Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 90-103.DOI: 10.13745/j.esf.sf.2021.2.14
Previous Articles Next Articles
SHEN Xiaofang1,2(), WAN Yuyu3, WANG Ligang4, SU Xiaosi2,3, DONG Weihong2,3,*()
Received:
2020-05-24
Revised:
2020-08-05
Online:
2021-09-25
Published:
2021-10-29
Contact:
DONG Weihong
CLC Number:
SHEN Xiaofang, WAN Yuyu, WANG Ligang, SU Xiaosi, DONG Weihong. Multiphase flow modeling of natural attenuation of volatile organic compounds (VOCs) in a petroleum contaminated sit[J]. Earth Science Frontiers, 2021, 28(5): 90-103.
参数 | 干密度*/(kg·m-3) | 孔隙度* | 绝对渗透率(水平)/m2 | 绝对渗透率(垂直)/m2 |
---|---|---|---|---|
黏土 | 2 600 | 0.31 | 4.0×10-14 | 1.0×10-14 |
细砂 | 2 650 | 0.31 | 8.0×10-11 | 8.0×10-10 |
中粗砂 | 2 660 | 0.30 | 4.0×10-10 | 1.0×10-10 |
含砾中粗砂 | 2 670 | 0.30 | 4.0×10-10 | 1.1×10-10 |
砂砾石 | 2 660 | 0.32 | 8.0×10-10 | 5.0×10-10 |
Table 1 Hydrogeological parameters of the aquifer
参数 | 干密度*/(kg·m-3) | 孔隙度* | 绝对渗透率(水平)/m2 | 绝对渗透率(垂直)/m2 |
---|---|---|---|---|
黏土 | 2 600 | 0.31 | 4.0×10-14 | 1.0×10-14 |
细砂 | 2 650 | 0.31 | 8.0×10-11 | 8.0×10-10 |
中粗砂 | 2 660 | 0.30 | 4.0×10-10 | 1.0×10-10 |
含砾中粗砂 | 2 670 | 0.30 | 4.0×10-10 | 1.1×10-10 |
砂砾石 | 2 660 | 0.32 | 8.0×10-10 | 5.0×10-10 |
Fig.3 Distribution of initial hydrostatic pressure in the aquifer (a) and plots of simulated (red) and measured (black) water levels at each well location (b)
有机物 名称 | 分子式 | 标准沸 点/K | 摩尔质量/ (g·mol-1) | 临界温 度/K | 临界 压强/bar | 临界体积/ (cm3·mol-1) | 密度/ (g·cm-3) | 溶解度 常数 (摩尔分数) | 分配系数 Koc/ (m3·kg-1) | 分配系数 Kd/ (mL·g-1) | 生物降解 衰变常数 /s-1 | 介质中的 有机碳分数 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
苯 | C6H6 | 353.2 | 78.114 | 562.2 | 48.2 | 259 | 0.878 6 | 4.11×10-4 | 0.089 1 | 0.06 | 4.0×10-8 | |
萘 | C10H8 | 217.9 | 128.17 | 748.4 | 40.5 | 431 | 1.162 0 | 4.86×10-6 | 1.29 | 2.04 | 2.4×10-8 | 0.159% |
甲苯 | C7H8 | 383.8 | 92.14 | 591.8 | 41.0 | 316 | 0.866 0 | 1.01×10-4 | 0.273 | 1.007 | 2.0×10-8 |
Table 2 Summary of physicochemical properties and natural attenuation parameters of contaminants
有机物 名称 | 分子式 | 标准沸 点/K | 摩尔质量/ (g·mol-1) | 临界温 度/K | 临界 压强/bar | 临界体积/ (cm3·mol-1) | 密度/ (g·cm-3) | 溶解度 常数 (摩尔分数) | 分配系数 Koc/ (m3·kg-1) | 分配系数 Kd/ (mL·g-1) | 生物降解 衰变常数 /s-1 | 介质中的 有机碳分数 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
苯 | C6H6 | 353.2 | 78.114 | 562.2 | 48.2 | 259 | 0.878 6 | 4.11×10-4 | 0.089 1 | 0.06 | 4.0×10-8 | |
萘 | C10H8 | 217.9 | 128.17 | 748.4 | 40.5 | 431 | 1.162 0 | 4.86×10-6 | 1.29 | 2.04 | 2.4×10-8 | 0.159% |
甲苯 | C7H8 | 383.8 | 92.14 | 591.8 | 41.0 | 316 | 0.866 0 | 1.01×10-4 | 0.273 | 1.007 | 2.0×10-8 |
情景 | 条件设置 | 模拟目的 |
---|---|---|
情景一 | 石油以定速率3.21×10-5 kg/s泄漏6个月后切断污染源 | 了解VOCs在地下环境中的迁移距离以及分布特征,为分析情景二、三、四中各自然衰减过程对VOCs的迁移转化过程的影响提供参考 |
情景二 | 以情景一的输出结果作为初始条件,模拟在考虑挥发、溶解作用条件下,VOCs在多相间的迁移 | 分析挥发、溶解作用对VOCs自然衰减过程的影响 |
情景三 | 以情景一的输出结果作为初始条件,模拟在考虑吸附作用的条件下,VOCs在多相间的迁移 | 分析吸附作用对VOCs自然衰减过程的影响 |
情景四 | 以情景一的输出结果作为初始条件,模拟在考虑生物降解作用的条件下,VOCs在多相间的迁移转化 | 分析生物降解作用对VOCs自然衰减过程的影响 |
情景五 | 在综合考虑挥发、吸附和生物降解作用的情况下,模拟场地内VOCs的自然衰减过程 | 模拟场地内苯、甲苯和萘达到理想修复效果所需的时间 |
Table 3 Simulation scenarios and purpose
情景 | 条件设置 | 模拟目的 |
---|---|---|
情景一 | 石油以定速率3.21×10-5 kg/s泄漏6个月后切断污染源 | 了解VOCs在地下环境中的迁移距离以及分布特征,为分析情景二、三、四中各自然衰减过程对VOCs的迁移转化过程的影响提供参考 |
情景二 | 以情景一的输出结果作为初始条件,模拟在考虑挥发、溶解作用条件下,VOCs在多相间的迁移 | 分析挥发、溶解作用对VOCs自然衰减过程的影响 |
情景三 | 以情景一的输出结果作为初始条件,模拟在考虑吸附作用的条件下,VOCs在多相间的迁移 | 分析吸附作用对VOCs自然衰减过程的影响 |
情景四 | 以情景一的输出结果作为初始条件,模拟在考虑生物降解作用的条件下,VOCs在多相间的迁移转化 | 分析生物降解作用对VOCs自然衰减过程的影响 |
情景五 | 在综合考虑挥发、吸附和生物降解作用的情况下,模拟场地内VOCs的自然衰减过程 | 模拟场地内苯、甲苯和萘达到理想修复效果所需的时间 |
[1] | 夏雨波, 杨悦锁, 杜新强, 等. 石油污染场地浅层地下水MNA原位修复潜能及微生物降解效益评估[J]. 吉林大学学报(地球科学版), 2011, 41(3):831-839. |
[2] | 王玉梅, 党俊芳. 油气田地区的地下水污染分析[J]. 地质灾害与环境保护, 2000, 11(3):271-273. |
[3] | 李在平, 陈鸿泉, 林辉山, 等. 自然衰减应用于石油碳氢化合物污染整治之探讨[J]. 台湾土壤及地下水环境保护协会简讯, 2005(17):3-9. |
[4] |
SABER A N, ZHANG H F, CERVANTES-AVILÉS P, et al. Emerging concerns of VOCs and SVOCs in coking wastewater treatment processes: distribution profile, emission characteristics, and health risk assessment[J]. Environmental Pollution, 2020, 265:114960.
DOI URL |
[5] | 张佰丰. 挥发性有机物(VOCs)的排放及治理技术综述[J]. 科技展望, 2016, 26(21):169. |
[6] | 陈小华, 杨青, 孙从军, 等. 典型地下水浅埋区加油站渗漏污染潜势分析及高潜势验证[J]. 环境科学研究, 2013, 26(11):1171-1177. |
[7] | SHRIVASTAVA M, LOU S, ZELEYUK A, et al. Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(6):1246-1251. |
[8] | PAN Y, ZENG X K, XU H X, et al. Assessing human health risk of groundwater DNAPL contamination by quantifying the model structure uncertainty[J]. Journal of Hydrology, 2020, 584:124690. |
[9] |
DONG W H, CAO Z P, LI M L, et al. Natural attenuation of naphthalene along the river-bank infiltration zone of the Liao River, Shenyang, China[J]. Journal of Contaminant Hydrology, 2019, 220:26-32.
DOI URL |
[10] | THORNTON S F, NICHOLLS H C G, ROLFE S A, et al. Biodegradation and fate of ethyl tert-butyl ether (ETBE) in soil and groundwater: a review[J]. Journal of Hazardous Materials, 2020, 391:122046. |
[11] |
PENG R H, FU X Y, ZHAO W, et al. Phytoremediation of phenanthrene by transgenic plants transformed with a naphthalene dioxygenase system from Pseudomonas[J]. Environmental Science & Technology, 2014, 48(21):12824-12832.
DOI URL |
[12] | 钟毅, 李广贺, 张旭, 等. 污染土壤石油生物降解与调控效应研究[J]. 地学前缘, 2006, 13(1):128-133. |
[13] |
FERGUSON D K, LI C, JIANG C Q, et al. Natural attenuation of spilled crude oil by cold-adapted soil bacterial communities at a decommissioned High Arctic oil well site[J]. Science of the Total Environment, 2020, 722:137258.
DOI URL |
[14] |
HARITASH A K, KAUSHIK C P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review[J]. Journal of Hazardous Materials, 2009, 169(1/2/3):1-15.
DOI URL |
[15] | 王浩, 陆垂裕, 秦大庸, 等. 地下水数值计算与应用研究进展综述[J]. 地学前缘, 2010, 17(6):1-12. |
[16] |
ADADEVOH J S T, OSTVAR S, WOOD B, et al. Modeling transport of chemotactic bacteria in granular media with distributed contaminant sources[J]. Environmental Science & Technology, 2017, 51(24):14192-14198.
DOI URL |
[17] |
PROMMER H, BARRY D A, ZHENG C. MODFLOW/MT3DMS-based reactive multicomponent transport modeling[J]. Groundwater, 2003, 41(2):247-257.
DOI URL |
[18] |
GAGANIS P, KJELDSEN P, BURGANOS V N. Modeling natural attenuation of multicomponent fuel mixtures in the vadose zone: use of field data and evaluation of biodegradation effects[J]. Vadose Zone Journal, 2004, 3(4):1262-1275.
DOI URL |
[19] |
SOOKHAK LARI K, JOHNSTON C D, RAYNER J L, et al. Field-scale multi-phase LNAPL remediation: validating a new computational framework against sequential field pilot trials[J]. Journal of Hazardous Materials, 2018, 345:87-96.
DOI URL |
[20] |
SOOKHAK LARI K, DAVIS G B, RAYNER J L, et al. Natural source zone depletion of LNAPL: a critical review supporting modelling approaches[J]. Water Research, 2019, 157:630-646.
DOI URL |
[21] | PRUESS K, BATTISTELLI A. TMVOC, a numerical simulator for three-phase non-isothermal flows of multicomponent hydrocarbon mixtures in saturated-unsaturated heterogeneous media[R]. Oak Ridge: Office of Scientific and Technical Information(OSTI), 2005. |
[22] |
SOOKHAK LARI K, JOHNSTON C D, RAYNER J L, et al. Field-scale multi-phase LNAPL remediation: validating a new computational framework against sequential field pilot trials[J]. Journal of Hazardous Materials, 2018, 345:87-96.
DOI URL |
[23] |
GIRAUD Q, GONÇALVÈS J, PARIS B, et al. 3D numerical modelling of a pulsed pumping process of a large DNAPL pool: in situ pilot-scale case study of hexachlorobutadiene in a keyed enclosure[J]. Journal of Contaminant Hydrology, 2018, 214:24-38.
DOI URL |
[24] |
BATTISTELLI A. Modeling multiphase organic spills in coastal sites with TMVOC V.2.0[J]. Vadose Zone Journal, 2008, 7(1):316-324.
DOI URL |
[25] | 王颖, 陈雷, 杨洋, 等. 基于TMVOC的地下水位波动带苯系物迁移转化模拟[J]. 环境科学研究, 2020, 33(3):634-642. |
[26] | PRUESS K. The TOUGH codes: a family of simulation tools for multiphase flow and transport processes in permeable media[J]. Vadose Zone Journal, 2004, 3(3):738-746. |
[27] | PRUESS K, OLDENBURG C M, MORIDIS G J. TOUGH2 user’s guide version 2[R]. Oak Ridge: Office of Scientific and Technical Information(OSTI), 1999. |
[28] |
FINSTERLE S, DOUGHTY C, KOWALSKY M B, et al. Advanced vadose zone simulations using TOUGH[J]. Vadose Zone Journal, 2008, 7(2):601-609.
DOI URL |
[29] |
LAMICHHANE S, BAL KRISHNA K C, SARUKKALIGE R . Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review[J]. Chemosphere, 2016, 148:336-353.
DOI URL |
[30] | REID R C, SHERWOOD T K, STREET R E. The properties of gases and liquids[J]. Physics Today, 1959, 12(4):38-40. |
[31] |
KARICKHOFF S W, BROWN D S, SCOTT T A. Sorption of hydrophobic pollutants on natural sediments[J]. Water Research, 1979, 13(3):241-248.
DOI URL |
[32] |
BATTISTELLI A. Modeling biodegradation of organic contaminants under multiphase conditions with TMVOCBio[J]. Vadose Zone Journal, 2004, 3(3):875-883.
DOI URL |
[33] | 杜建雯, 施小清, 徐红霞, 等. 基于iTOUGH2的生物降解模型全局敏感性时变分析[J]. 水文地质工程地质, 2020, 47(2):35-42. |
[34] |
XU T F. Incorporating aqueous reaction kinetics and biodegradation into TOUGHREACT: applying a multiregion model to hydrobiogeochemical transport of denitrification and sulfate reduction[J]. Vadose Zone Journal, 2008, 7(1):305-315.
DOI URL |
[35] | 赵琪, 苏小四, 左恩德, 等. 某石油烃污染场地包气带介质及含水介质TPH污染特征[J]. 科技导报, 2015, 33(7):25-29. |
[36] | 焦珣, 苏小四, 吕航. 某石油类污染场地地下水石油烃生物降解的地球化学证据[J]. 地质科学, 2012, 47(2):499-506. |
[37] | 彭建平, 邵爱军. 基于Matlab方法确定VG模型参数[J]. 水文地质工程地质, 2006, 33(6):25-28. |
[38] |
TRACY J C. A practical guide to groundwater and solute transport modeling[J]. Eos, Transactions American Geophysical Union, 1996, 77(44):434.
DOI URL |
[39] | American Society for Testing and Materials. Standard guide for risk-based corrective action applied at petroleum release sites: E1739(95)[S]. West Conshohocken: ASTM, 2015. |
[40] | 付建民, 赵振洋, 陈国明, 等. 液相管道流量与压力对小孔泄漏速率的影响[J]. 石油学报, 2016, 37(2):257-265. |
[41] |
DONG W H, ZHANG P, LIN X Y, et al. Natural attenuation of 1, 2, 4-trichlorobenzene in shallow aquifer at the Luhuagang’s landfill site, Kaifeng, China[J]. Science of the Total Environment, 2015, 505:216-222.
DOI URL |
[42] |
WANG J B, WANG C, HUANG Q Y, et al. Adsorption of PAHs on the sediments from the Yellow River Delta as a function of particle size and salinity[J]. Soil and Sediment Contamination: an International Journal, 2015, 24(2):103-115.
DOI URL |
[43] | 卫生部. 生活饮用水卫生标准[J]. 经济管理文摘, 2006(11):36-38. |
[1] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
[2] | GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities [J]. Earth Science Frontiers, 2022, 29(4): 468-479. |
[3] | WANG Yanxin, LI Junxia, XIE Xianjun. Genesis and occurrence of high iodine groundwater [J]. Earth Science Frontiers, 2022, 29(3): 1-10. |
[4] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
[5] | XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin [J]. Earth Science Frontiers, 2022, 29(3): 115-128. |
[6] | HOU Guohua, GAO Maosheng, YE Siyuan, ZHAO Guangming. Source of salt and the salinization process of shallow groundwater in the Yellow River Delta [J]. Earth Science Frontiers, 2022, 29(3): 145-154. |
[7] | LI Haiming, LI Mengdi, XIAO Han, LIU Xuena. Hydrochemical characteristics of shallow groundwater and carbon sequestration in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 167-178. |
[8] | LIANG Kaixuan, LIU Fei, ZHANG Li. Natural attenuation of perchlorate: A column experiment study [J]. Earth Science Frontiers, 2022, 29(3): 207-216. |
[9] | CUI Di, YANG Bing, GUO Huaming, LIAN Guoxi, SUN Juan. Adsorption and transport of uranium in porous sandstone media [J]. Earth Science Frontiers, 2022, 29(3): 217-226. |
[10] | LIU Xuena, LI Haiming, LI Mengdi, ZHANG Weihua, XIAO Han. Pollution characteristics and biodegradation mechanism of petroleum hydrocarbons in gas station groundwater in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 227-238. |
[11] | HE Baonan, HE Jiangtao, SUN Jichao, WANG Junjie, WEN Dongguang, JIN Jihong, PENG Cong, ZHANG Changyan. Comprehensive evaluation of regional groundwater pollution: Research status and suggestions [J]. Earth Science Frontiers, 2022, 29(3): 51-63. |
[12] | LIAO Fu, LUO Xin, XIE Yueqing, YI Lixin, LI Hailong, WANG Guangcai. Advances in 222Rn application in the study of groundwater-surface water interactions [J]. Earth Science Frontiers, 2022, 29(3): 76-87. |
[13] | LÜ Xiaoli, ZHENG Yuejun, HAN Zhantao, LI Haijun, YANG Mingnan, ZHANG Ruolin, LIU Dandan. Distribution characteristics and causes of arsenic in shallow groundwater in the Pearl River Delta during urbanization [J]. Earth Science Frontiers, 2022, 29(3): 88-98. |
[14] | SUN Ying, ZHOU Jinlong, YANG Fangyuan, JI Yuanyuan, ZENG Yanyan. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin [J]. Earth Science Frontiers, 2022, 29(3): 99-114. |
[15] | ZHAO Weidong, ZHAO Lu, GONG Jianshi, ZHOU Wenyi, QIAN Jiazhong. Pollution assessment and source apportionment of shallow groundwater in Suzhou mining area, China [J]. Earth Science Frontiers, 2021, 28(5): 1-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||