Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 1-10.DOI: 10.13745/j.esf.sf.2022.1.47
Previous Articles Next Articles
WANG Yanxin(), LI Junxia, XIE Xianjun
Received:
2022-01-10
Revised:
2022-02-02
Online:
2022-05-25
Published:
2022-04-28
CLC Number:
WANG Yanxin, LI Junxia, XIE Xianjun. Genesis and occurrence of high iodine groundwater[J]. Earth Science Frontiers, 2022, 29(3): 1-10.
[1] | 韩云波, 唐当柱. 我国全民补碘的现况[J]. 职业与健康, 2020, 36(8): 1142-1145, 1149. |
[2] | 史亮晶, 申元英. 不同水碘地区居民碘营养状况和甲状腺相关疾病的研究进展[J]. 疾病预防控制通报, 2019, 34(2): 93-96. |
[3] |
PEARCE E N, ANDERSSON M, ZIMMERMANN M B. Global iodine nutrition: where do we stand in 2013?[J]. Thyroid, 2013, 23(5): 523-528.
DOI URL |
[4] |
VOUTCHKOVA D D, ERNSTSEN V, HANSEN B, et al. Assessment of spatial variation in drinking water iodine and its implications for dietary intake: a new conceptual model for Denmark[J]. Science of the Total Environment, 2014, 493: 432-444.
DOI URL |
[5] |
VOUTCHKOVA D D, ERNSTSEN V, KRISTIANSEN S M, et al. Iodine in major Danish aquifers[J]. Environmental Earth Sciences, 2017, 76(13): 1-16.
DOI URL |
[6] |
VOUTCHKOVA D D, KRISTIANSEN S M, HANSEN B, et al. Iodine concentrations in Danish groundwater: historical data assessment 1933-2011[J]. Environmental Geochemistry and Health, 2014, 36(6): 1151-1164.
DOI URL |
[7] |
ÁLVAREZ F, REICH M, PÉREZ-FODICH A, et al. Sources, sinks and long-term cycling of iodine in the hyperarid Atacama continental margin[J]. Geochimica et Cosmochimica Acta, 2015, 161: 50-70.
DOI URL |
[8] |
SMEDLEY P L, NICOLLI H B, MACDONALD D M J, et al. Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina[J]. Applied Geochemistry, 2002, 17(3): 259-284.
DOI URL |
[9] |
HAMILTON S M, GRASBY S E, MCINTOSH J C, et al. The effect of long-term regional pumping on hydrochemistry and dissolved gas content in an undeveloped shale-gas-bearing aquifer in southwestern Ontario, Canada[J]. Hydrogeology Journal, 2015, 23(4): 719-739.
DOI URL |
[10] |
TOGO Y S, TAKAHASHI Y, AMANO Y, et al. Age and speciation of iodine in groundwater and mudstones of the Horonobe area, Hokkaido, Japan: implications for the origin and migration of iodine during basin evolution[J]. Geochimica et Cosmochimica Acta, 2016, 191: 165-186.
DOI URL |
[11] |
LV S M, XIE L J, XU D, et al. Effect of reducing iodine excess on children’s goiter prevalence in areas with high iodine in drinking water[J]. Endocrine, 2016, 52(2): 296-304.
DOI URL |
[12] | 孟凡刚, 申红梅, 刘守军, 等. 2015年全国水源性高碘地区监测结果分析[J]. 中华地方病学杂志, 2017, 36(9): 657-661. |
[13] |
TENG W P, SHAN Z Y, TENG X C, et al. Effect of iodine intake on thyroid diseases in China[J]. The New England Journal of Medicine, 2006, 354(26): 2783-2793.
DOI URL |
TENG W, SHAN Z, TENG X, et al. Effect of iodine intake on thyroid diseases in China[J]. New, 2006, 354(26): 2783-2793. | |
[14] |
WANG Y X, LI J X, MA T, et al. Gan. Genesis of geogenic contaminated groundwater: as, F and I[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(24): 1-39.
DOI URL |
[15] |
LI J X, WANG Y X, XIE X J, et al. Effects of water-sediment interaction and irrigation practices on iodine enrichment in shallow groundwater[J]. Journal of Hydrology, 2016, 543: 293-304.
DOI URL |
[16] |
LI J X, WANG Y X, GUO W, et al. Iodine mobilization in groundwater system at Datong Basin, China: evidence from hydrochemistry and fluorescence characteristics[J]. Science of the Total Environment, 2014, 468/469: 738-745.
DOI URL |
[17] | LI J X, QIAN K, YANG Y J, et al. Iodine speciation and its potential influence on iodine enrichment in groundwater from North China plain[J]. Earth and Planetary Science, 2017, 17: 312-315. |
[18] |
DUAN L, WANG W K, SUN Y B, et al. Iodine in groundwater of the Guanzhong Basin, China: sources and hydrogeochemical controls on its distribution[J]. Environmental Earth Sciences, 2016, 75(11): 1-11.
DOI URL |
[19] |
TANG Q, XU Q, ZHANG F C, et al. Geochemistry of iodine-rich groundwater in the Taiyuan Basin of central Shanxi Province, North China[J]. Journal of Geochemical Exploration, 2013, 135: 117-123.
DOI URL |
[20] |
WANG Y X, ZHENG C M, MA R. Review: safe and sustainable groundwater supply in China[J]. Hydrogeology Journal, 2018, 26(5): 1301-1324.
DOI URL |
[21] |
FUGE R, JOHNSON C C. Iodine and human health, the role of environmental geochemistry and diet, a review[J]. Applied Geochemistry, 2015, 63: 282-302.
DOI URL |
[22] |
HOU X, HANSEN V, ALDAHAN A, et al. A review on speciation of iodine-129 in the environmental and biological samples[J]. Analytica Chimica Acta, 2009, 632(2): 181-196.
DOI URL |
[23] | YEAGER C M, AMACHI S, GRANDBOIS R, et al. Microbial transformation of iodine: from radioisotopes to iodine deficiency[J]. Advances in Applied Microbiology, 2017, 101: 83-136. |
[24] |
FUGE R, JOHNSON C C. The geochemistry of iodine: a review[J]. Environmental Geochemistry Health, 1986, 8(2): 31-54.
DOI URL |
[25] | GILFEDDER B, LAI S, PETRI M, et al. Iodine speciation in rain, snow and aerosols and possible transfer of organically bound iodine species from aerosol to droplet phases[J]. Atmospheric Chemistry and Physics, 2008, 8: 7977-8008. |
[26] | LI J, WANG Y, XIE X, et al. Hydrogeochemistry of high iodine groundwater: a case study at the Datong Basin, northern China[J]. Environmental Science Processes & Impacts, 2013, 15(4): 848-859. |
[27] | GILFEDDER B S, PETRI M, BIESTER H. Iodine speciation in rain and snow: implications for the atmospheric iodine sink[J]. Journal of Geophysical Research Atmospheres, 2007, 112(D7): D07301. |
[28] |
KODAMA S, TAKAHASHI Y, OKUMURA K, et al. Speciation of iodine in solid environmental samples by iodine K-edge XANES: application to soils and ferromanganese oxides[J]. Science of the Total Environment, 2006, 363(1/2/3): 275-284.
DOI URL |
[29] |
SHIMAMOTO Y S, TAKAHASHI Y, TERADA Y. Formation of organic iodine supplied as iodide in a soil-water system in Chiba, Japan[J]. Environmental Science & Technology, 2011, 45(6): 2086-2092.
DOI URL |
[30] |
KAPLAN D I, DENHAM M E, ZHANG S, et al. Radioiodine biogeochemistry and prevalence in groundwater[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(20): 2287-2335.
DOI URL |
[31] |
TSUNOGAI S, SASE T. Formation of iodide-iodine in the ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1969, 16(5): 489-496.
DOI URL |
[32] |
COUNCELL T B, LANDA E R, LOVLEY D R. Microbial reduction of iodate[J]. Water, Air, and Soil Pollution, 1997, 100(1/2): 99-106.
DOI URL |
[33] | LI J X, WANG Y T, XUE X B, et al. Mechanistic insights into iodine enrichment in groundwater during the transformation of iron minerals in aquifer sediments[J]. Science of the Total Environment, 2020, 745: 140922. |
[34] |
HOROWITZ A, SUFLITA J M, TIEDJE J M. Reductive dehalogenations of halobenzoates by anaerobic lake sediment microorganisms[J]. Applied and Environmental Microbiology, 1983, 45(5): 1459-1465.
DOI URL |
[35] |
OBA Y, FUTAGAMI T, AMACHI S. Enrichment of a microbial consortium capable of reductive deiodination of 2,4,6-triiodophenol[J]. Journal of Bioscience and Bioengineering, 2014, 117(3): 310-317.
DOI URL |
[36] |
AMACHI S, MURAMATSU Y, AKIYAMA Y, et al. Isolation of iodide-oxidizing bacteria from iodide-rich natural gas brines and seawaters[J]. Microbial Ecology, 2005, 49(4): 547-557.
DOI URL |
[37] |
WAKAI S, ITO K, IINO T, et al. Corrosion of iron by iodide-oxidizing bacteria isolated from brine in an iodine production facility[J]. Microbial Ecology, 2014, 68(3): 519-527.
DOI URL |
[38] |
ZHAO D, LIM C P, MIYANAGA K, et al. Iodine from bacterial iodide oxidization by Roseovarius spp. inhibits the growth of other bacteria[J]. Applied Microbiology and Biotechnology, 2013, 97(5): 2173-2182.
DOI URL |
[39] |
SEKI M, OIKAWA J, TAGUCHI T, et al. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils[J]. Environmental Science & Technology, 2013, 47(1): 390-397.
DOI URL |
[40] |
WATTS R J, FINN D D, CUTLER L M, et al. Enhanced stability of hydrogen peroxide in the presence of subsurface solids[J]. Journal of Contaminant Hydrology, 2007, 91(3/4): 312-326.
DOI URL |
[41] |
LI H P, YEAGER C M, BRINKMEYER R, et al. Bacterial production of organic acids enhances H2O2-dependent iodide oxidation[J]. Environmental Science & Technology, 2012, 46(9): 4837-4844.
DOI URL |
[42] |
FOX P M, DAVIS J A, LUTHER G W III. The kinetics of iodide oxidation by the manganese oxide mineral birnessite[J]. Geochimica et Cosmochimica Acta, 2009, 73(10): 2850-2861.
DOI URL |
[43] |
ALLARD S, VON GUNTEN U, SAHLI E, et al. Oxidation of iodide and iodine on birnessite (δ-MnO2) in the pH range 4-8[J]. Water Research, 2009, 43(14): 3417-3426.
DOI URL |
[44] |
BOWLEY H E, YOUNG S D, ANDER E L, et al. Iodine binding to humic acid[J]. Chemosphere, 2016, 157: 208-214.
DOI URL |
[45] |
SCHLEGEL M L, REILLER P, MERCIER-BION F, et al. Molecular environment of iodine in naturally iodinated humic substances: insight from X-ray absorption spectroscopy[J]. Geochimica et Cosmochimica Acta, 2006, 70(22): 5536-5551.
DOI URL |
[46] |
XU C, CHEN H M, SUGIYAMA Y, et al. Novel molecular-level evidence of iodine binding to natural organic matter from Fourier transform ion cyclotron resonance mass spectrometry[J]. Science of the Total Environment, 2013, 449: 244-252.
DOI URL |
[47] |
STEINBERG S M, SCHMETT G T, KIMBLE G, et al. Immobilization of fission iodine by reaction with insoluble natural organic matter[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 277(1): 175-183.
DOI URL |
[48] |
STEINBERG S M, KIMBLE G M, SCHMETT G T, et al. Abiotic reaction of iodate with sphagnum peat and other natural organic matter[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 277(1): 185-191.
DOI URL |
[49] | LUTHER G W, WU J, CULLEN J B. Redox chemistry of iodine in seawater: frontier molecular orbital theory considerations[M]// HUANG C P, O'MELIA C R, MORGAN J J. Aquatic chemistry:interfacial and interspecies processes. Washington DC: American Chemical Society, 1995: 135-155. |
[50] |
SHETAYA W H, YOUNG S D, WATTS M J, et al. Iodine dynamics in soils[J]. Geochimica et Cosmochimica Acta, 2012, 77: 457-473.
DOI URL |
[51] |
DAI J L, ZHANG M, HU Q H, et al. Adsorption and desorption of iodine by various Chinese soils: II. iodide and iodate[J]. Geoderma, 2009, 153(1/2): 130-135.
DOI URL |
[52] |
DAI J L, ZHANG M, ZHU Y G. Adsorption and desorption of iodine by various Chinese soils : I. iodate[J]. Environment International, 2004, 30(4): 525-530.
DOI URL |
[53] | LIN J X, DAI L P, WANG Y, et al. Quaternary marine transgressions in Eastern China[J]. Journal of Palaeogeography, 2012, 1(2): 105-125. |
[54] |
GONG H L, PAN Y, ZHENG L Q, et al. Long-term groundwater storage changes and land subsidence development in the North China Plain (1971-2015)[J]. Hydrogeology Journal, 2018, 26(5): 1417-1427.
DOI URL |
[55] | 石建省, 郭娇, 孙彦敏, 等. 京津冀德平原区深层水开采与地面沉降关系空间分析[J]. 地质论评, 2006, 52(6): 804-809. |
[56] | 朱菊艳, 郭海朋, 李文鹏, 等. 华北平原地面沉降与深层地下水开采关系[J]. 南水北调与水利科技, 2014, 12(3): 165-169. |
[57] |
XUE X, LI J, XIE X, et al. Impacts of sediment compaction on iodine enrichment in deep aquifers of the North China Plain[J]. Water Research, 2019, 159: 480-489.
DOI URL |
[58] | RODRíGUEZ-LADO L, SUN G F, BERG M, et al. Groundwater arsenic contamination throughout China[J]. Science, 2013, 341(6148): 866-868. |
[59] |
PODGORSKI J, BERG M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850.
DOI URL |
[60] |
CAO H L, XIE X J, WANG Y X, et al. Predicting geogenic groundwater fluoride contamination throughout China[J]. Journal of Environmental Sciences, 2022, 115: 140-148.
DOI URL |
[61] | LIU H X, LI J X, CAO H L, et al. Prediction modeling of geogenic iodine contaminated groundwater throughout China[J]. Journal of Environmental Management, 2022, 303: 114249. |
[62] |
ZHANG E Y, WANG Y Y, QIAN Y, et al. Iodine in groundwater of the North China Plain: spatial patterns and hydrogeochemical processes of enrichment[J]. Journal of Geochemical Exploration, 2013, 135: 40-53.
DOI URL |
[63] | 徐芬, 马腾, 石柳, 等. 内蒙古河套平原高碘地下水的水文地球化学特征[J]. 水文地质工程地质, 2012, 39(5): 8-15. |
[64] |
SHIMAMOTO Y S, TAKAHASHI Y. Superiority of K-edge XANES over LIII-edge XANES in the speciation of iodine in natural soils[J]. Analytical Sciences, 2008, 24(3): 405-409.
DOI URL |
[65] | HU Q H, MORAN J E, BLACKWOOD V. Geochemical cycling of iodine species in soils[M]// PREEDY V R, BURROW G N, WATSON R. Comprehensive handbook of iodine. Amsterdam: Elsevier, 2009: 93-105. |
[66] |
YANG Y J, PENG Y E, CHANG Q, et al. Selective identification of organic iodine compounds using liquid chromatography- high resolution mass spectrometry[J]. Analytical Chemistry, 2016, 88: 1275-1280.
DOI URL |
[67] |
SUFLITA J M, HOROWITZ A, SHELTON D R, et al. Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds[J]. Science, 1982, 218(4577): 1115-1117.
DOI URL |
[1] | DENG Jun, WANG Chang-Meng, LI Wen-Chang, YANG Li-Jiang, WANG Qiang-Fei. The situation and enlightenment of the research of the tectonic evolution and metallogenesis in the Sanjiang Tethys. [J]. Earth Science Frontiers, 20140101, 21(1): 52-64. |
[2] | ZHU Ziyi, ZHOU Fei, WANG Yu, ZHOU Tong, HOU Zhaoliang, QIU Kunfeng. Machine learning-based approach for zircon classification and genesis determination [J]. Earth Science Frontiers, 2022, 29(5): 464-475. |
[3] | LIANG Guanghe. Continental drift process revealed by high precision seismic survey in the central basin of the South China Sea [J]. Earth Science Frontiers, 2022, 29(4): 293-306. |
[4] | ZHANG Qi, ZHAI Mingguo, WEI Chunjing, ZHOU Ligang, CHEN Wanfeng, JIAO Shoutao, WANG Yue, YUAN Fanglin. Innovative petrogenetic classification of granitoids: Perspective from metamorphic anatexis and big data [J]. Earth Science Frontiers, 2022, 29(4): 319-329. |
[5] | JIAO Xiaoqin, ZHANG Guanlong, NIU Huapeng, WANG Shengzhu, YU Hongzhou, XIONG Zhengrong, ZHOU Jian, GU Wenlong. Genesis of Carboniferous volcanic rocks in northeastern Junggar Basin: New insights into the Junggar Ocean closure [J]. Earth Science Frontiers, 2022, 29(4): 385-402. |
[6] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
[7] | GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities [J]. Earth Science Frontiers, 2022, 29(4): 468-479. |
[8] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
[9] | XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin [J]. Earth Science Frontiers, 2022, 29(3): 115-128. |
[10] | HOU Guohua, GAO Maosheng, YE Siyuan, ZHAO Guangming. Source of salt and the salinization process of shallow groundwater in the Yellow River Delta [J]. Earth Science Frontiers, 2022, 29(3): 145-154. |
[11] | LI Haiming, LI Mengdi, XIAO Han, LIU Xuena. Hydrochemical characteristics of shallow groundwater and carbon sequestration in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 167-178. |
[12] | CUI Di, YANG Bing, GUO Huaming, LIAN Guoxi, SUN Juan. Adsorption and transport of uranium in porous sandstone media [J]. Earth Science Frontiers, 2022, 29(3): 217-226. |
[13] | LIU Xuena, LI Haiming, LI Mengdi, ZHANG Weihua, XIAO Han. Pollution characteristics and biodegradation mechanism of petroleum hydrocarbons in gas station groundwater in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 227-238. |
[14] | ZHOU Changsong, ZOU Shengzhang, FENG Qiyan, ZHU Danni, LI Jun, WANG Jia, XIE Hao, DENG Rixin. Progress in hydrogeochemical study of Karst Critical Zone: A critical review [J]. Earth Science Frontiers, 2022, 29(3): 37-50. |
[15] | HE Baonan, HE Jiangtao, SUN Jichao, WANG Junjie, WEN Dongguang, JIN Jihong, PENG Cong, ZHANG Changyan. Comprehensive evaluation of regional groundwater pollution: Research status and suggestions [J]. Earth Science Frontiers, 2022, 29(3): 51-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||