Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (5): 449-459.DOI: 10.13745/j.esf.sf.2024.2.13
CHEN Fajia1,2(), XIAO Qiong2,3,*, HU Xiangyun1, GUO Yongli2, SUN Ping’an2, ZHANG Ning2
Received:
2023-04-24
Revised:
2023-06-15
Online:
2024-09-25
Published:
2024-10-11
CLC Number:
CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin[J]. Earth Science Frontiers, 2024, 31(5): 449-459.
采样时间 | 样点 名称 | T/℃ | pH | Ec/ (μS·cm-1) | 离子浓度/(mg·L-1) | δ13CDIC/ ‰ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | K+ | Na+ | Cl- | |||||||||
2021-04 | GC1 | 18.69 | 7.01 | 460.9 | 88.53 | 14.17 | 0.17 | 0.59 | 319.50 | 0.83 | 2.23 | 8.26 | -16.13 |
GC2 | 16.95 | 6.88 | 534.4 | 89.13 | 23.70 | 0.05 | 0.57 | 373.50 | 0.96 | 0.12 | 10.70 | -16.91 | |
GC3 | 20.03 | 6.89 | 494.9 | 98.06 | 8.95 | 0.88 | 2.09 | 306.00 | 3.96 | 19.32 | 13.59 | -13.15 | |
GC4 | 19.83 | 7.06 | 429.2 | 83.06 | 10.95 | 0.88 | 1.53 | 283.50 | 2.06 | 9.90 | 9.96 | -13.74 | |
GC5 | 20.03 | 7.07 | 431.4 | 83.20 | 10.96 | 0.86 | 1.44 | 281.25 | 2.04 | 9.88 | 9.78 | -13.81 | |
GC6 | 19.92 | 6.93 | 531.8 | 84.19 | 27.14 | 0.08 | 0.77 | 363.38 | 1.86 | 12.01 | 10.52 | -16.33 | |
GC7 | — | — | — | — | — | — | — | — | — | — | — | — | |
GC8 | 20.36 | 7.22 | 434.1 | 83.24 | 11.90 | 0.83 | 1.26 | 288.00 | 2.29 | 9.61 | 10.00 | -13.26 | |
2021-06 | GC1 | 19.23 | 7.16 | 415.8 | 74.82 | 11.07 | 0.48 | 0.51 | 270.58 | 1.01 | <0.05 | 13.43 | -15.90 |
GC2 | 22.63 | 7.03 | 546.7 | 86.05 | 21.6 | 0.21 | 0.70 | 353.84 | 1.58 | 7.66 | 13.86 | -16.67 | |
GC3 | 20.13 | 6.79 | 519.6 | 92.48 | 11.01 | 0.55 | 1.71 | 295.56 | 6.34 | 21.91 | 15.60 | -13.28 | |
GC4 | 19.96 | 6.86 | 439.6 | 78.36 | 10.32 | 0.56 | 1.09 | 266.42 | 5.04 | 12.4 | 14.68 | -14.15 | |
GC5 | 20.08 | 7.09 | 438.4 | 78.68 | 10.10 | 0.52 | 1.05 | 278.91 | 5.00 | <0.05 | 14.57 | -14.27 | |
GC6 | 21.38 | 6.80 | 576.2 | 82.29 | 27.33 | 0.07 | 0.82 | 362.16 | 1.60 | 12.13 | 13.63 | -16.57 | |
GC7 | 20.84 | 6.82 | 488.7 | 85.26 | 12.48 | 0.27 | 0.85 | 289.32 | 5.63 | 17.77 | 14.08 | -14.90 | |
GC8 | 21.01 | 7.00 | 437.0 | 76.62 | 9.42 | 0.44 | 0.94 | 253.93 | 5.20 | 11.67 | 14.53 | -13.75 | |
2021-09 | GC1 | 19.41 | 7.00 | 408.2 | 69.32 | 13.02 | 1.10 | 1.13 | 255.38 | 1.21 | <0.05 | 14.32 | -14.48 |
GC2 | 23.31 | 6.47 | 605.1 | 98.09 | 23.51 | 0.04 | 0.82 | 400.02 | 0.99 | 6.30 | 13.41 | -17.05 | |
GC3 | 20.38 | 6.59 | 531.1 | 95.85 | 11.22 | 0.68 | 2.20 | 306.23 | 6.43 | 20.94 | 17.44 | -13.01 | |
GC4 | 20.20 | 6.68 | 456.2 | 82.13 | 10.28 | 0.67 | 1.48 | 271.20 | 5.08 | 9.28 | 16.16 | -14.01 | |
GC5 | 20.05 | 6.80 | 456.2 | 77.90 | 8.82 | 0.93 | 1.24 | 248.60 | 5.16 | 12.22 | 16.38 | -14.20 | |
GC6 | — | — | — | — | — | — | — | — | — | — | — | — | |
GC7 | — | — | — | — | — | — | — | — | — | — | — | — | |
GC8 | 21.82 | 6.89 | 463.1 | 83.42 | 10.05 | 0.55 | 1.07 | 271.20 | 5.36 | 13.82 | 15.14 | -13.50 | |
2021-12 | GC1 | 18.98 | 7.05 | 376.0 | 73.24 | 8.82 | 0.14 | 0.60 | 258.69 | 2.62 | 5.08 | 8.74 | -15.92 |
GC2 | 18.15 | 6.92 | 511.1 | 88.89 | 20.36 | 0.09 | 0.21 | 367.82 | 1.16 | 1.06 | 8.23 | -16.77 | |
GC3 | 19.95 | 6.99 | 451.8 | 93.08 | 10.69 | 0.46 | 1.43 | 307.19 | 4.47 | 20.17 | 14.86 | -13.23 | |
GC4 | 19.26 | 7.09 | 409.7 | 79.69 | 8.71 | 0.65 | 1.09 | 262.73 | 3.39 | 14.77 | 13.14 | -13.92 | |
GC5 | 19.41 | 7.12 | 409.6 | 80.04 | 8.62 | 0.64 | 1.22 | 260.71 | 3.46 | 13.91 | 12.76 | -14.08 | |
GC6 | 20.69 | 6.94 | 562.8 | 88.11 | 28.46 | 0.12 | 0.78 | 383.99 | 2.85 | 17.70 | 9.48 | -16.42 | |
GC7 | 20.43 | 7.05 | 465.9 | 89.58 | 10.75 | 0.21 | 0.57 | 297.09 | 4.23 | 22.28 | 9.07 | -14.74 | |
GC8 | 20.11 | 7.30 | 411.7 | 80.15 | 8.98 | 0.52 | 1.15 | 265.76 | 3.29 | 12.88 | 12.12 | -13.45 |
Table 1 Hydrochemical characteristics of the GGW
采样时间 | 样点 名称 | T/℃ | pH | Ec/ (μS·cm-1) | 离子浓度/(mg·L-1) | δ13CDIC/ ‰ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | K+ | Na+ | Cl- | |||||||||
2021-04 | GC1 | 18.69 | 7.01 | 460.9 | 88.53 | 14.17 | 0.17 | 0.59 | 319.50 | 0.83 | 2.23 | 8.26 | -16.13 |
GC2 | 16.95 | 6.88 | 534.4 | 89.13 | 23.70 | 0.05 | 0.57 | 373.50 | 0.96 | 0.12 | 10.70 | -16.91 | |
GC3 | 20.03 | 6.89 | 494.9 | 98.06 | 8.95 | 0.88 | 2.09 | 306.00 | 3.96 | 19.32 | 13.59 | -13.15 | |
GC4 | 19.83 | 7.06 | 429.2 | 83.06 | 10.95 | 0.88 | 1.53 | 283.50 | 2.06 | 9.90 | 9.96 | -13.74 | |
GC5 | 20.03 | 7.07 | 431.4 | 83.20 | 10.96 | 0.86 | 1.44 | 281.25 | 2.04 | 9.88 | 9.78 | -13.81 | |
GC6 | 19.92 | 6.93 | 531.8 | 84.19 | 27.14 | 0.08 | 0.77 | 363.38 | 1.86 | 12.01 | 10.52 | -16.33 | |
GC7 | — | — | — | — | — | — | — | — | — | — | — | — | |
GC8 | 20.36 | 7.22 | 434.1 | 83.24 | 11.90 | 0.83 | 1.26 | 288.00 | 2.29 | 9.61 | 10.00 | -13.26 | |
2021-06 | GC1 | 19.23 | 7.16 | 415.8 | 74.82 | 11.07 | 0.48 | 0.51 | 270.58 | 1.01 | <0.05 | 13.43 | -15.90 |
GC2 | 22.63 | 7.03 | 546.7 | 86.05 | 21.6 | 0.21 | 0.70 | 353.84 | 1.58 | 7.66 | 13.86 | -16.67 | |
GC3 | 20.13 | 6.79 | 519.6 | 92.48 | 11.01 | 0.55 | 1.71 | 295.56 | 6.34 | 21.91 | 15.60 | -13.28 | |
GC4 | 19.96 | 6.86 | 439.6 | 78.36 | 10.32 | 0.56 | 1.09 | 266.42 | 5.04 | 12.4 | 14.68 | -14.15 | |
GC5 | 20.08 | 7.09 | 438.4 | 78.68 | 10.10 | 0.52 | 1.05 | 278.91 | 5.00 | <0.05 | 14.57 | -14.27 | |
GC6 | 21.38 | 6.80 | 576.2 | 82.29 | 27.33 | 0.07 | 0.82 | 362.16 | 1.60 | 12.13 | 13.63 | -16.57 | |
GC7 | 20.84 | 6.82 | 488.7 | 85.26 | 12.48 | 0.27 | 0.85 | 289.32 | 5.63 | 17.77 | 14.08 | -14.90 | |
GC8 | 21.01 | 7.00 | 437.0 | 76.62 | 9.42 | 0.44 | 0.94 | 253.93 | 5.20 | 11.67 | 14.53 | -13.75 | |
2021-09 | GC1 | 19.41 | 7.00 | 408.2 | 69.32 | 13.02 | 1.10 | 1.13 | 255.38 | 1.21 | <0.05 | 14.32 | -14.48 |
GC2 | 23.31 | 6.47 | 605.1 | 98.09 | 23.51 | 0.04 | 0.82 | 400.02 | 0.99 | 6.30 | 13.41 | -17.05 | |
GC3 | 20.38 | 6.59 | 531.1 | 95.85 | 11.22 | 0.68 | 2.20 | 306.23 | 6.43 | 20.94 | 17.44 | -13.01 | |
GC4 | 20.20 | 6.68 | 456.2 | 82.13 | 10.28 | 0.67 | 1.48 | 271.20 | 5.08 | 9.28 | 16.16 | -14.01 | |
GC5 | 20.05 | 6.80 | 456.2 | 77.90 | 8.82 | 0.93 | 1.24 | 248.60 | 5.16 | 12.22 | 16.38 | -14.20 | |
GC6 | — | — | — | — | — | — | — | — | — | — | — | — | |
GC7 | — | — | — | — | — | — | — | — | — | — | — | — | |
GC8 | 21.82 | 6.89 | 463.1 | 83.42 | 10.05 | 0.55 | 1.07 | 271.20 | 5.36 | 13.82 | 15.14 | -13.50 | |
2021-12 | GC1 | 18.98 | 7.05 | 376.0 | 73.24 | 8.82 | 0.14 | 0.60 | 258.69 | 2.62 | 5.08 | 8.74 | -15.92 |
GC2 | 18.15 | 6.92 | 511.1 | 88.89 | 20.36 | 0.09 | 0.21 | 367.82 | 1.16 | 1.06 | 8.23 | -16.77 | |
GC3 | 19.95 | 6.99 | 451.8 | 93.08 | 10.69 | 0.46 | 1.43 | 307.19 | 4.47 | 20.17 | 14.86 | -13.23 | |
GC4 | 19.26 | 7.09 | 409.7 | 79.69 | 8.71 | 0.65 | 1.09 | 262.73 | 3.39 | 14.77 | 13.14 | -13.92 | |
GC5 | 19.41 | 7.12 | 409.6 | 80.04 | 8.62 | 0.64 | 1.22 | 260.71 | 3.46 | 13.91 | 12.76 | -14.08 | |
GC6 | 20.69 | 6.94 | 562.8 | 88.11 | 28.46 | 0.12 | 0.78 | 383.99 | 2.85 | 17.70 | 9.48 | -16.42 | |
GC7 | 20.43 | 7.05 | 465.9 | 89.58 | 10.75 | 0.21 | 0.57 | 297.09 | 4.23 | 22.28 | 9.07 | -14.74 | |
GC8 | 20.11 | 7.30 | 411.7 | 80.15 | 8.98 | 0.52 | 1.15 | 265.76 | 3.29 | 12.88 | 12.12 | -13.45 |
Fig.5 Scatter diagrams showing the ionic equivalent relationship. (a) Equivalent rations of [Ca2++Mg2+] vs. [ HCO 3 -]. (b) Equivalent rations of [Ca2++Mg2+] vs. [ HCO 3 -+ NO 3 -+ SO 4 2 -].
时间 | (mg·L-1) | Ca2+浓度/ (mg·L-1) | Mg2+浓度/ (mg·L-1) | (mmol·L-1) | Q/ (m3·s-1) | F/ (g·s-1) | CSF(以CO2计)/ (t·a-1) | Cm(以CO2计)/ (t ·km-2·a-1) |
---|---|---|---|---|---|---|---|---|
春季 | 316.45 | 87.06 | 15.40 | 2.37 | 1.10 | 114.66 | 911.42 | 29.89 |
夏季 | 296.34 | 81.82 | 14.17 | 2.22 | 1.13 | 110.48 | 878.21 | 28.80 |
秋季 | 292.11 | 84.45 | 12.82 | 2.14 | 0.32 | 30.18 | 237.27 | 7.78 |
冬季 | 300.50 | 84.10 | 13.17 | 2.27 | 0.78 | 78.07 | 607.13 | 19.90 |
平均值 | 83.35 | 658.51 | 21.59 | |||||
总量 | 333.40 | 2 634.03 | 86.37 |
Table 2 Estimation of net CO2 consumption and inorganic carbon sinks of the GGW based on ion concentration
时间 | (mg·L-1) | Ca2+浓度/ (mg·L-1) | Mg2+浓度/ (mg·L-1) | (mmol·L-1) | Q/ (m3·s-1) | F/ (g·s-1) | CSF(以CO2计)/ (t·a-1) | Cm(以CO2计)/ (t ·km-2·a-1) |
---|---|---|---|---|---|---|---|---|
春季 | 316.45 | 87.06 | 15.40 | 2.37 | 1.10 | 114.66 | 911.42 | 29.89 |
夏季 | 296.34 | 81.82 | 14.17 | 2.22 | 1.13 | 110.48 | 878.21 | 28.80 |
秋季 | 292.11 | 84.45 | 12.82 | 2.14 | 0.32 | 30.18 | 237.27 | 7.78 |
冬季 | 300.50 | 84.10 | 13.17 | 2.27 | 0.78 | 78.07 | 607.13 | 19.90 |
平均值 | 83.35 | 658.51 | 21.59 | |||||
总量 | 333.40 | 2 634.03 | 86.37 |
时间 | [ (mg·L-1) | [CO2]/ (mg·L-1) | Q/ (m3·s-1) | CSF(以CO2计)/ (t·a-1) | Cm(以CO2计)/ (t·km-2·a-1) |
---|---|---|---|---|---|
春季 | 316.45 | 114.13 | 1.10 | 998.71 | 32.74 |
夏季 | 296.34 | 106.88 | 1.13 | 957.62 | 31.40 |
秋季 | 292.11 | 105.35 | 0.32 | 265.93 | 8.72 |
冬季 | 300.50 | 108.38 | 0.78 | 659.68 | 21.63 |
平均值 | 720.49 | 23.62 | |||
总量 | 2 881.94 | 94.49 |
Table 3 Estimation of inorganic carbon sink in the GGW based on hydrochemical-runoff method
时间 | [ (mg·L-1) | [CO2]/ (mg·L-1) | Q/ (m3·s-1) | CSF(以CO2计)/ (t·a-1) | Cm(以CO2计)/ (t·km-2·a-1) |
---|---|---|---|---|---|
春季 | 316.45 | 114.13 | 1.10 | 998.71 | 32.74 |
夏季 | 296.34 | 106.88 | 1.13 | 957.62 | 31.40 |
秋季 | 292.11 | 105.35 | 0.32 | 265.93 | 8.72 |
冬季 | 300.50 | 108.38 | 0.78 | 659.68 | 21.63 |
平均值 | 720.49 | 23.62 | |||
总量 | 2 881.94 | 94.49 |
数据时间 | (mg·L-1) | 年降水量/ mm | Q/ (m3·s-1) | Cm(以CO2计)/ (t·km-2·a-1) |
---|---|---|---|---|
2008年 | 256.37 | 1 913 | 0.45 | 45.25 |
2021年 | 301.35 | 2 222 | 0.83 | 86.37 |
Table 4 Data comparison between 2008 and 2021
数据时间 | (mg·L-1) | 年降水量/ mm | Q/ (m3·s-1) | Cm(以CO2计)/ (t·km-2·a-1) |
---|---|---|---|---|
2008年 | 256.37 | 1 913 | 0.45 | 45.25 |
2021年 | 301.35 | 2 222 | 0.83 | 86.37 |
[1] | MASSON-DELMOTTE V P, ZHAI P, PIRANI S L, et al. IPCC, 2021: summary for policymakers[R]// Climate change 2021: the physical science basis. Contribution of working group Ⅰ to the sixth assessment report of the intergovernmental panel on climate change. Cambridge and New York: Cambridge University Press, 2021: 3-32. |
[2] | 翟盘茂, 周佰铨, 陈阳, 等. 气候变化科学方面的几个最新认知[J]. 气候变化研究进展, 2021, 17(6): 629-635. |
[3] | 巢清尘, 张永香, 高翔, 等. 巴黎协定: 全球气候治理的新起点[J]. 气候变化研究进展, 2016, 12(1): 61-67. |
[4] | 章程, 肖琼, 孙平安, 等. 岩溶碳循环及碳汇效应研究与展望[J]. 地质科技通报, 2022(5): 190-198. |
[5] | 袁佳双, 张永香, 陈迎, 等. 认识减缓气候变化最新进展科学助力碳中和[J]. 气候变化研究进展, 2022, 18(5): 523-530. |
[6] | 李忠扬. 察尔汗盐湖的水化学特征[J]. 北京地质学院学报, 1959(1): 10-15, 67. |
[7] |
乐嘉祥, 王德春. 中国河流水化学特征[J]. 地理学报, 1963(1): 1-13.
DOI |
[8] | 李瑞, 肖琼. 广西里湖地下河水化学特征及其影响因素[J]. 广西科学, 2018, 25(5): 544-552. |
[9] | 黄锦彦, 李新, 吴丰, 等. 大别山西段罗山县水环境特征及其影响因素分析[J]. 中国地质调查, 2022, 9(6): 76-83. |
[10] | 马冰洁, 张全发, 李思悦. 中国跨境河流水化学特征及其控制因素[J]. 第四纪研究, 2023, 43(2): 425-438. |
[11] | PENG Y M, XIAO Q, XUE H L, et al. Comparison of groundwater hydrogeochemistry of karst areas in northern and southern China with emphasis on their performance in karst development[J]. Carbonates and Evaporites, 2022, 37(4): 76. |
[12] | 夏星辉, 张利田, 陈静生. 岩性和气候条件对长江水系河水主要离子化学的影响[J]. 北京大学学报(自然科学版), 2000, 36(2): 246-252. |
[13] |
玛尔胡拜·牙生, 马龙, 吉力力·阿不都外力, 等. 新疆天山西段夏季河流水化学特征及其影响因素研究[J]. 干旱区研究, 2021, 38(3): 600-609.
DOI |
[14] | 刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报, 2012, 57(2): 95-102. |
[15] | 霍俊伊, 于奭, 张清华, 等. 湘西峒河流域水化学特征及无机碳通量计算[J]. 水文地质工程地质, 2019, 46(4): 64-72. |
[16] | 原雅琼, 何师意, 于奭, 等. 柳江流域柳州断面水化学特征及无机碳汇通量分析[J]. 环境科学, 2015, 36(7): 2437-2445. |
[17] | 杜文越, 王琪, 蒲俊兵, 等. 漓江流域丰水期外源酸对岩溶化学风化碳汇的影响[J]. 地球学报, 2022, 43(4): 449-460. |
[18] | LIU Z H, DREYBRODT W, WANG H J. A new direction in effective accounting for the atmospheric CO2 budget: considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3/4): 162-172. |
[19] | 刘再华, DREYBRODT W, 刘洹. 大气CO2汇: 硅酸盐风化还是碳酸盐风化的贡献[J]. 第四纪研究, 2011, 31(3): 426-430. |
[20] | LUDWIG W, AMIOTTE-SUCHET P, MUNHOVEN G, et al. Atmospheric CO2 consumption by continental erosion: present-day controls and implications for the last glacial maximum[J]. Global and Planetary Change, 1998, 16: 107-120. |
[21] | LIU Z, ZHAO J. Contribution of carbonate rock weathering to the atmospheric CO2 sink[J]. Environmental Geology, 2000, 39(9): 1053-1058. |
[22] | YU S, DU W Y, SUN P G, et al. Study on the hydrochemistry character and carbon sink in the middle and upper reaches of the Xijiang River Basin, China[J]. Environmental Earth Sciences, 2015, 74(2): 997-1005. |
[23] | YUAN Y Q, HE S Y, YU S, et al. Hydrochemical characteristics and the dissolved inorganic carbon flux in Liuzhou section of Liujiang Basin[J]. Environmental Science, 2015, 36(7): 2437-2445. |
[24] | 裴建国, 章程, 张强, 等. 典型岩溶水系统碳汇通量估算[J]. 岩矿测试, 2012, 31(5): 884-888. |
[25] | SPENCE J, TELMER K. The role of sulfur in chemical weathering and atmospheric CO2 fluxes: evidence from major ions, δ13CDIC, and $\delta^{34} \mathrm{~S}_{\mathrm{SO}_{4}}$ in rivers of the Canadian Cordillera[J]. Geochimica et Cosmochimica Acta, 2005, 69(23): 5441-5458. |
[26] | PERRIN A S, PROBST A, PROBST J L. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: implications for weathering CO2 uptake at regional and global scales[J]. Geochimica et Cosmochimica Acta, 2008, 72(13): 3105-3123. |
[27] | ZHAO R Y, LIU Z Q, HUANG H, et al. Difference in the relationship between soil CO2 concentration and the karst-related carbon cycle under different land use types in Southwest China[J]. Carbonates and Evaporites, 2019, 34(4): 1569-1581. |
[28] | ZHAO R Y, LIU Z Q, DONG L L, et al. The fates of CO2 generated by H2SO4 and/or HNO3 during the dissolution of carbonate and their influences on the karst-related carbon cycle[J]. Journal of Hydrology, 2021, 597: 125746. |
[29] | LI S L, CALMELS D, HAN G L, et al. Sulfuric acid as an agent of carbonate weathering constrained by δ 13CDIC: examples from Southwest China[J]. Earth and Planetary Science Letters, 2008, 270(3/4): 189-199. |
[30] | 曹建华, 杨慧, 康志强. 区域碳酸盐岩溶蚀作用碳汇通量估算初探: 以珠江流域为例[J]. 科学通报, 2011, 56(26): 2181-2187. |
[31] | LIU Z H, DREYBRODT W, LIU H. Atmospheric CO2 sink: silicate weathering or carbonate weathering?[J]. Applied Geochemistry, 2011, 26: S292-S294. |
[32] | LIU Z H, DREYBRODT W. Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land[J]. Science Bulletin, 2015, 60(2): 182-191. |
[33] | IGLESIAS-RODRIGUEZ M D, HALLORAN P R, RICKABY R E M, et al. Phytoplankton calcification in a high-CO2 world[J]. Science, 2008, 320(5874): 336-340. |
[34] | YANG M X, LIU Z H, SUN H L, et al. Organic carbon source tracing and DIC fertilization effect in the Pearl River: insights from lipid biomarker and geochemical analysis[J]. Applied Geochemistry, 2016, 73: 132-141. |
[35] | CHEN B, YANG R, LIU Z H, et al. Coupled control of land uses and aquatic biological processes on the diurnal hydrochemical variations in the five ponds at the Shawan Karst Test Site, China: implications for the carbonate weathering-related carbon sink[J]. Chemical Geology, 2017, 456: 58-71. |
[36] |
HERNDL G J, REINTHALER T. Microbial control of the dark end of the biological pump[J]. Nature Geoscience, 2013, 6(9): 718-724.
DOI PMID |
[37] | 袁鹏, 刘冬. 矿物增效的生物泵: 基于矿物-微生物作用的水体CO2增汇策略[J]. 科学通报, 2022, 67(10): 924-932. |
[38] |
JIAO N Z, HERNDL G J, HANSELL D A, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8): 593-599.
DOI PMID |
[39] | LIU Z H, MACPHERSON G L, GROVES C, et al. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182: 42-49. |
[40] | 张陶. 典型岩溶区溪流中硝酸盐动态变化及其影响因素研究[D]. 重庆: 西南大学, 2015: 19-48. |
[41] | 赵然, 韩志伟, 申春华, 等. 典型岩溶地下河流域水体中硝酸盐源解析[J]. 环境科学, 2020, 41(6): 2664-2670. |
[42] | ZHANG C, WANG J L, PU J B, et al. Bicarbonate daily variations in a karst river: the carbon sink effect of subaquatic vegetation photosynthesis[J]. Acta Geologica Sinica (English Edition), 2012, 86(4): 973-979. |
[43] | 郭芳, 姜光辉, 袁道先. 南方岩溶区地下河主要离子浓度变化趋势分析[J]. 水资源保护, 2008, 24(1): 16-19, 30. |
[44] | 郭芳, 姜光辉, 康志强. 亚热带典型岩溶水系统的碳汇效应对比研究[J]. 中国岩溶, 2011, 30(4): 403-409. |
[45] | 申春华, 韩志伟, 郭永丽, 等. 典型岩溶地下河系统不同水体中硝酸盐时空分布规律及其影响因素分析[J]. 中国生态农业学报(中英文), 2019(8): 1255-1264. |
[46] | 郭芳. 官村地下河流域氮流失及其影响因素研究[D]. 重庆: 西南大学, 2008: 8-13. |
[47] | 韦小妹. 桂林毛村地下河流域水化学特征及其影响因素分析[D]. 桂林: 桂林理工大学, 2021: 15-28. |
[48] | MEYBECK M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. AmericanJournal of Science, 1987, 287(5): 401-428. |
[49] | PIPER A M. A graphic procedure in the geochemical interpretation of water-analyses[J]. Eos, Transactions American Geophysical Union, 1944, 25(6): 914-928. |
[50] |
GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
DOI PMID |
[51] | YUAN D X. Sensitivity of karst process to environmental change along the PEP II transect[J]. Quaternary International, 1997, 37: 105-113. |
[52] | 吴庆, 郭永丽, 肖琼, 等. 碳酸盐岩默默地献身于“双碳” 目标[J]. 中国矿业, 2022, 31(增刊1): 215-216, 243. |
[53] | 张兴波, 蒋勇军, 邱述兰, 等. 农业活动对岩溶作用碳汇的影响: 以重庆青木关地下河流域为例[J]. 地球科学进展, 2012, 27(4): 466-476. |
[54] | LIU J K, HAN G L. Major ions and \delta^{34} $\mathrm{~S}_{\mathrm{SO}_{4}}$ in Jiulongjiang River water: investigating the relationships between natural chemical weathering and human perturbations[J]. Science of the Total Environment, 2020, 724: 138208. |
[55] | LIU J K, HAN G L. Distributions and source identification of the major ions in Zhujiang River, Southwest China: examining the relationships between human perturbations, chemical weathering, water quality and health risk[J]. Exposure and Health, 2020, 12(4): 849-862. |
[56] | CLARK I D, FRITZ P. Environmental isotopes in hydrogeology[M]. Boca Raton: CRC Press/Lewis Publishers, 1997. |
[57] | CERLING T E, SOLOMON D K, QUADE J, et al. On the isotopic composition of carbon in soil carbon dioxide[J]. Geochimica et Cosmochimica Acta, 1991, 55(11): 3403-3405. |
[58] | DEINES P. Carbon isotope effects in carbonate systems[J]. Geochimica et Cosmochimica Acta, 2004, 68(12): 2659-2679. |
[59] | 李春, 曹秋婵, 付孜. 广西新一轮退耕还林现状及对策[J]. 中南林业调查规划, 2015, 34(4): 4-7. |
[60] | 莫桂燕. 气候与土地利用变化下的龙滩流域径流响应研究[D]. 南宁: 广西大学, 2018: 81-99. |
[61] | 李林立. 西南典型岩溶区生态环境对表层岩溶水调蓄功能的影响研究[D]. 重庆: 西南大学, 2009: 47-88. |
[62] | 张春来, 黄芬, 蒲俊兵, 等. 中国岩溶碳汇通量估算与人工干预增汇途径[J]. 中国地质调查, 2021, 8(4): 40-52. |
[1] | HUANG Siyu, PU Junbing, PAN Moucheng, LI Jianhong, ZHANG Tao. Effects of algae-derived organic matter source on sediment mineralization in the karst reservoir [J]. Earth Science Frontiers, 2024, 31(5): 387-396. |
[2] | YANG Huaju, LI Canfeng, YANG Kehao, ZHANG Xilu, WANG Chuanyu, WANG Xingrong, HE Xu, PENG Xuefeng, ZHANG Liankai. Biomass and distribution characteristics of dominant shrubs under varying degrees of rocky desertification in the karst region of southern Yunnan [J]. Earth Science Frontiers, 2024, 31(5): 440-448. |
[3] | YU Shi, PU Junbing, LIU Fan, YANG Hui. Effect of vegetation on carbon sequestration in karst systems-a critical review [J]. Earth Science Frontiers, 2023, 30(4): 418-428. |
[4] | CHEN Xuan, LIU Wanghan, BAO Dian, ZHANG Liping, CHEN Lixiong, YANG Min, ZHANG Juan, LI Yingju, LI Guangye, JIA Yufeng. Ordovician palaeokarst caves in the Tahe oilfield: Burial age of cave fills and its implication for hydrocarbon reservoirs [J]. Earth Science Frontiers, 2023, 30(4): 65-75. |
[5] | ZHOU Changsong, ZOU Shengzhang, FENG Qiyan, ZHU Danni, LI Jun, WANG Jia, XIE Hao, DENG Rixin. Progress in hydrogeochemical study of Karst Critical Zone: A critical review [J]. Earth Science Frontiers, 2022, 29(3): 37-50. |
[6] | DING Hu, LIU Cong-Jiang, LANG Bin-Chao, LIU Wen-Jing. Variations of dissolved carbon and δ13CDIC of surface water during rainfall events in a typical karst peak clusterdepression catchment, SW China. [J]. Earth Science Frontiers, 2011, 18(6): 182-189. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||