海齐. 吉林红旗岭晚三叠世镁铁-超镁铁质侵入体矿物化学和岩石地球化学特征:对镍-铜成矿的启示[J]. 地学前缘, 2024, 31(2): 249-269.
WANG Jian, YANG Yanchen, LI Ai, YUAN Haiqi. Characteristics of mineral chemistry and geochemistry of the Late Triassic Hongqiling mafic-ultramafic intrusions: Implications for Ni-Cu mineralization[J]. Earth Science Frontiers, 2024, 31(2): 249-269.
图1 中亚造山带地质简图及主要岩浆铜镍硫化物矿床分布(底图据文献[14]修改) 注:容矿镁铁-超镁铁质岩锆石U-Pb年龄:喀拉通克(287 Ma[4])、黄山西(284 Ma[4])、黄山东(274 Ma[5])、额布图(287 Ma[7])、红旗岭(220~216 Ma[8,14])。
Fig.1 Simplified geological map of the Central Asian Orogenic Belt and distribution of the main magmatic sulfide Ni-Cu deposits. Modified after [14].
图2 中亚造山带东段中国东北构造格架(据文献[29]修改) 注:标有数字的黑实心圆代表板块缝合线(1—新林-喜桂图;2—贺根山-黑河;3—索伦克-西拉木伦-长春-延吉;4—牡丹江-伊兰);标有数字的浅灰色实心圆代表区域性断裂(1—德尔布干;2—嫩江-八里罕;3—佳木斯-伊兰;4—敦化-密山;5—跃进山;6—赤峰-开原)。
Fig.2 Tectonic framework of the NE China, eastern segment of CAOB. Modified after [29].
图3 (a)吉林红旗岭岩浆铜镍硫化物矿床地质简图及(b)镁铁-超镁铁质侵入体分布图(据文献[8]修改)
Fig.3 (a)Regional geologic map for the Hongqiling Ni-Cu deposit, and (b) Detailed distribution of the mafic-ultramafic intrusions in the Hongqiling area. Modified after [8].
图4 吉林红旗岭1号岩体平面图和剖面图(a,b)及7号岩体平面图和剖面图(c,d)(据文献[8]修改)
Fig.4 Plane graphs and cross-sections of the No.1 (a, b) and No.7 (c, d) intrusions. Modified after [8].
图5 红旗岭含矿镁铁-超镁铁质岩代表性显微镜下照片 a—蛇纹石化橄榄石和小颗粒尖晶石包裹在斜方辉石中;b—斜方辉石和橄榄石包裹在单斜辉石中,同时单斜辉石发育褐色角闪石反应边;c,d—斜方辉石包裹橄榄石形成包橄榄结构,同时辉石边部有角闪石的反应边;e—网状蚀变的橄榄石包裹于斜方辉石和角闪石中,形成包橄结构;f—斜长石及少量单斜辉石充填在粒状斜方辉石之间,形成包含结构和填隙结构;g,h—斜长石(板状)和单斜辉石(纤维状)构成典型辉长结构,辉石边缘发育褐色角闪石(辉长岩)。
Fig.5 Microphotographs of representative rocks from the Hongqiling ore-bearing mafic-ultramafic intrusions Ol—olivine; Opx—orthopyroxene; Cpx— clinopyroxene; Spl— spinel; Pl—plagioclase; Am—amphibole.
![]() |
表3 红旗岭含矿镁铁-超镁铁岩体中代表性斜方辉石主量元素分析结果
Table 3 Analytical results of representative orthopyroxene grains in the Hongqiling ore-bearing mafic-ultramafic intrusions
![]() |
![]() |
表4 红旗岭含矿镁铁-超镁铁岩体中代表性单斜辉石主量元素分析结果
Table 4 Analytical results of representative clinopyroxene grains in the Hongqiling ore-bearing mafic-ultramafic intrusions
![]() |
![]() |
表5 红旗岭含矿镁铁-超镁铁岩体中代表性角闪石主量元素分析结果
Table 5 Analytical results of representative amphibole grains in the Hongqiling ore-bearing mafic-ultramafic intrusions
![]() |
图6 红旗岭含矿镁铁-超镁铁质岩中尖晶石三元(Cr3+-Al3+-Fe3+)和二元(Mg#-Cr#)分类图解 注:黄山西数据引自文献[4];黄山东数据引自文献[6];其他地区数据引自文献[17-18]。
Fig.6 Compositions of spinel from the Hongqiling mafic-ultramafic intrusions and comparison with those elsewhere in the world
图7 红旗岭镁铁-超镁铁质岩中(a)尖晶石 和(b)单斜辉石微量元素分布模式图 注:研究区矿物微量元素引自[36];MORB中尖晶石数据引自[37];黄山西数据引自[4];科马提岩数据引自[38];原始地幔引自[39]。
Fig.7 (a) Trace and major elements for spinel, and (b) Incompatible element patterns for clinopyroxene in samples from the Hongqiling mafic-ultramafic intrusions
图8 红旗岭含矿镁铁-超镁铁质岩中橄榄石的Ca-Fo图解(a)和 辉石的Wo-En-Fs分类图解(b)(据文献[44]修改) 注:Annette和Duke岛杂岩数据引自文献[42];CFB,OIB和科马提岩的数据引自文献[43]。
Fig.8 Plots of Ca versus Fo contents in olivine (a), and Wo-En-Fs diagram of pyroxenes (b) (after [44]) for samples from the Hongqiling mafic-ultramafic intrusions
图9 红旗岭镁铁-超镁铁质侵入体中角闪石分类图解(据文献[47]修改)
Fig.9 The classification diagram of amphibole from the Hongqiling mafic-ultramafic intrusions. Modified after [47].
图10 红旗岭镁铁-超镁铁质岩(a)稀土元素和(b)微量元素分布模式 注:标记HQ1-10 和HQ2-13 的样品代表利用文献[48]质量平衡方程计算出的“捕获熔体”成分;原始地幔和球粒陨石的数据参考文献[39];黄山西侵入体数据引自文献[4]。
Fig.10 (a) Chondrite normalized REE and (b) Primitive mantle normalized incompatible element patterns for the Hongqiling ore-bearing mafic-ultramafic intrusions
图11 红旗岭镁铁-超镁铁质岩的(a)Th/Yb-Nb/Yb 和(b)Ce/Nb-Th/Nb 图解 注:OIB、N-MORB、弧火山岩和俯冲带相关的镁铁质侵入岩的数据据文献[51-52]。
Fig.11 Diagrams of (a) Th/Yb-Nb/Yb and (b) Ce/Nb-Th/Nb for the Hongqiling mafic-ultramafic intrusions
图12 红旗岭镁铁-超镁铁质岩的Sm-Sm/Yb图解(据文献[59]修改) 注:图中数据引自文献[60]。
Fig.12 Diagram of Sm-Sm/Yb for the the Hongqiling mafic-ultramafic intrusions. Modified after [59].
[57] | WANG J, HATTORI K H, KILIAN R, et al. Metasomatism of sub-arc mantle peridotites below southernmost South America: reduction of fo2 by slab-melt[J]. Contributions to Mineralogy and Petrology, 2007,153:607-624. |
[58] | WANG J, HATTORI K H, STERN C R. Metasomatic origin of garnet orthopyroxenites in the subcontinental lithospheric mantle underlying Pali Aike volcanic field, southern South America[J]. Mineralogy and Petrology, 2008, 94(3): 243-258. |
[59] | ALDANMAZ E, PEARCE J A, THIRLWALL M F, et al. Petrogenetic evolution of Late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 2000, 102(1/2): 67-95. |
[60] | 李爱, 王建, 宋樾, 等. 吉林红旗岭镁铁-超镁铁质岩体地球化学特征及其岩石成因意义[J]. 地质学报, 2018, 92(2): 263-277. |
[61] | SONG X Y, KEAYS R R, ZHOU M F, et al. Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China[J]. Geochimica et Cosmochimica Acta, 2009, 73(2): 404-424. |
[62] | WANG C Y, ZHOU M F. Genesis of the Permian baimazhai magmatic Ni-Cu-(PGE) sulfide deposit, Yunnan, SW China[J]. Mineralium Deposita, 2006, 41(8): 771-783. |
[63] | NALDREET A J. Foundamentals of magmatic sulfide deposits[J]. Society of Economic Geology, Special Publication, 2011, 17: 1-26. |
[64] | BARNES S J, TANG Z L. Chrome spinels from the Jinchuan Ni-Cu sulfide deposit, Gansu Province, People’s Republic of China[J]. Economic Geology, 1999, 94(3): 343-356. |
[65] | KEAYS R R. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits[J]. Lithos, 1995, 34(1): 1-18. |
[66] | FLEET M E, CHRYSSOULIS S L, STONE W E, et al. Partitioning of platinum-group elements and Au in the Fe-Ni-Cu-S system: experiments on the fractional crystallization of sulfide melt[J]. Contributions to Mineralogy and Petrology, 1993, 115(1): 36-44. |
[67] | ZHOU M F, MICHAEL LESHER C, YANG Z X, et al. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian Orogenic Belt[J]. Chemical Geology, 2004, 209(3/4): 233-257. |
[1] | SONG X Y, LI X R. Geochemistry of the Kalatongke Ni-Cu-(PGE) sulfide deposit, NW China: implications for the formation of magmatic sulfide mineralization in a postcollisional environment[J]. Mineralium Deposita, 2009, 44(3): 303-327. |
[2] | ZHANG Z C, MAO J W, CHAI F M, et al. Geochemistry of the Permian Kalatongke mafic intrusions, northern Xinjiang, Northwest China: implications for the genesis of magmatic Ni-Cu sulfide deposits[J]. Economic Geology, 2009, 104: 185-203. |
[3] | LI C S, ZHANG M J, FU P E, et al. The Kalatongke magmatic Ni-Cu deposits in the Central Asian Orogenic Belt, NW China: product of slab window magmatism?[J]. Mineralium Deposita, 2012, 47(1): 51-67. |
[4] | MAO Y J, QIN K Z, LI C S, et al. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China[J]. Lithos, 2014, 200: 111-125. |
[5] | HAN B F, JI J Q, SONG B, et al. SHRIMP zircon U-Pb ages of Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications[J]. Chinese Science Bulletin, 2004, 49(22): 2424-2429. |
[6] | MAO Y J, QIN K Z, LI C S, et al. A modified genetic model for the Huangshandong magmatic sulfide deposit in the Central Asian Orogenic Belt, Xinjiang, western China[J]. Mineralium Deposita, 2015, 50(1): 65-82. |
[7] | PENG R, ZHAI Y, LI C, et al. The erbutu Ni-Cu deposit in the Central Asian Orogenic Belt: a Permian magmatic sulfide deposit related to boninitic magmatism in an arc setting[J]. Economic Geology, 2013, 108(8): 1879-1888. |
[8] | WU F Y, WILDE S A, ZHANG G L, et al. Geochronology and petrogenesis of the post-orogenic Cu-Ni sulfide-bearing mafic-ultramafic complexes in Jilin Province, NE China[J]. Journal of Asian Earth Sciences, 2004, 23: 781-797. |
[9] | LÜ L S, MAO J W, LI H B, et al. Pyrrhotite Re-Os andSHRIMP zircon U-Pb dating of the Hongqiling Ni-Cu sulfide deposits in Northeast China[J]. Ore Geology Reviews, 2011, 43(1): 106-119. |
[10] | WEI B, WANG C, LI C S, et al. Origin of PGE-depleted Ni-Cu sulfide mineralization in the Triassic Hongqiling No.7 orthopyroxenite intrusion, Central Asian Orogenic Belt, northeastern China[J]. Economic Geology, 2013, 108: 1813-1831. |
[11] | HAO L B, ZHAO X Y, BOORDER H D, et al. Origin of PGE depletion of Triassic magmatic Cu-Ni sulfide deposits in the central-southern area of Jilin Province, NE China[J]. Ore Geology Reviews, 2014b, 63: 226-237. |
[68] | PIRAJNO F, MAO J W, ZHANG Z C, et al. The association of mafic ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China:implications for geodynamic evolution and potential for the discovery of new ore deposits[J]. Journal of Asian Earth Sciences, 2008, 32(2): 165-183. |
[69] | LIU Y G, LÜ X B, WU C M, et al. The migration of Tarim plume magma toward the Northeast in Early Permian and its significance for the exploration of PGE-Cu-Ni magmatic sulfide deposits in Xinjiang, NW China: as suggested by Sr-Nd-Hf isotopes, sedimentology and geophysical data[J] Ore Geology Reviews, 2016, 72: 538-545. |
[70] | HAN C M, XIAO W J, ZHAO G C, et al. Re-Os dating of the Kalatongke Cu-Ni deposit, Altay Shan, NW China, and resulting geodynamic implications[J]. Ore Geology Reviews, 2007, 32(1/2): 452-468. |
[71] | XIAO W J, WINDLEY B F, YUAN C, et al. Paleozoic multiple subduction-accretion processes of the southern Altaids[J]. American Journal of Science, 2009, 309(3): 221-270. |
[72] | CAMPBELL I H, GRIFFITHS R W. Implications of mantle plume structure for the evolution of flood basalts[J]. Earth and Planetary Science Letters, 1990, 99(1/2): 79-93. |
[73] | ERNST R E. Recognizing mantle plumes in the geological record[J]. Annual Review of Earth and Planetary Sciences, 2003, 31(31): 469-523. |
[74] | COFFIN M F, ELDHOLM O. Large igneous provinces:crustal structure, dimensions, and external consequences[J]. Reviews of Geophysics, 1994, 32(1): 1-36. |
[75] | PETTIGREW N T, HATTORI K H. The Quetico intrusions of western superior province: Neo-Archean examples of Alaskan/Ural-type mafic-ultramafic intrusions[J]. Precambrian Research, 2006, 149(1/2): 21-42. |
[76] | THAKURTA J, RIPLEY E M, LI C S. Geochemical constraints on the origin of sulfide mineralization in the Duke Island Complex, southeastern Alaska[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(7): 1525-2027. |
[77] | HELMY H M, EL MAHALLAWI M M. Gabbro Akarem mafic-ultramafic complex, eastern desert, Egypt: a Late Precambrian analogue of Alaskan-type complexes[J]. Mineralogy and Petrology, 2003, 77(1): 85-108. |
[78] | 彭玉鲸, 齐成栋, 周晓东, 等. 吉黑复合造山带古亚洲洋向滨太平洋构造域转换: 时间标志与全球构造的联系[J]. 地质与资源, 2012, 21(3):261-265. |
[79] | MARTIN R F. A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment[J]. Lithos, 2006, 91(1/2/3/4): 125-136. |
[80] | 鲍佩声. 再论蛇绿岩中豆荚状铬铁矿的成因: 质疑岩石/熔体反应成矿说[J]. 地质通报, 2009, 28(12): 1741-1761. |
[81] | ZHOU M F, ROBINSON P T, BAI W J. Formation of podiform chromitites by melt/rock interaction in the upper mantle[J]. Mineralium Deposita, 1994, 29(1): 98-101. |
[82] | ZHOU M F, ROBINSON P T, MALPAS J, et al. Podiform chromitites in the Luobusa Ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle[J]. Journal of Petrology, 1996, 37(1): 3-21. |
[12] | HAO L B, WEI Q Q, ZHAO Y Y, et al. Newly identified Middle-Late Permian mafic-ultramafic intrusions in the southeastern margin of the Central Asian Orogenic Belt: petrogenesis and its implications[J]. Geochemical Journal, 2015, 49(2): 157-173. |
[13] | 吕林素, 毛景文, 周振华, 等. 吉林红旗岭1号和7号岩体中含矿超镁铁质岩的矿物化学特征: 对岩浆演化过程以及铜镍硫化物矿床形成机制的约束[J]. 岩石学报, 2012, 28(1): 319-344. |
[14] | JAHN B M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Journal of the Geological Society, 2004, 226: 73-100. |
[15] | 冯光英, 刘燊, 冯彩霞, 等. 吉林红旗岭超基性岩体的锆石U-Pb年龄、Sr-Nd-Hf同位素特征及岩石成因[J]. 岩石学报, 2011, 27(6): 1594-1606. |
[16] | HAN C M, XIAO W J, ZHAO G C, et al. Re-Os isotopic age of the Hongqiling Cu-Ni sulfide deposit in Jilin Province, NE China and its geological significance[J]. Resource Geology, 2014, 64(3): 247-261. |
[17] | DICK H J B, BULLEN T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas[J]. Contributions to Mineralogy and Petrology, 1984, 86(1): 54-76. |
[18] | BARNES S J, ROEDER P L. The range of spinel compositions in terrestrial mafic and ultramafic rocks[J]. Journal of Petrology, 2001, 42(12): 2279-2302. |
[19] | DOWNES H, REICHOW M K, MASON P R D, et al. Mantle domains in the lithosphere beneath the French Massif Central: trace element and isotopic evidence from mantle clinopyroxenes[J]. Chemical Geology, 2003, 200(1/2): 71-87. |
[20] | DRIOUCH Y, BÉZIAT D, GRÉGOIRE M, et al. Clinopyroxene trace element compositions of cumulate mafic rocks and basalts from the Hercynian Moroccan Central Meseta: petrogenetic implications[J]. Journal of African Earth Sciences, 2010, 56(2/3): 97-106. |
[21] | LIU Y G, LÜ X B, YANG L, et al. Metallogeny of the Poyi magmatic Cu-Ni deposit: revelation from the contrast of PGE and olivine composition with other Cu-Ni sulfide deposits in the Early Permian, Xinjiang, China[J]. Geosciences Journal, 2015, 19: 613-620. |
[22] | LIU Y G, LI W Y, LÜ X B, et al. Sulfide saturation mechanism of the Poyi magmatic Cu-Ni sulfide deposit in Beishan, Xinjiang, Northwest China[J]. Ore Geology Reviews, 2017, 91: 419-431. |
[23] | LIIPO J, VUOLLO J, NYKÄNEN V, et al. Chromites from the Early Proterozoic Outokumpu-Jormua Ophiolite Belt: a comparison with chromites from Mesozoic ophiolites[J]. Lithos, 1995, 36(1): 15-27. |
[24] | ROEDER P L, EMSLIER F. Olivine-liquid equilibrium[J]. Contributions to Mineralogy and Petrology, 1970, 29(4): 275-289. |
[25] | 薛胜超, 秦克章, 唐冬梅, 等. 东疆二叠纪镁铁-超镁铁岩体中辉石的成分特征及其对成岩和Ni-Cu成矿的指示[J]. 岩石学报, 2015, 31(8): 2175-2192. |
[26] | WINDLEY B F, ALEXEIEV D, XIAO W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47. |
[27] | KRÖNER A, KOVACH V, BELOUSOVA E, et al. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt[J]. Gondwana Research, 2014, 25(1): 103-125. |
[28] | XIAO W J, WINDLEY B F, SUN S, et al. A tale of amalgamation of three permo-triassic collage systems in central Asia: oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477-507. |
[29] | LIU Y J, LI W M, FENG Z Q, et al. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 2017, 43: 123-148. |
[30] | WU F Y, SUND Y, GE W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30. |
[31] | WU F Y, ZHAO G C, SUN D Y, et al. The Hulan Group: its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 2007, 30(3/4): 542-556. |
[32] | WU F Y, SUN D Y, LI H M, et al. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1/2): 143-173. |
[33] | 秦宽. 红旗岭岩浆硫化铜镍矿床地质特征[J]. 吉林地质, 1995, 14(3): 17-30. |
[34] | 郝立波, 孙立吉, 赵玉岩, 等. 吉林红旗岭2号岩体锆石SHRIMP U-Pb定年及其地质意义[J]. 吉林大学学报(地球科学版), 2012, 42(增刊3): 166-178. |
[35] | LIU Y S, HU Z C, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43. |
[36] | 李爱. 吉林红旗岭镁铁-超镁铁质岩体矿物、岩石地球化学及成矿作用[D]. 长春: 吉林大学, 2019. |
[37] | PAGE P, BARNES S J. Using trace elements in chromites to constrain the origin of podiform chromitites in the thetford mines ophiolite, Quebec, Canada[J]. Economic Geology, 2009, 104(7): 997-1018. |
[38] | YAO S. Chemical composition of chromites from ultramafc rocks: application to mineral exploration and petrogenesis[D]. Sydney: Macquarie University, 1999. |
[39] | MCDONOUGH W F, SUN S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253. |
[40] | SUN T, QIAN Z Z, DENG Y F, et al. PGE and isotope (Hf-Sr-Nd-Pb) constraints on the origin of the Huangshandong magmatic Ni-Cu sulfide deposit in the Central Asian Orogenic Belt, northwestern China[J]. Economic Geology, 2013, 108(8): 1849-1864. |
[41] | XUE S C, QIN K Z, LI C S, et al. Geochronological, petrological, and geochemical constraints on Ni-Cu sulfide mineralization in the Poyi ultramafic-troctolitic intrusion in the Northeast rim of the Tarim Craton, western China[J]. Economic Geology, 2016, 111(6): 1465-1484. |
[42] | LI C S, THAKURTA J, RIPLEY E M. Low-Ca contents and kink-banded textures are not unique to mantle olivine: evidence from the Duke Island Complex, Alaska[J]. Mineralogy and Petrology, 2012, 104(3): 147-153. |
[43] | SOBOLEV A V, HOFMANN A W, KUZMIN D V, et al. The amount of recycled crust in sources of mantle-derived melts[J]. Science, 2007, 316(5823): 412-417. |
[44] | MORIMOTO N. Nomenclature of pyroxenes[J]. Mineralogy and Petrology, 1988, 39(1): 55-76. |
[45] | SU B X, QIN K Z, SAKYI P A, et al. Occurrence of an Alaskan-type complex in the middle Tianshan Massif, Central Asian Orogenic Belt: inferences from petrological and mineralogical studies[J]. International Geology Review, 2012, 54(3): 249-269. |
[46] | KAY S M, SNEDDEN W T, FOSTER B P, et al. Upper mantle and crustal fragments in the Ithaca kimberlites[J]. The Journal of Geology, 1983, 91(3): 277-290. |
[47] | LEAKE B E. Nomenclature of amphiboles[J]. Mineralogical Magazine, 1978, 42(324): 533-563. |
[48] | GODEL B, BARNES S J, MAIER W D. Parental magma composition inferred from trace element in cumulus and intercumulus silicate minerals: an example from the lower and lower critical zones of the Bushveld Complex, South-Africa[J]. Lithos, 2011, 125(1/2): 537-552. |
[49] | RIPLEY E M, LI C S. Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis?[J]. Economic Geology, 2013, 108(1): 45-58. |
[50] | HOFMANN A W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90(3): 297-314. |
[51] | PEARCE J A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 2008, 100(1): 14-48. |
[52] | PELTONEN P. Petrogenesis of ultramafic rocks in the Vammala nickel belt: implications for crustal evolution of the Early Proterozoic Svecofennian arc terrane[J]. Lithos, 1995, 34(4): 253-274. |
[53] | 孙立吉. 红旗岭铜镍硫化物矿床地质地球化学特征及找矿技术方法研究[D]. 长春: 吉林大学, 2013. |
[54] | FOSTER J G, LAMBERT D D, FRICK L R, et al. Re-Os isotopic evidence for genesis of Archaean nickel ores from uncontaminated komatiites[J]. Nature, 1996, 382: 703-706. |
[55] | MAUREL C, MAUREL P. Etude experimentale de la distribution de l’aluminium entre bain silicate basique et spinelle chromifere. Implications petrogenetiques: teneur en chrome des spinelles[J]. Bulletin de Mineralogie, 1982, 105: 197-202. |
[56] | KELEMEN P B. Reaction between ultramafic rock and fractionating basaltic magma I. phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite[J]. Journal of Petrology, 1990, 31(1): 51-98. |
[1] | 柏铖璘, 谢桂青, 赵俊康, 李伟, 朱乔乔. 试论中亚造山带东部多宝山矿田斑岩铜-浅成低温金系统成矿特征与矿床模型[J]. 地学前缘, 2024, 31(3): 170-198. |
[2] | 朱雪峰,陈衍景,王玭,张成,蔡云龙,邓轲,许强伟,李凯月. 内蒙古毕力赫斑岩型金矿成矿岩体地球化学、锆石U-Pb年代学及Hf同位素研究[J]. 地学前缘, 2018, 25(5): 119-134. |
[3] | 邵济安,田伟,唐克东,周新华. 初论微陆块在中亚造山带演化中的作用:以锡林浩特微陆块为例[J]. 地学前缘, 2018, 25(4): 1-10. |
[4] | 徐备,徐严,栗进,李群生. 内蒙古西部温都尔庙群的时代及其在中亚造山带中的位置[J]. 地学前缘, 2016, 23(6): 120-127. |
[5] | 郭召杰, 朱贝, 陈石. 熔积岩及其对中国几处关键构造事件的限定[J]. 地学前缘, 2015, 22(2): 174-186. |
[6] | 宋谢炎, 肖家飞, 朱丹, 朱维光, 陈列锰. 岩浆通道系统与岩浆硫化物成矿研究新进展[J]. 地学前缘, 2010, 17(1): 153-163. |
[7] | 宋谢炎 胡瑞忠 陈列锰. 铜、镍、铂族元素地球化学性质及其在幔源岩浆起源、演化和岩浆硫化物矿床研究中的意义[J]. 地学前缘, 2009, 16(4): 287-305. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||