地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 231-247.DOI: 10.13745/j.esf.sf.2025.3.27

• 地球系统过程与生态环境效应 • 上一篇    下一篇

红壤关键带质子产生和消耗及其环境效应综述

杨金玲1,2(), 董岳3, 冯文澜1,4, 张昊哲1,2, 张甘霖1,2,4,*()   

  1. 1.中国科学院南京土壤研究所, 土壤与农业可持续发展全国重点实验室, 江苏 南京 210008
    2.中国科学院大学, 北京 100049
    3.江苏省农业科学院农业资源与环境研究所, 江苏 南京 210014
    4.中国科学院地理与湖泊研究所, 湖泊与流域水安全全国重点实验室, 江苏 南京 210008
  • 收稿日期:2025-01-09 修回日期:2025-02-20 出版日期:2025-03-25 发布日期:2025-04-20
  • 通信作者: *张甘霖(1966—),男,研究员,博士生导师,主要从事土壤发生与分类、数字土壤制图和土壤资源评价研究。E-mail: glzhang@issas.ac.cn
  • 作者简介:杨金玲(1973—),女,研究员,博士生导师,主要从事土壤发生演变、土壤分类和土壤地球化学研究。E-mail: jlyang@issas.ac.cn
  • 基金资助:
    国家自然科学基金项目(42277312);科学技术部科技基础资源调查专项(2022FY100202)

Proton production and consumption in red soil critical zone and their environmental effects: A review

YANG Jinling1,2(), DONG Yue3, FENG Wenlan1,4, ZHANG Haozhe1,2, ZHANG Ganlin1,2,4,*()   

  1. 1. National Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
    4. National Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
  • Received:2025-01-09 Revised:2025-02-20 Online:2025-03-25 Published:2025-04-20

摘要:

红壤在我国农业及经济社会可持续发展中占有重要地位。红壤关键带实质上是红壤区域自然和人为共同作用下由水-土-气-生-岩构成的地球表层系统。本文综述了红壤的酸化现状、红壤关键带中质子(H+)产生和消耗的过程与机制,以及这些过程所产生的生态环境效应。从关键带的视角,碳循环是土壤自然酸化过程中H+的主要来源。大气酸沉降(H+、氮、硫)和植物因生长对盐基离子(K+、Na+、Ca2+和Mg2+)的净吸收而产生的H+是自然生态系统下红壤中H+的主要来源,但化学氮肥施用带来的氮转化过程产生的H+和植物收获带走的盐基离子是农田生态系统中红壤酸化加剧的主导因素。氮在土壤中的转化过程和H+产生过程复杂,采用氮和氧双同位素的方法,可以定量化水体中硝态氮($\mathrm{NO}_3^{-}\mathrm{-N}$)的来源,从而定量不同来源氮对土壤中H+的贡献。矿物风化、阳离子交换、铁铝氧化物缓冲、硫酸根专性吸附和有机质的酸缓冲等均是红壤中存在的重要酸缓冲机制。这些过程交织在一起,不易量化单独的缓冲过程,难以准确定量红壤的酸化速率。借助矿物风化释放的盐基离子与硅的化学计量关系,可以解析不同风化程度的红壤地区H+用于硅酸盐风化和盐基交换的比例,从而更好地理解不同风化程度红壤对H+缓冲路径的差异。酸化不仅会改变土壤自身的物理和化学特性、活化重金属元素、引起铝毒等,还影响土壤中的微生物和植物生长,氮转化带来的$\mathrm{NO}_3^{-}\mathrm{-N}$迁移和深部累积会对地下水污染带来潜在的风险。质子的消耗过程可以缓解H+产生所带来的生态危害。红壤区径流水保持中性,说明土壤消耗了所有输入的H+,目前依然具有一定的酸缓冲能力。针对以上红壤关键带的H+产生和消耗的研究现状,本文提出了对未来的研究展望,探讨了红壤关键带需要进一步深入探索的相关科学问题。

关键词: 酸化, 酸缓冲机制, 矿物风化, 氮转化, 元素循环

Abstract:

Red soil plays an important role in the sustainable development of agriculture and socio-economy in China. The red soil critical zone is the earth’s surface system which consists of water-soil-air-life-rock under the actions of natural and human activities in the red soil region. This paper summarizes the progresses on the acidification situation of red soil, the process and mechanism of proton (H+) production and consumption in the red soil critical zone, as well as the ecological and environmental effects. In the critical zone, carbon cycle is the main source of H+ in the natural soil acidification process. Atmospheric acid deposition (H+, nitrogen, sulfur) and the net uptake of base cations (K+, Na+, Ca2+, and Mg2+) by plants are the main sources of H+ in natural ecosystems. However, H+ from the nitrogen transformation process caused by chemical nitrogen fertilizer and base cations carried away by plant harvest are the main reasons for the intensification of red soil acidification in farmland ecosystem. The transformation of nitrogen in soil and the production process of H+ are complex. The source of nitrate ($\mathrm{NO}_3^{-}\mathrm{-N}$) in water can be quantified by using dual isotopes of nitrogen and oxygen, so as to quantify the contribution of different sources of nitrogen to H+ production in soil. Mineral weathering, cation exchange, iron and aluminum oxide buffering, special adsorption of sulfate and acid buffering of organic matter are important acid buffering mechanisms in the red soil critical zone. These processes are intertwined, so it is difficult to quantify individual buffering processes and the acidification rate of red soil. Based on the stoichiometric relationship between base cations and silicon released by mineral weathering, the proportion of H+ used for silicate weathering and base exchange in red soil regions with different weathering degrees can be distinguished, so as to better understand the difference of buffering pathways for H+ in red soil with different weathering degrees. Acidification will not only change the physical and chemical properties of the soil, activate heavy metal elements, cause aluminum toxicity, but also affect the growth of soil microorganisms and plants. $\mathrm{NO}_3^{-}\mathrm{-N}$ migration and deep accumulation caused by nitrogen transformation will bring potential risks to groundwater pollution. The process of H+ consumption can alleviate the negative effect caused by H+ production. The runoff water in the red soil region remained neutral, indicating that the soil consumed all input H+ and still had acid buffering capacity. In view of the above research status of H+ production and consumption in the red soil critical zone, this paper puts forward the prospects of future research and scientific issues that need to be further explored in the red soil critical zone.

Key words: acidification, acid buffering mechanism, mineral weathering, nitrogen transformation, element cycle

中图分类号: