Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 1-10.DOI: 10.13745/j.esf.sf.2022.1.47
Previous Articles Next Articles
WANG Yanxin(), LI Junxia, XIE Xianjun
Received:
2022-01-10
Revised:
2022-02-02
Online:
2022-05-25
Published:
2022-04-28
CLC Number:
WANG Yanxin, LI Junxia, XIE Xianjun. Genesis and occurrence of high iodine groundwater[J]. Earth Science Frontiers, 2022, 29(3): 1-10.
[1] | 韩云波, 唐当柱. 我国全民补碘的现况[J]. 职业与健康, 2020, 36(8): 1142-1145, 1149. |
[2] | 史亮晶, 申元英. 不同水碘地区居民碘营养状况和甲状腺相关疾病的研究进展[J]. 疾病预防控制通报, 2019, 34(2): 93-96. |
[3] |
PEARCE E N, ANDERSSON M, ZIMMERMANN M B. Global iodine nutrition: where do we stand in 2013?[J]. Thyroid, 2013, 23(5): 523-528.
DOI URL |
[4] |
VOUTCHKOVA D D, ERNSTSEN V, HANSEN B, et al. Assessment of spatial variation in drinking water iodine and its implications for dietary intake: a new conceptual model for Denmark[J]. Science of the Total Environment, 2014, 493: 432-444.
DOI URL |
[5] |
VOUTCHKOVA D D, ERNSTSEN V, KRISTIANSEN S M, et al. Iodine in major Danish aquifers[J]. Environmental Earth Sciences, 2017, 76(13): 1-16.
DOI URL |
[6] |
VOUTCHKOVA D D, KRISTIANSEN S M, HANSEN B, et al. Iodine concentrations in Danish groundwater: historical data assessment 1933-2011[J]. Environmental Geochemistry and Health, 2014, 36(6): 1151-1164.
DOI URL |
[7] |
ÁLVAREZ F, REICH M, PÉREZ-FODICH A, et al. Sources, sinks and long-term cycling of iodine in the hyperarid Atacama continental margin[J]. Geochimica et Cosmochimica Acta, 2015, 161: 50-70.
DOI URL |
[8] |
SMEDLEY P L, NICOLLI H B, MACDONALD D M J, et al. Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina[J]. Applied Geochemistry, 2002, 17(3): 259-284.
DOI URL |
[9] |
HAMILTON S M, GRASBY S E, MCINTOSH J C, et al. The effect of long-term regional pumping on hydrochemistry and dissolved gas content in an undeveloped shale-gas-bearing aquifer in southwestern Ontario, Canada[J]. Hydrogeology Journal, 2015, 23(4): 719-739.
DOI URL |
[10] |
TOGO Y S, TAKAHASHI Y, AMANO Y, et al. Age and speciation of iodine in groundwater and mudstones of the Horonobe area, Hokkaido, Japan: implications for the origin and migration of iodine during basin evolution[J]. Geochimica et Cosmochimica Acta, 2016, 191: 165-186.
DOI URL |
[11] |
LV S M, XIE L J, XU D, et al. Effect of reducing iodine excess on children’s goiter prevalence in areas with high iodine in drinking water[J]. Endocrine, 2016, 52(2): 296-304.
DOI URL |
[12] | 孟凡刚, 申红梅, 刘守军, 等. 2015年全国水源性高碘地区监测结果分析[J]. 中华地方病学杂志, 2017, 36(9): 657-661. |
[13] |
TENG W P, SHAN Z Y, TENG X C, et al. Effect of iodine intake on thyroid diseases in China[J]. The New England Journal of Medicine, 2006, 354(26): 2783-2793.
DOI URL |
TENG W, SHAN Z, TENG X, et al. Effect of iodine intake on thyroid diseases in China[J]. New, 2006, 354(26): 2783-2793. | |
[14] |
WANG Y X, LI J X, MA T, et al. Gan. Genesis of geogenic contaminated groundwater: as, F and I[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(24): 1-39.
DOI URL |
[15] |
LI J X, WANG Y X, XIE X J, et al. Effects of water-sediment interaction and irrigation practices on iodine enrichment in shallow groundwater[J]. Journal of Hydrology, 2016, 543: 293-304.
DOI URL |
[16] |
LI J X, WANG Y X, GUO W, et al. Iodine mobilization in groundwater system at Datong Basin, China: evidence from hydrochemistry and fluorescence characteristics[J]. Science of the Total Environment, 2014, 468/469: 738-745.
DOI URL |
[17] | LI J X, QIAN K, YANG Y J, et al. Iodine speciation and its potential influence on iodine enrichment in groundwater from North China plain[J]. Earth and Planetary Science, 2017, 17: 312-315. |
[18] |
DUAN L, WANG W K, SUN Y B, et al. Iodine in groundwater of the Guanzhong Basin, China: sources and hydrogeochemical controls on its distribution[J]. Environmental Earth Sciences, 2016, 75(11): 1-11.
DOI URL |
[19] |
TANG Q, XU Q, ZHANG F C, et al. Geochemistry of iodine-rich groundwater in the Taiyuan Basin of central Shanxi Province, North China[J]. Journal of Geochemical Exploration, 2013, 135: 117-123.
DOI URL |
[20] |
WANG Y X, ZHENG C M, MA R. Review: safe and sustainable groundwater supply in China[J]. Hydrogeology Journal, 2018, 26(5): 1301-1324.
DOI URL |
[21] |
FUGE R, JOHNSON C C. Iodine and human health, the role of environmental geochemistry and diet, a review[J]. Applied Geochemistry, 2015, 63: 282-302.
DOI URL |
[22] |
HOU X, HANSEN V, ALDAHAN A, et al. A review on speciation of iodine-129 in the environmental and biological samples[J]. Analytica Chimica Acta, 2009, 632(2): 181-196.
DOI URL |
[23] | YEAGER C M, AMACHI S, GRANDBOIS R, et al. Microbial transformation of iodine: from radioisotopes to iodine deficiency[J]. Advances in Applied Microbiology, 2017, 101: 83-136. |
[24] |
FUGE R, JOHNSON C C. The geochemistry of iodine: a review[J]. Environmental Geochemistry Health, 1986, 8(2): 31-54.
DOI URL |
[25] | GILFEDDER B, LAI S, PETRI M, et al. Iodine speciation in rain, snow and aerosols and possible transfer of organically bound iodine species from aerosol to droplet phases[J]. Atmospheric Chemistry and Physics, 2008, 8: 7977-8008. |
[26] | LI J, WANG Y, XIE X, et al. Hydrogeochemistry of high iodine groundwater: a case study at the Datong Basin, northern China[J]. Environmental Science Processes & Impacts, 2013, 15(4): 848-859. |
[27] | GILFEDDER B S, PETRI M, BIESTER H. Iodine speciation in rain and snow: implications for the atmospheric iodine sink[J]. Journal of Geophysical Research Atmospheres, 2007, 112(D7): D07301. |
[28] |
KODAMA S, TAKAHASHI Y, OKUMURA K, et al. Speciation of iodine in solid environmental samples by iodine K-edge XANES: application to soils and ferromanganese oxides[J]. Science of the Total Environment, 2006, 363(1/2/3): 275-284.
DOI URL |
[29] |
SHIMAMOTO Y S, TAKAHASHI Y, TERADA Y. Formation of organic iodine supplied as iodide in a soil-water system in Chiba, Japan[J]. Environmental Science & Technology, 2011, 45(6): 2086-2092.
DOI URL |
[30] |
KAPLAN D I, DENHAM M E, ZHANG S, et al. Radioiodine biogeochemistry and prevalence in groundwater[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(20): 2287-2335.
DOI URL |
[31] |
TSUNOGAI S, SASE T. Formation of iodide-iodine in the ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1969, 16(5): 489-496.
DOI URL |
[32] |
COUNCELL T B, LANDA E R, LOVLEY D R. Microbial reduction of iodate[J]. Water, Air, and Soil Pollution, 1997, 100(1/2): 99-106.
DOI URL |
[33] | LI J X, WANG Y T, XUE X B, et al. Mechanistic insights into iodine enrichment in groundwater during the transformation of iron minerals in aquifer sediments[J]. Science of the Total Environment, 2020, 745: 140922. |
[34] |
HOROWITZ A, SUFLITA J M, TIEDJE J M. Reductive dehalogenations of halobenzoates by anaerobic lake sediment microorganisms[J]. Applied and Environmental Microbiology, 1983, 45(5): 1459-1465.
DOI URL |
[35] |
OBA Y, FUTAGAMI T, AMACHI S. Enrichment of a microbial consortium capable of reductive deiodination of 2,4,6-triiodophenol[J]. Journal of Bioscience and Bioengineering, 2014, 117(3): 310-317.
DOI URL |
[36] |
AMACHI S, MURAMATSU Y, AKIYAMA Y, et al. Isolation of iodide-oxidizing bacteria from iodide-rich natural gas brines and seawaters[J]. Microbial Ecology, 2005, 49(4): 547-557.
DOI URL |
[37] |
WAKAI S, ITO K, IINO T, et al. Corrosion of iron by iodide-oxidizing bacteria isolated from brine in an iodine production facility[J]. Microbial Ecology, 2014, 68(3): 519-527.
DOI URL |
[38] |
ZHAO D, LIM C P, MIYANAGA K, et al. Iodine from bacterial iodide oxidization by Roseovarius spp. inhibits the growth of other bacteria[J]. Applied Microbiology and Biotechnology, 2013, 97(5): 2173-2182.
DOI URL |
[39] |
SEKI M, OIKAWA J, TAGUCHI T, et al. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils[J]. Environmental Science & Technology, 2013, 47(1): 390-397.
DOI URL |
[40] |
WATTS R J, FINN D D, CUTLER L M, et al. Enhanced stability of hydrogen peroxide in the presence of subsurface solids[J]. Journal of Contaminant Hydrology, 2007, 91(3/4): 312-326.
DOI URL |
[41] |
LI H P, YEAGER C M, BRINKMEYER R, et al. Bacterial production of organic acids enhances H2O2-dependent iodide oxidation[J]. Environmental Science & Technology, 2012, 46(9): 4837-4844.
DOI URL |
[42] |
FOX P M, DAVIS J A, LUTHER G W III. The kinetics of iodide oxidation by the manganese oxide mineral birnessite[J]. Geochimica et Cosmochimica Acta, 2009, 73(10): 2850-2861.
DOI URL |
[43] |
ALLARD S, VON GUNTEN U, SAHLI E, et al. Oxidation of iodide and iodine on birnessite (δ-MnO2) in the pH range 4-8[J]. Water Research, 2009, 43(14): 3417-3426.
DOI URL |
[44] |
BOWLEY H E, YOUNG S D, ANDER E L, et al. Iodine binding to humic acid[J]. Chemosphere, 2016, 157: 208-214.
DOI URL |
[45] |
SCHLEGEL M L, REILLER P, MERCIER-BION F, et al. Molecular environment of iodine in naturally iodinated humic substances: insight from X-ray absorption spectroscopy[J]. Geochimica et Cosmochimica Acta, 2006, 70(22): 5536-5551.
DOI URL |
[46] |
XU C, CHEN H M, SUGIYAMA Y, et al. Novel molecular-level evidence of iodine binding to natural organic matter from Fourier transform ion cyclotron resonance mass spectrometry[J]. Science of the Total Environment, 2013, 449: 244-252.
DOI URL |
[47] |
STEINBERG S M, SCHMETT G T, KIMBLE G, et al. Immobilization of fission iodine by reaction with insoluble natural organic matter[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 277(1): 175-183.
DOI URL |
[48] |
STEINBERG S M, KIMBLE G M, SCHMETT G T, et al. Abiotic reaction of iodate with sphagnum peat and other natural organic matter[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 277(1): 185-191.
DOI URL |
[49] | LUTHER G W, WU J, CULLEN J B. Redox chemistry of iodine in seawater: frontier molecular orbital theory considerations[M]// HUANG C P, O'MELIA C R, MORGAN J J. Aquatic chemistry:interfacial and interspecies processes. Washington DC: American Chemical Society, 1995: 135-155. |
[50] |
SHETAYA W H, YOUNG S D, WATTS M J, et al. Iodine dynamics in soils[J]. Geochimica et Cosmochimica Acta, 2012, 77: 457-473.
DOI URL |
[51] |
DAI J L, ZHANG M, HU Q H, et al. Adsorption and desorption of iodine by various Chinese soils: II. iodide and iodate[J]. Geoderma, 2009, 153(1/2): 130-135.
DOI URL |
[52] |
DAI J L, ZHANG M, ZHU Y G. Adsorption and desorption of iodine by various Chinese soils : I. iodate[J]. Environment International, 2004, 30(4): 525-530.
DOI URL |
[53] | LIN J X, DAI L P, WANG Y, et al. Quaternary marine transgressions in Eastern China[J]. Journal of Palaeogeography, 2012, 1(2): 105-125. |
[54] |
GONG H L, PAN Y, ZHENG L Q, et al. Long-term groundwater storage changes and land subsidence development in the North China Plain (1971-2015)[J]. Hydrogeology Journal, 2018, 26(5): 1417-1427.
DOI URL |
[55] | 石建省, 郭娇, 孙彦敏, 等. 京津冀德平原区深层水开采与地面沉降关系空间分析[J]. 地质论评, 2006, 52(6): 804-809. |
[56] | 朱菊艳, 郭海朋, 李文鹏, 等. 华北平原地面沉降与深层地下水开采关系[J]. 南水北调与水利科技, 2014, 12(3): 165-169. |
[57] |
XUE X, LI J, XIE X, et al. Impacts of sediment compaction on iodine enrichment in deep aquifers of the North China Plain[J]. Water Research, 2019, 159: 480-489.
DOI URL |
[58] | RODRíGUEZ-LADO L, SUN G F, BERG M, et al. Groundwater arsenic contamination throughout China[J]. Science, 2013, 341(6148): 866-868. |
[59] |
PODGORSKI J, BERG M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850.
DOI URL |
[60] |
CAO H L, XIE X J, WANG Y X, et al. Predicting geogenic groundwater fluoride contamination throughout China[J]. Journal of Environmental Sciences, 2022, 115: 140-148.
DOI URL |
[61] | LIU H X, LI J X, CAO H L, et al. Prediction modeling of geogenic iodine contaminated groundwater throughout China[J]. Journal of Environmental Management, 2022, 303: 114249. |
[62] |
ZHANG E Y, WANG Y Y, QIAN Y, et al. Iodine in groundwater of the North China Plain: spatial patterns and hydrogeochemical processes of enrichment[J]. Journal of Geochemical Exploration, 2013, 135: 40-53.
DOI URL |
[63] | 徐芬, 马腾, 石柳, 等. 内蒙古河套平原高碘地下水的水文地球化学特征[J]. 水文地质工程地质, 2012, 39(5): 8-15. |
[64] |
SHIMAMOTO Y S, TAKAHASHI Y. Superiority of K-edge XANES over LIII-edge XANES in the speciation of iodine in natural soils[J]. Analytical Sciences, 2008, 24(3): 405-409.
DOI URL |
[65] | HU Q H, MORAN J E, BLACKWOOD V. Geochemical cycling of iodine species in soils[M]// PREEDY V R, BURROW G N, WATSON R. Comprehensive handbook of iodine. Amsterdam: Elsevier, 2009: 93-105. |
[66] |
YANG Y J, PENG Y E, CHANG Q, et al. Selective identification of organic iodine compounds using liquid chromatography- high resolution mass spectrometry[J]. Analytical Chemistry, 2016, 88: 1275-1280.
DOI URL |
[67] |
SUFLITA J M, HOROWITZ A, SHELTON D R, et al. Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds[J]. Science, 1982, 218(4577): 1115-1117.
DOI URL |
[1] | DENG Jun, WANG Chang-Meng, LI Wen-Chang, YANG Li-Jiang, WANG Qiang-Fei. The situation and enlightenment of the research of the tectonic evolution and metallogenesis in the Sanjiang Tethys. [J]. Earth Science Frontiers, 20140101, 21(1): 52-64. |
[2] | WU Hao, YANG Chen, WU Yanwang, LI Cai, LIU Fei, LIN Zhaoxu. Petrogenesis of Late Cretaceous magmatic rocks in the Zhongcang area of northern Tibet and their implications for early uplift of the plateau [J]. Earth Science Frontiers, 2024, 31(6): 261-281. |
[3] | KANG Fengxin, ZHENG Tingting, SHI Meng, SUI Haibo, XU Meng, JIANG Haiyang, ZHONG Zhennan, QIN Peng, ZHANG Baojian, ZHAO Jichu, MA Zhemin, CUI Yang, LI Jialong, DUAN Xiaofei, BAI Tong, ZHANG Pingping, YAO Song, LIU Xiao, SHI Qipeng, WANG Xuepeng, YANG Haitao, CHEN Jingpeng, LIU Beibei. Occurrence rules and enrichment mechanism of geothermal resources in Shandong Province [J]. Earth Science Frontiers, 2024, 31(6): 67-94. |
[4] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[5] | ZHOU Yongzhang, XIAO Fan. Overview: A glimpse of the latest advances in artificial intelligence and big data geoscience research [J]. Earth Science Frontiers, 2024, 31(4): 1-6. |
[6] | MA Jianhua, LIU Jinfeng, ZHOU Yongzhang, ZHENG Yijun, LU Kefei, LIN Xingyu, WANG Hanyu, ZHANG Can. Online monitoring of CO2 using IoT for assessment of leakage risks associated with geological sequestration [J]. Earth Science Frontiers, 2024, 31(4): 139-146. |
[7] | WANG Hanyu, ZHOU Yongzhang, XU Yating, WANG Weixi, CAO Wei, LIU Yongqiang, HE Juxiang, LU Kefei. IoT monitoring and visualization of urban soil pollution based on microservice architecture [J]. Earth Science Frontiers, 2024, 31(4): 165-182. |
[8] | LIU Wei, ZHANG Hongrui, LUO Dike, JIA Pengfei, JIN Lijie, ZHOU Yonggang, LIANG Yunhan, WANG Zisheng, LI Chunjia. Petrogenesis of Paleoproterozoic granites in the Dondo area, northern Angola block: Geological response to the assembly of Columbia Supercontinent [J]. Earth Science Frontiers, 2024, 31(4): 237-257. |
[9] | WANG Chengbin, WANG Mingguo, WANG Bo, CHEN Jianguo, MA Xiaogang, JIANG Shu. Knowledge graph-infused quantitative mineral resource forecasting [J]. Earth Science Frontiers, 2024, 31(4): 26-36. |
[10] | ZHANG Huanbao, HE Haiyang, YANG Shijiao, LI Yalin, BI Wenjun, HAN Shili, GUO Qinpeng, DU Qing. Machine learning-based approach for adakitic rocks tectonic setting determination [J]. Earth Science Frontiers, 2024, 31(4): 417-428. |
[11] | WANG Yan, WANG Denghong, WANG Chenghui, LI Hua, LIU Jinyu, SUN He, GAO Xinyu, JIN Yanan, QIN Yan, HUANG Fan. Quantitative research on metallogenic regularity of gold deposits in China based on geological big data [J]. Earth Science Frontiers, 2024, 31(4): 438-455. |
[12] | WANG Kunyi, ZHOU Yongzhang. Machine-readable expression of unstructured geological information and intelligent prediction of mineralization associated anomaly areas in Pangxidong District, Guangdong, China [J]. Earth Science Frontiers, 2024, 31(4): 47-57. |
[13] | CAO Shengtao, HU Ruizhong, ZHOU Yongzhang, LIU Jianzhong, TAN Qinping, GAO Wei, ZHENG Lulin, ZHENG Lujing, SONG Weifang. Element enrichment pattern and prospecting method for Carlin-type gold deposits based on big data association rule algorithm [J]. Earth Science Frontiers, 2024, 31(4): 58-72. |
[14] | ZHU Biaobiao, CAO Wei, YU Pengpeng, ZHANG Qianlong, GUO Lanxuan, YUAN Guiqiang, HAN Feng, WANG Hanyu, ZHOU Yongzhang. Research hotspots and cutting-edge analysis of geological big data and artificial intelligence based on CiteSpace [J]. Earth Science Frontiers, 2024, 31(4): 73-86. |
[15] | CHEN Guochao, ZHANG Xiaofei, PEI Xianzhi, PEI Lei, LI Zuochen, LIU Chengjun, LI Ruibao. Geochemical characteristics, genesis and geological significance of Quedingbu-Luqu peridotites in the Xigaze area, middle Yarlung Zangbo suture zone [J]. Earth Science Frontiers, 2024, 31(3): 1-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||