地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 231-247.DOI: 10.13745/j.esf.sf.2025.3.27
杨金玲1,2(), 董岳3, 冯文澜1,4, 张昊哲1,2, 张甘霖1,2,4,*(
)
收稿日期:
2025-01-09
修回日期:
2025-02-20
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*张甘霖(1966—),男,研究员,博士生导师,主要从事土壤发生与分类、数字土壤制图和土壤资源评价研究。E-mail: 作者简介:
杨金玲(1973—),女,研究员,博士生导师,主要从事土壤发生演变、土壤分类和土壤地球化学研究。E-mail: jlyang@issas.ac.cn
基金资助:
YANG Jinling1,2(), DONG Yue3, FENG Wenlan1,4, ZHANG Haozhe1,2, ZHANG Ganlin1,2,4,*(
)
Received:
2025-01-09
Revised:
2025-02-20
Online:
2025-03-25
Published:
2025-04-20
摘要:
红壤在我国农业及经济社会可持续发展中占有重要地位。红壤关键带实质上是红壤区域自然和人为共同作用下由水-土-气-生-岩构成的地球表层系统。本文综述了红壤的酸化现状、红壤关键带中质子(H+)产生和消耗的过程与机制,以及这些过程所产生的生态环境效应。从关键带的视角,碳循环是土壤自然酸化过程中H+的主要来源。大气酸沉降(H+、氮、硫)和植物因生长对盐基离子(K+、Na+、Ca2+和Mg2+)的净吸收而产生的H+是自然生态系统下红壤中H+的主要来源,但化学氮肥施用带来的氮转化过程产生的H+和植物收获带走的盐基离子是农田生态系统中红壤酸化加剧的主导因素。氮在土壤中的转化过程和H+产生过程复杂,采用氮和氧双同位素的方法,可以定量化水体中硝态氮($\mathrm{NO}_3^{-}\mathrm{-N}$)的来源,从而定量不同来源氮对土壤中H+的贡献。矿物风化、阳离子交换、铁铝氧化物缓冲、硫酸根专性吸附和有机质的酸缓冲等均是红壤中存在的重要酸缓冲机制。这些过程交织在一起,不易量化单独的缓冲过程,难以准确定量红壤的酸化速率。借助矿物风化释放的盐基离子与硅的化学计量关系,可以解析不同风化程度的红壤地区H+用于硅酸盐风化和盐基交换的比例,从而更好地理解不同风化程度红壤对H+缓冲路径的差异。酸化不仅会改变土壤自身的物理和化学特性、活化重金属元素、引起铝毒等,还影响土壤中的微生物和植物生长,氮转化带来的$\mathrm{NO}_3^{-}\mathrm{-N}$迁移和深部累积会对地下水污染带来潜在的风险。质子的消耗过程可以缓解H+产生所带来的生态危害。红壤区径流水保持中性,说明土壤消耗了所有输入的H+,目前依然具有一定的酸缓冲能力。针对以上红壤关键带的H+产生和消耗的研究现状,本文提出了对未来的研究展望,探讨了红壤关键带需要进一步深入探索的相关科学问题。
中图分类号:
杨金玲, 董岳, 冯文澜, 张昊哲, 张甘霖. 红壤关键带质子产生和消耗及其环境效应综述[J]. 地学前缘, 2025, 32(3): 231-247.
YANG Jinling, DONG Yue, FENG Wenlan, ZHANG Haozhe, ZHANG Ganlin. Proton production and consumption in red soil critical zone and their environmental effects: A review[J]. Earth Science Frontiers, 2025, 32(3): 231-247.
图3 典型亚热带森林流域中主要H+产生和消耗过程的年通量(mol·ha-1·a-1) $\mathrm{H}_{\text {雨水 }}^{+}$为降雨输入的H+量; $\mathrm{H}_{\mathrm{N} \ 转化}^{+}$为通过降雨输入氮转化产生的H+量;$\mathrm{H}_{\mathrm{SO}_2 转化}^{+}$为大气沉降SO2转化产生的H+量;$\mathrm{H}_{\mathrm{SO}_4^{2-} 专性吸附}^{+}$为土壤中$\mathrm{SO}_4^{2-}$专性吸附消耗的H+量;$\mathrm{H}_{\text {硅酸盐风化 }}^{+}$为土壤中硅酸盐风化消耗的H+量;$\mathrm{H}_{\text {阳离子交换 }}^{+}$为土壤中阳离子交换过程消耗的H+量[47]。
Fig.3 Annual H+ fluxes (mol·ha-1·a-1) of key H+ production/consumption processes in the subtropical forested watershed[47].
[1] | 赵其国. 我国红壤的退化问题[J]. 土壤, 1995(6): 281-285. |
[2] | SANTHA K G, SAINI P K, DEOLIYA R, et al. Characterization of laterite soil and its use in construction applications: a review[J]. Resources, Conservation & Recycling Advances, 2022, 16: 200120. |
[3] | 赵其国, 黄国勤, 马艳芹. 中国南方红壤生态系统面临的问题及对策[J]. 生态学报, 2013, 33(24): 7615-7622. |
[4] | IUSS Working Group WRB. World reference base for soil resources 2014[M]. Rome: FAO, 2015. |
[5] | 梁音, 张斌, 潘贤章, 等. 南方红壤丘陵区水土流失现状与综合治理对策[J]. 中国水土保持科学, 2008(1): 22-27. |
[6] | 红黄壤利用改良区化协作组. 中国红黄壤地区土壤利用改良区划[M]. 北京: 农业出版社, 1985. |
[7] | 张桃林, 王兴祥. 土壤退化研究的进展与趋向[J]. 自然资源学报, 2000(3): 280-284. |
[8] | 查轩, 黄少燕, 陈世发. 退化红壤地土壤侵蚀与坡度坡向的关系: 基于GIS的研究[J]. 自然灾害学报, 2010, 19(2): 32-39. |
[9] | LIANG Y, LI D C, LU X X, et al. Soil erosion changes over the past five decades in the red soil region of southern China[J]. Journal of Mountain Science, 2010, 7(1): 92-99. |
[10] | ROY P, PAL S C, CHAKRABORTTY R, et al. A systematic review on climate change and geo-environmental factors induced land degradation: processes, policy-practice gap and its management strategies[J]. Geological Journal, 2023, 58(9): 3487-3514. |
[11] |
KRUG E C, FRINK C R. Acid rain on acid soil: a new perspective[J]. Science, 1983, 221(4610): 520-525.
PMID |
[12] | 徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2): 238-244. |
[13] | 于天仁. 中国土壤的酸度特点和酸化问题[J]. 土壤通报, 1988(2): 49-51. |
[14] | VONUEXKULL H R, MUTERT E. Global extent, development and economic-impact of acid soils[J]. Plant and Soil, 1995, 171(1): 1-15. |
[15] | FUJII K, HARTONO A, FUNAKAWA S, et al. Acidification of tropical forest soils derived from serpentine and sedimentary rocks in East Kalimantan, Indonesia[J]. Geoderma, 2011, 160(3/4): 311-323. |
[16] |
GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327: 1008-1010.
DOI PMID |
[17] | LIANG L Z, ZHAO X Q, YI X Y, et al. Excessive application of nitrogen and phosphorus fertilizers induces soil acidification and phosphorus enrichment during vegetable production in Yangtze River Delta, China[J]. Soil Use and Management, 2013, 29(2): 161-168. |
[18] | 张福锁. 我国农田土壤酸化现状及影响[J]. 民主与科学, 2016(6): 26-27. |
[19] | 徐仁扣, 李九玉, 周世伟, 等. 我国农田土壤酸化调控的科学问题与技术措施[J]. 中国科学院院刊, 2018, 33(2): 160-167. |
[20] | STUMPE J M, VLEK P L G. Acidification induced by different nitrogen-sources in columns of selected tropical soils[J]. Soil Science Society of America Journal, 1991, 55(1): 145-151. |
[21] | LUDWIG B, KHANNA P K, ANURUGSA B, et al. Assessment of cation and anion exchange and pH buffering in an Amazonian Ultisol[J]. Geoderma, 2001, 102(1/2): 27-40. |
[22] |
HICKS W K, KUYLENSTIERNA J C I, OWEN A, et al. Soil sensitivity to acidification in Asia: status and prospects[J]. Ambio, 2008, 37(4): 295-303.
PMID |
[23] | YEMEFACK M, ROSSITER D G, JETTEN V G. Empirical modelling of soil dynamics along a chronosequence of shifting cultivation systems in southern Cameroon[J]. Geoderma, 2006, 133(3/4): 380-397. |
[24] | UWIRAGIYE Y, KHALAF Q A W, ALI H M M, et al. Spatio-temporal variations in soil pH and aluminum toxicity in sub-saharan african croplands (1980-2050)[J]. Remote Sensing, 2023, 15(5): 1338. |
[25] | MCGRATH D A, SMITH C K, GHOLZ H L, et al. Effects of land-use change on soil nutrient dynamics in Amazonia[J]. Ecosystems, 2001, 4(7): 625-645. |
[26] | ELIAS M E A, SCHROTH G, MACÊDO J L V, et al. Mineral nutrition, growth and yields of annatto trees (Bixa orellana) in agroforestry on an Amazonian ferralsol[J]. Experimental Agriculture, 2002, 38(3): 277-289. |
[27] | 赵学强, 潘贤章, 马海艺, 等. 中国酸性土壤利用的科学问题与策略[J]. 土壤学报, 2023, 60(5): 1248-1263. |
[28] | 郭治兴, 王静, 柴敏, 等. 近30年来广东省土壤pH值的时空变化[J]. 应用生态学报, 2011, 22(2): 425-430. |
[29] | 吴道铭, 傅友强, 于智卫, 等. 我国南方红壤酸化和铝毒现状及防治[J]. 土壤, 2013, 45(4): 577-584. |
[30] | WEN H Y, WU H Y, DONG Y, et al. Differential soil acidification caused by parent materials and land use changes in the Pearl River Delta region[J]. Soil Use and Management, 2022, 39(1): 329-341. |
[31] | YU Z P, CHEN H Y H, SEARLE E B, et al. Whole soil acidification and base cation reduction across subtropical China[J]. Geoderma, 2020, 361. |
[32] | DAI Z, LIU Y, WANG X, et al. Changes in pH, CEC and exchangeable acidity of some forest soils in southern China during the last 32-35 years[J]. Water, Air, and Soil Pollution, 1998, 108: 377-390. |
[33] |
周晓阳, 周世伟, 徐明岗, 等. 中国南方水稻土酸化演变特征及影响因素[J]. 中国农业科学, 2015, 48(23): 4811-4817.
DOI |
[34] | ZHOU J, XIA F, LIU X, et al. Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China[J]. Journal of Soils and Sediments, 2014, 14: 415-422. |
[35] | National Research Council. Basic research opportunities in earth science[M]. Washington DC: National Academy Press, 2001. |
[36] | 张甘霖, 朱永官, 邵明安. 地球关键带过程与水土资源可持续利用的机理[J]. 中国科学: 地球科学, 2019, 49(12): 1945-1947. |
[37] | 张甘霖, 宋效东, 吴克宁. 地球关键带分类方法与中国案例研究[J]. 中国科学: 地球科学, 2021, 51(10): 1681-1692. |
[38] | VAN BREEMEN N, DRISCOLL C T, MULDER J. Acidic deposition and internal proton sources in acidification of soils and waters[J]. Nature, 1984, 307(5952): 599-604. |
[39] | DE VRIES W, BREEUWSMA A. The relation between soil acidification and element cycling[J]. Water Air and Soil Pollution, 1987, 35: 293-310. |
[40] | 潘根兴. 土壤酸化过程的土壤化学分析[J]. 生物学杂志, 1990, 9(6): 48-52. |
[41] | BERNER R A. Weathering, plants, and the long-term carbon cycle[J]. Geochimica et Cosmochimica Acta, 1992, 56: 3225-3231. |
[42] | REUSS J O, COSBY B J, WRIGHT R F. Chemical processes governing soil and water acidification[J]. Nature, 1987, 329: 27-32. |
[43] | FUJII K, FUNAKKAWA S, HAYAKAWA C, et al. Contribution of different proton sources to pedogenetic soil acidification in forested ecosystems in Japan[J]. Geoderma, 2008, 144: 478-490. |
[44] | YANG Y, JI C, MA W, et al. Significant soil acidification across northern China’s grasslands during 1980s-2000s[J]. Global Change Biology, 2012, 18: 2292-2300. |
[45] | YANG Y, LI P, HE H, et al. Long-term changes in soil pH across major forest ecosystems in China[J]. Geophysical Research Letters, 2015, 42(3): 933-940. |
[46] |
李伟峰, 叶英聪, 朱安繁, 等. 近30a江西省农田土壤pH时空变化及其与酸雨和施肥量间关系[J]. 自然资源学报, 2017, 32(11): 1942-1953.
DOI |
[47] | YANG J L, ZHANG G L, HUANG L M, et al. Estimating soil acidification rate at watershed scale based on the stoichiometric relations between silicon and base cations[J]. Chemical Geology, 2013, 337-338: 30-37. |
[48] | DONG Y, YANG J L, ZHAO X R, et al. Soil acidification and loss of base cations in a subtropical agricultural watershed[J]. Science of the Total Environment, 2022, 827: 154338. |
[49] | 崔键, 周静, 杨浩, 等. 我国红壤区大气氮沉降及其农田生态环境效应[J]. 土壤, 2015, 47(2): 245-251. |
[50] | ZHANG Q Y, ZHU J X, WANG Q F, et al. Soil acidification in China’s forests due to atmospheric acid deposition from 1980 to 2050[J]. Science Bulletin, 2022, 67(9): 914-917. |
[51] | 黄来明, 邵明安, 贾小旭, 等. 不同利用方式下亚热带花岗岩流域元素收支平衡及其对土壤酸化的影响[J]. 土壤, 2017, 49(3): 592-600. |
[52] | BARAK P, JOBE B O, KRUEGERA R, et al. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin[J]. Plant and Soil, 1997, 197: 61-69. |
[53] | VIEIRA F C B, BAYER C, MIELNICZUK J, et al. Long-term acidification of a Brazilian Acrisol as affected by no till cropping systems and nitrogen fertilizer[J]. Soil Research, 2008, 46: 17-26. |
[54] | SCHRODER J L, ZHANG H, GIRMA K, et al. Soilacidification from long-term use of nitrogen fertilizers on winter wheat[J]. Soil Science Society of America Journal, 2011, 75: 957-964. |
[55] | CAI Z, WANG B, XU M, et al. Nitrification and acidification from urea application in red soil (Ferralic Cambisol) after different long-term fertilization treatments[J]. Journal of Soils and Sediments, 2014, 14: 1526-1536. |
[56] | CAI Z, WANG B, XU M, et al. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China[J]. Journal of Soils and Sediments, 2015, 15: 260-270. |
[57] | 程先富, 陈梦春, 郝李霞. 红壤丘陵区农田土壤酸化的时空变化研究[J]. 中国生态农业学报, 2008, 16(6): 1348-1351. |
[58] | MENG H Q, XU M G, LV J L, et al. Quantification of anthropogenic acidification under long-term fertilization in the upland red soil of south China[J]. Journal of Integrative Agriculture, 2014, 179: 186-494. |
[59] | JOHNSTON A E, GOULDING K W T, POULTON P R. Soil acidification during more than 100 years under permanent grassland and woodland at Rothamsted[J]. Soil Use and Management, 1986, 2: 3-10. |
[60] | KYVERYGA P M, BLACKMER A M, ELLSWORTH J W, et al. Soil pH effects on nitrification of fall-applied anhydrous ammonia[J]. Soil Science Society of America Journal, 2004, 68, 545-551. |
[61] | KEMMITT S J, WRIGHT D, JONES D L. Soil acidification used as a management strategy to reduce nitrate losses from agricultural land[J]. Soil Biology and Biochemistry, 2015, 37: 867-875. |
[62] | ZHAO X, XING G X. Variation in the relationship between nitrification and acidification of subtropical soils as affected by the addition of urea or ammonium sulfate[J]. Soil Biology and Biochemistry, 2009, 41: 2584-2587. |
[63] | ZHAO X, WANG S, XING G. Nitrification, acidification, and nitrogen leaching from subtropical cropland soils as affected by rice straw-based biochar: laboratory incubation and column leaching studies[J]. Journal of Soils and Sediments, 2014, 14: 471-482. |
[64] | TONG D, XU R. Effects of urea and (NH4)2SO4 on nitrification and acidification of Ultisols from Southern China[J]. Journal of Environmental Sciences, 2012, 24: 682-689. |
[65] | DONG Y, YANG J L, ZHAO X R, et al. Contribution of different proton sources to the acidification of red soil with maize cropping in subtropical China[J]. Geoderma, 2021, 392: 114995. |
[66] | DONG Y, YANG J L, ZHAO X R, et al. Nitrate leaching and N accumulation in a typical subtropical red soil with N fertilization[J]. Geoderma, 2022, 407: 115559. |
[67] | DONG Y, YANG J L, ZHAO X R, et al. Nitrate runoff loss and source apportionment in a typical subtropical agricultural watershed[J]. Environmental Science and Pollution Research, 2022, 29: 20186-20199. |
[68] | DONG Y, YANG J L, ZHAO X R, et al. Seasonal dynamics of soil pH and N transformation as affected by N fertilization in subtropical China: an in situ 15N labeling study[J]. Science of the Total Environment, 2022, 816: 151596. |
[69] | HINSINGER P, PLASSARD C, TANG C, et al. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review[J]. Plant and Soil, 2003, 248: 43-59. |
[70] | TANG C, RENGEL Z. Role of plant cation/anion uptake ratio in soil acidification[M]//RENGEL Z. Handbook of soil acidity. New York: Marcel Dekker Inc, 2003. |
[71] |
JACKSON R B, JOBBÁGY E G, AVISSAR R, et al. Trading water for carbon with biological carbon sequestration[J]. Science, 2005, 310(5756): 1944-1947.
DOI PMID |
[72] | MARCOS G M, LANCHO J F G. H+ budget in oligotrophic Quercus pyrenaica forests: atmospheric and management-induced soil acidification?[J]. Plant and Soil, 2002, 243: 11-22. |
[73] | WAKAMATSU T, SATO K, TAKAHASHI A, et al. Protonbudget for a Japanese cedar forest ecosystem[J]. Water Air and Soil Pollution, 2001, 130: 721-726. |
[74] | ZHU Q, DEVRIES W, LIU X, et al. The contribution of atmospheric deposition and forest harvesting to forest soil acidification in China since 1980[J]. Atmospheric Environment, 2016, 146: 215-222. |
[75] |
HONG S, PIAO S, CHEN A, et al. Afforestation neutralizes soil pH[J]. Nature Communications, 2018, 9(1): 520.
DOI PMID |
[76] | HAO T, ZHU Q, ZENG M, et al. Quantification of the contribution of nitrogen fertilization and crop harvesting to soil acidification in a wheat-maize double cropping system[J]. Plant and Soil, 2019, 434: 167-184. |
[77] | LI W, JOHNSON C E. Relationships among pH, aluminum solubility and aluminum complexation with organic matter in acid forest soils of the Northeastern United States[J]. Geoderma, 2016, 271: 234-242. |
[78] | YAN P, SHEN C, FAN L. Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil[J]. Agriculture, Ecosystems and Environment, 2018, 254: 20-25. |
[79] | WANG Y, CHENG P, LI F, et al. Variable charges of a red soil from different depths: acid-base buffer capacity and surface complexation model[J]. Applied Clay Science, 2018, 159: 107-115. |
[80] | YAN P, WU L, WANG D, et al. Soil acidification in Chinese tea plantations[J]. Science of the Total Environment, 2020, 715: 136963. |
[81] | YANG X, NI K, SHI Y, et al. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China[J]. Agriculture, Ecosystems and Environment, 2018, 252: 74-82. |
[82] | TANG C, BARTON L, RAPHAEL C. Pasture legume species differ in their capacity to acidify a low-buffer soil[J]. Australian Journal of Agricultural Research, 1997, 49: 53-58. |
[83] | BOLAN N, ADRIANO D C, CURTIN D. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability[J]. Advances in Agronomy, 2003, 78: 215-272. |
[84] | ALVAREZ R, GIMENEZ A, PAGNANINI F, et al. Soil acidity in theargentine pampas: effects of land use and management[J]. Soil & Tillage Research, 2020, 196: 104434. |
[85] | NOBLE A D, SUSUKI S, SODA W, et al. Soil acidification and carbon storage in fertilized pastures of Northeast Thailand[J]. Geoderma, 2008, 144: 248-255. |
[86] | VIERA F C B, BAYER C, MIELNICZUK J, et al. Long-term acidification of a Brazilian Acrisol as affected by no till cropping systems and nitrogen fertilizer[J]. Australian Journal of Soil Research, 2008, 46: 17-26. |
[87] | BOLAN N S, HEDLEY M J, WHITE R E. Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures[J]. Plant and Soil, 1991, 134: 53-63. |
[88] | LIU S, ZHANG X, LIANG A, et al. Ridge tillage is likely better than no tillage for 14-year field experiment in black soils: insights from a 15N-tracing study[J]. Soil & Tillage Research, 2018, 179: 38-46. |
[89] | YANG J L, ZHANG G L. Si cycling and isotope fractionation: Implications on weathering and soil formation processes in a typical subtropical area[J]. Geoderma, 2019, 337: 479-490. |
[90] | JAMES J, LITTKE K, BONASSI T, et al. Exchangeable cations in deep forest soils: separating climate and chemical controls on spatial and vertical distribution and cycling[J]. Geoderma, 2016, 279: 109-121. |
[91] | HAO T, LIU X, ZHU Q, et al. Quantifying drivers of soil acidification in three Chinese cropping systems[J]. Soil & Tillage Research, 2022, 215: 105230. |
[92] | LI Q, LI A, YU X, et al. Soil acidification of the soil profile across Chengdu Plain of China from the 1980s to 2010s[J]. Science of the Total Environment, 2020, 698: 134320. |
[93] | BOWMAN W D, CLEVELAND C C, HALADA L, et al. Negative impact of nitrogen deposition on soil buffering capacity[J]. Nature Geoscience, 2008, 1(11): 767-770. |
[94] | SANDERMAN J. Can management induced changes in the carbonate system drive soil carbon sequestration? A review with particular focus on Australia[J]. Agriculture, Ecosystems & Environment, 2012, 155: 70-77. |
[95] |
RAZA S, MIAO N, WANG P, et al. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands[J]. Global change Biology, 2020, 26(6): 3738-3751.
DOI PMID |
[96] | LI K W, LU H, NKOH J N, et al. Aluminum mobilization as influenced by soil organic matter during soil and mineral acidification: a constant pH study[J]. Geoderma, 2022, 418: 115853. |
[97] | VAN BREEMEN N, MULDER J, DRISCOLL C T. Acidification and alkalinization of soils[J]. Plant and Soil, 1983, 75: 283-308. |
[98] | BERGKVIST B O, FOLKESON L. Soil acidification and element fluxes of a Fagus sylvatica forest as influenced by simulated nitrogen deposition[J]. Water, Air, and Soil Pollution, 1992, 65: 111-133. |
[99] | JIANG J, WANG Y P, YU M, et al. Soil organic matter is important for acid buffering and reducing aluminum leaching from acidic forest soils[J]. Chemical Geology, 2018, 501: 86-94. |
[100] | REUSS J O, JOHNSON D W. Acid deposition and the acidification of soils and water[M]. New York: Springer - Verlag, 1986. |
[101] | WATMOUGH S A, WHITFIELD C J, FENN M E. The importance of atmospheric base cation deposition for preventing soil acidification in the Athabasca Oil Sands Region of Canada[J]. Science of the Total Environment, 2014, 493: 1-11. |
[102] | MILLER H G, MILLER J D, COOPER J M. Transformations in rainwater chemistry on passing through forested ecosystems[M]// COUGHTREYP, MARTINM, UNSWORTHM. Pollutant transport and fate in ecosystems. Oxford: Blackwell Scientific Publications, 1987: 171-180. |
[103] | MORENO G, GALLARDO J F, BUSSOTTI F. Canopy modification of atmospheric deposition in oligotrophic Quercus pyrenaica forests of an unpolluted region (central-western Spain)[J]. Forest Ecology and Management, 2001, 149(1/2/3): 47-60. |
[104] | CHADWICK O A, CHOROVER J. The chemistry of pedogenic thresholds[J]. Geoderma, 2001, 100(3/4): 321-353. |
[105] | KIRK G J D, BELLAMY P H, LARKR M. Changes in soil pH across England and Wales in response to decreased acid deposition[J]. Global Change Biology, 2010, 16(11): 3111-3119. |
[106] | WHITE A F, BULLEN T D, SCHULZ M S, et al. Differential rates of feldspar weathering in granitic regoliths[J]. Geochimica et Cosmochimica Acta, 2001, 65(6): 847-869. |
[107] | SHI R Y, LIU Z, LI Y, et al. Mechanisms for increasing soil resistance to acidification by long-term manure application[J]. Soil and Tillage Research, 2019, 185: 77-84. |
[108] | FORSIUS M, KLEEMOLA S, STARR M, et al. Ion mass budgets for small forested catchments in Finland[J]. Water, Air, and Soil Pollution, 1995, 79: 19-38. |
[109] | DE VRIES W, REINDS G J, VEL E. Intensive monitoring of forest ecosystems in Europe: 2: Atmospheric deposition and its impacts on soil solution chemistry[J]. Forest Ecology and Management, 2003, 174(1/2/3): 97-115.) : 97-115. |
[110] | FREY J, FREY T, PAJUSTE K. Input-output analysis of macroelements in ICP-IM catchment area, Estonia[J]. Landscape and Urban Planning, 2004, 67(1/2/3/4): 217-223. |
[111] | VELBEL M A, PRICE J R. Solute geochemical mass-balances and mineral weathering rates in small watersheds: methodology, recent advances, and future directions[J]. Applied Geochemistry, 2007, 22(8): 1682-1700. |
[112] | 杨金玲, 张甘霖, 宋效东, 等. 一种土壤混合矿物的盐基离子和硅风化计量关系估算方法: 江苏省, CN201610137790.7[P]. 2017-07-28. |
[113] | 赵越, 杨金玲, 董岳, 等. 模拟酸雨淋溶下强风化土壤矿物风化计量关系研究[J]. 土壤学报, 2019, 56(2): 310-319. |
[114] | 赵越, 杨金玲, 许哲, 等. 模拟酸雨淋溶下不同母质发育雏形土矿物风化中的盐基离子与硅计量关系[J]. 土壤学报, 2023, 60(5): 1456-1467. |
[115] | ZHAO Y, YANG J L, JIA N, et al. Stoichiometry of base cations and silicon during weathering of a deep soil profile derived from granite[J]. Pedosphere, 2023, 33(5): 800-807. |
[116] | MCGAHAN D G, SOUTHARD R J, ZASOSKI R J. Mineralogical comparison of agriculturally acidified and naturally acidic soils[J]. Geoderma, 2003, 114(3/4): 355-368. |
[117] | MOGOLLÓN J L, QUERALES E. Interactions between acid solutions and Venezuelan tropical soils[J]. Science of the Total Environment, 1995, 164(1): 45-56. |
[118] | ULRICH B. Soil acidity and its relations to acid deposition[C]// Effects of accumulation of air pollutants in forest ecosystems: proceedings of a workshop held at göttingen, West Germany, May 16-18, 1982. Dordrecht:Springer Netherlands, 1983: 127-146. |
[119] | LU X, MAO Q, MO J, et al. Divergent responses of soil buffering capacity to long-term N deposition in three typical tropical forests with different land-use history[J]. Environmental Science & Technology, 2015, 49(7): 4072-4080. |
[120] | LI K W, SHI Y, NKOH J N, et al. Effect of coordination structure of aluminum on its activation from minerals and Oxisols during their acidification[J]. Pedosphere, 2024, 34(5): 916-928. |
[121] | LOUZAO M J, LEIROS M C, GUITIAN F. Study of buffering. Systems in soils from Galicia, NW Spain[J]. Water, Air, and Soil Pollution, 1990, 49: 17-33. |
[122] | NELSON P N, SU N. Soil pH buffering capacity: a descriptive function and its application to some acidic tropical soils[J]. Soil Research, 2010, 48(3): 201-207. |
[123] | LI J Y, XU R, TIWARI D, et al. Mechanism of aluminum release from variable charge soils induced by low-molecular-weight organic acids: kinetic study[J]. Geochimica et Cosmochimica Acta, 2006, 70(11): 2755-2764. |
[124] | MULDER J, VAN BREEMEN N, EIJCKH C. Depletion of soil aluminium by acid deposition and implications for acid neutralization[J]. Nature, 1989, 337(6204): 247-249. |
[125] | TAO L, LI F, LIU C, et al. Mitigation of soil acidification through changes in soil mineralogy due to long-term fertilization in southern China[J]. Catena, 2019, 174: 227-234. |
[126] | GRUBA P, MULDER J, BROŻEK S. Modelling the pH dependency of dissolved calcium and aluminium in O, A and B horizons of acid forest soils[J]. Geoderma, 2013, 206: 85-91. |
[127] |
LU X, MAO Q, GILLIAM F S, et al. Nitrogen deposition contributes to soil acidification in tropical ecosystems[J]. Global Change Biology, 2014, 20(12): 3790-3801.
DOI PMID |
[128] | LI J Y, XU R K, ZHANG H. Iron oxides serve as natural anti-acidification agents in highly weathered soils[J]. Journal of Soils and Sediments, 2012, 12: 876-887. |
[129] | ULRICH B. Natural and anthropogenic components of soil acidification[J]. Zeitschrift für Pflanzenernährung und Bodenkunde, 1986, 149(6): 702-717. |
[130] | THENG B K G. Soils with variable charge[M]. Lower Hutt: Soil Bureau, Department of Scientific and Industrial Research, 1980: 167-194. |
[131] | 吴杰民. 土壤对$\mathrm{SO}_4^{2-}$的吸附-解吸特征[J]. 环境化学, 1992(5): 39-46. |
[132] | FORSIUS M, KLEEMOLA S, STARRM. Proton budgets for a monitoring network of European forested catchments: impacts of nitrogen and sulphur deposition[J]. Ecological Indicators, 2005, 5(2): 73-83. |
[133] | WANG H, XU J, LIU X, et al. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China[J]. Soil and Tillage Research, 2019, 195: 104382. |
[134] | FUJII K, TOMA T, SUKARTININGSIH. Comparison of soil acidification rates under different land uses in Indonesia[J]. Plant and Soil, 2021, 465(1): 1-17. |
[135] | XU R K, ZHAO A, YUAN J, et al. pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars[J]. Journal of Soils and Sediments, 2012, 12: 494-502. |
[136] | VANCE G F, DAVID M B. Spodosol cation release and buffering of acidic inputs[J]. Soil Science, 1991, 151(5): 362-368. |
[137] | FELLER M C. Nutrient movement through western hemlock-western redcedar ecosystems in southwestern British Columbia[J]. Ecology, 1977, 58(6): 1269-1283. |
[138] | EDMONDS R L, THOMAS T B, RHODES J J. Canopy and soil modification of precipitation chemistry in a temperate rain forest[J]. Soil Science Society of America Journal, 1991, 55(6): 1685-1693. |
[139] |
SHIOMI N, YASUDA T, INOUE Y, et al. Characteristics of neutralization of acids by newly isolated fungal cells[J]. Journal of Bioscience and Bioengineering, 2004, 97(1): 54-58.
PMID |
[140] | VYLKOVA S. Environmental pH modulation by pathogenic fungi as a strategy to conquer the host[J]. PLoS Pathogens, 2017, 13(2): e1006149. |
[141] |
KLUGH K R, CUMMING J R. Variations in organic acid exudation and aluminum resistance among arbuscular mycorrhizal species colonizing Liriodendron tulipifera[J]. Tree Physiology, 2007, 27(8): 1103-1112.
PMID |
[142] | NKOH N J, LIU Z D, YAN J, et al. The role of extracellular polymeric substances in bacterial adhesion onto variable charge soils[J]. Archives of Agronomy and Soil Science, 2020, 66(13): 1780-1793. |
[143] | NKOH J N, HONG Z N, XU R K. Laboratory studies on the effect of adsorbed microbial extracellular polymeric substances on the acidity of selected variable-charge soils[J]. Soil Science Society of America Journal, 2022, 86(2): 162-180. |
[144] | 廖万有. 我国茶园土壤的酸化及其防治[J]. 农业环境保护, 1998(4): 35-37, 50. |
[145] | 武毅昶. 土壤调理剂对酸性土壤改良效果初探[D]. 呼和浩特: 内蒙古农业大学, 2018. |
[146] | MCCAULEY A, JONES C, JACOBSEN J. Soil pH and organic matter[J]. Nutrient Management Module, 2009, 8(2): 1-12. |
[147] | 李淑仪, 蓝佩玲, 廖新荣, 等. 砖红壤磷的有效性研究[J]. 生态环境, 2003(2): 170-171. |
[148] | KUNHIKRISHNAN A, THANGARAJAN R, BOLAN N S, et al. Functional relationships of soil acidification, liming, and greenhouse gas flux[J]. Advances in Agronomy, 2016, 139: 1-71. |
[149] | ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science and Technology, 2015, 49(2): 750-759. |
[150] | SATO K, TAKAHASHI A. Acidity neutralization mechanism in a forested watershed in central Japan[J]. Water, Air, and Soil Pollution, 1996, 88: 313-329. |
[151] | FOY C D. Physiological effects of hydrogen, aluminum, and manganese toxicities in acid soil[J]. Soil Acidity and Liming, 1984, 12: 57-97. |
[152] | HUE N V, VEGA S, SILVA J A. Manganese toxicity in a Hawaiian Oxisol affected by soil pH and organic amendments[J]. Soil Science Society of America Journal, 2001, 65(1): 153-160. |
[153] | GRUBA P, MULDER J. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils[J]. Science of the Total Environment, 2015, 511: 655-662. |
[154] | ROSS D S, MATSCHONAT G, SKYLLBERG U. Cation exchange in forest soils: the need for a new perspective[J]. European Journal of Soil Science, 2008, 59(6): 1141-1159. |
[155] | SKYLLBERG U, RAULUND-RASMUSSEN K, BORGGAARD O K. pH buffering in acidic soils developed under Picea abies and Quercus robur-effects of soil organic matter, adsorbed cations and soil solution ionic strength[J]. Biogeochemistry, 2001, 56: 51-74. |
[156] | JOHNSON C E. Cation exchange properties of acid forest soils of the northeastern USA[J]. European Journal of Soil Science, 2002, 53(2): 271-282. |
[157] | WESSELINK L G, VAN BREEMEN N, MULDER J, et al. A simple model of soil organic matter complexation to predict the solubility of aluminium in acid forest soils[J]. European Journal of Soil Science, 1996, 47(3): 373-384. |
[158] | BAQUY M, LI J Y, XU C Y, et al. Determination of critical pH and Al concentration of acidic Ultisols for wheat and canola crops[J]. Solid Earth, 2017, 8(1): 149-159. |
[159] | LAWRENCE G B, DAVID M B, SHORTLE W C. A new mechanism for calcium loss in forest-floor soils[J]. Nature, 1995, 378(6553): 162-165. |
[160] | ZHANG H M, WANG B R, XU M G, et al. Crop yield and soil responses to long-term fertilization on a red soil in southern China[J]. Pedosphere, 2009, 19(2): 199-207. |
[161] | 童贯和, 梁惠玲. 模拟酸雨及其酸化土壤对小麦幼苗体内可溶性糖和含氮量的影响[J]. 应用生态学报, 2005, 16(8): 1487-1492. |
[162] | RENSBURG L, KRUGER G H J, KRÜGER H. Assessing the drought-resistance adaptive advantage of some anatomical and physiological features in Nicotiana tabacum[J]. Canadian Journal of Botany, 1994, 72(10): 1445-1454. |
[163] |
刘红明, 董美超, 杨林, 等. 调控土壤pH值对柠檬幼树光合特性和叶绿素含量的影响[J]. 中国农学通报, 2018, 34(22): 59-65.
DOI |
[164] | 张旭, 刘彦卓. 土壤pH对华南双季稻旱育秧素质的影响试验初报[J]. 广东农业科学, 1998(2): 8-10. |
[165] | LIU T W, WU F H, WANG W H, et al. Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain[J]. Tree Physiology, 2011, 31(4): 402-413. |
[166] | ZHAO W, SHI R, HONG Z, et al. Critical values of soil solution Al3+ activity and pH for canola and maize cultivation in two acidic soils[J]. Journal of the Science of Food and Agriculture, 2022, 102(15): 6984-6991. |
[167] | GÉRARD F, BOUDOT J P, RANGER J. Consideration on the occurrence of the Al13 polycation in natural soil solutions and surface waters[J]. Applied Geochemistry, 2001, 16(5): 513-529. |
[168] | YE L, XIE Z, HUANG C, et al. Aluminum extractability in red soils as influenced by land use patterns[J]. Journal of Zhejiang University-SCIENCE A, 2002, 3(2): 223-227. |
[169] | KOPITTKE P M, MOORE K L, LOMBI E, et al. Identification of the primary lesion of toxic aluminum in plant roots[J]. Plant Physiology, 2015, 167(4): 140211. |
[170] | YADAV D S, JAISWAL B, GAUTAM M, et al. Soil acidification and its impact on plants[M]// SINGHP, SINGHS K, PRASADS M. Plant responses to soil pollution. Singapore: Springer, 2020: 1-26. |
[171] | STALLARD R F, EDMOND J M. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load[J]. Journal of Geophysical Research: Oceans, 1983, 88(C14): 9671-9688. |
[172] | HUANG L, ZHANG G, YANG J. Weathering and soil formation rates based on geochemical mass balances in a small forested watershed under acid precipitation in subtropical China[J]. Catena, 2013, 105: 11-20. |
[173] | ZHANG W H, SUN R B, XU L, et al. Effects of micro-/nano-hydroxyapatite and phytoremediation on fungal community structure in copper contaminated soil[J]. Ecotoxicology and Environmental Safety, 2019, 174: 100-109. |
[174] | LAUBER C L, HAMADY M, KNIGHT R, et al. Soil pH as a predictor of soil bacterial community structure at the continental scale: a pyrosequencing-based assessment[J]. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120. |
[175] | YANG D S, ZHANG J, LI M X, et al. Metabolomics analysis reveals the salt-tolerant mechanism in Glycine soja[J]. Journal of Plant Growth Regulation, 2017, 36(2): 460471. |
[176] | MASSALHA H, KORENBLUM E, THOLL D, et al. Small molecules below-ground: the role of specialized metabolites in the rhizosphere[J]. The Plant Journal, 2017, 90(4): 788807. |
[177] | 姜悦, 罗继鹏, 乔亚蓓, 等. 土壤类型对超积累植物东南景天叶际微生物群落结构和功能的影响[J]. 浙江大学学报(农业与生命科学版), 2024, 50(5): 758-770. |
[178] |
CHEN H, MOTHAPO N V, SHI W. Soil moisture and pH control relative contributions of fungi and bacteria to N2O production[J]. Microbial Ecology, 2015, 69: 180-191.
DOI PMID |
[179] | 宋文峰. 我国东南丘陵区酸化现状调查及长期施肥农田系统的生态化学计量学特征[D]. 北京: 中国科学院大学, 2023. |
[180] | 吴建富, 张美良, 刘经荣, 等. 不同肥料结构对红壤稻田氮素迁移的影响[J]. 植物营养与肥料学报, 2001(4): 368-373. |
[181] | DONG Y, YANG J L, ZHAO X R, et al. Nitrate leaching characteristics of red soils from different parent materials in subtropical China[J]. Science of The Total Environment, 2024, 915: 170049. |
[182] | HE J Z, HU H W, ZHANG L M. Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils[J]. Soil Biology and Biochemistry, 2012, 55: 146-154. |
[183] | KRAMER S B, REGANOLD J P, GLOVER J D, et al. Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils[J]. Proceedings of the National Academy of Sciences USA, 2006, 103(12): 4522-4527. |
[184] | LI Y, CHAPMAN S J, NICOL G W, et al. Nitrification and nitrifiers in acidic soils[J]. Soil Biology and Biochemistry. 2018, 116: 290-301. |
[185] |
WALVOORD M A, PHILLIPS F M, STONESTROM D A, et al. A reservoir of nitrate beneath desert soils[J]. Science, 2003, 302(5647): 1021-1024.
PMID |
[186] | YANG S H, WU H Y, SONG X D, et al. Variation of deep nitrate in a typical red soil critical zone: effects of land use and slope position[J]. Agriculture, Ecosystems & Environment, 2020, 297: 106966. |
[187] | WU H, SONG X, LIU F, et al. Regolith property controls on nitrate accumulation in a typical vadose zone in subtropical China[J]. Catena, 2020, 192: 104589. |
[1] | 董海良, 曾强, 刘邓, 盛益之, 刘晓磊, 刘源, 胡景龙, 李扬, 夏庆银, 李润洁, 胡大福, 张冬磊, 张文慧, 郭东毅, 张晓文. 黏土矿物-微生物相互作用机理以及在环境领域中的应用[J]. 地学前缘, 2024, 31(1): 467-485. |
[2] | 刘志飞, 陈建芳, 石学法. 深海沉积与全球变化研究的前缘与挑战[J]. 地学前缘, 2022, 29(4): 1-9. |
[3] | 连宾, 肖波, 肖雷雷, 王伟英, 孙启彪. 含钾岩石微生物转化的分子机制及其碳汇效应[J]. 地学前缘, 2020, 27(5): 238-246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||