Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (5): 440-448.DOI: 10.13745/j.esf.sf.2024.2.11
Previous Articles Next Articles
YANG Huaju1(), LI Canfeng1, YANG Kehao1, ZHANG Xilu1,2, WANG Chuanyu1, WANG Xingrong1, HE Xu1, PENG Xuefeng1, ZHANG Liankai1,*(
)
Received:
2023-08-18
Revised:
2024-01-29
Online:
2024-09-25
Published:
2024-10-11
CLC Number:
YANG Huaju, LI Canfeng, YANG Kehao, ZHANG Xilu, WANG Chuanyu, WANG Xingrong, HE Xu, PENG Xuefeng, ZHANG Liankai. Biomass and distribution characteristics of dominant shrubs under varying degrees of rocky desertification in the karst region of southern Yunnan[J]. Earth Science Frontiers, 2024, 31(5): 440-448.
物种 Species | 科 Family | 属 Genus | 石漠化梯度 | 经度(E)/(°) | 纬度(N)/(°) | 海拔/m |
---|---|---|---|---|---|---|
华西小石积 Osteomeles schwerinae | 蔷薇科 Rosaceae | 小石积属 Osteomeles | 非石漠化 | 102.822 605 | 23.747 065 | 1 506 |
潜在石漠化 | 102.904 385 | 23.619 535 | 1 383 | |||
轻度石漠化 | 102.900 635 | 23.616 895 | 1 366 | |||
中度石漠化 | 102.935 310 | 23.639 170 | 1 442 | |||
重度石漠化 | 102.942 120 | 23.714 085 | 1 496 | |||
沙针 Osyris lanceolata | 檀香科 Santalaceae | 沙针属 Osyris | 非石漠化 | 102.822 545 | 23.747 010 | 1 508 |
潜在石漠化 | 102.900 660 | 23.616 395 | 1 385 | |||
轻度石漠化 | 102.900 460 | 23.616 725 | 1 376 | |||
中度石漠化 | 102.936 790 | 23.695 840 | 1 486 | |||
重度石漠化 | 102.942 125 | 23.714 125 | 1 489 | |||
车桑子 Dodonaea viscosa | 无患子科 Sapindaceae | 车桑子属 Dodonaea | 非石漠化 | 102.822 020 | 23.745 930 | 1 513 |
潜在石漠化 | 102.899 915 | 23.611 430 | 1 397 | |||
轻度石漠化 | 102.899 995 | 23.616 745 | 1 382 | |||
中度石漠化 | 102.941 560 | 23.693 235 | 1 446 | |||
重度石漠化 | 102.942 465 | 23.714 835 | 1 466 |
Table 1 Investigation information table of three shrubs
物种 Species | 科 Family | 属 Genus | 石漠化梯度 | 经度(E)/(°) | 纬度(N)/(°) | 海拔/m |
---|---|---|---|---|---|---|
华西小石积 Osteomeles schwerinae | 蔷薇科 Rosaceae | 小石积属 Osteomeles | 非石漠化 | 102.822 605 | 23.747 065 | 1 506 |
潜在石漠化 | 102.904 385 | 23.619 535 | 1 383 | |||
轻度石漠化 | 102.900 635 | 23.616 895 | 1 366 | |||
中度石漠化 | 102.935 310 | 23.639 170 | 1 442 | |||
重度石漠化 | 102.942 120 | 23.714 085 | 1 496 | |||
沙针 Osyris lanceolata | 檀香科 Santalaceae | 沙针属 Osyris | 非石漠化 | 102.822 545 | 23.747 010 | 1 508 |
潜在石漠化 | 102.900 660 | 23.616 395 | 1 385 | |||
轻度石漠化 | 102.900 460 | 23.616 725 | 1 376 | |||
中度石漠化 | 102.936 790 | 23.695 840 | 1 486 | |||
重度石漠化 | 102.942 125 | 23.714 125 | 1 489 | |||
车桑子 Dodonaea viscosa | 无患子科 Sapindaceae | 车桑子属 Dodonaea | 非石漠化 | 102.822 020 | 23.745 930 | 1 513 |
潜在石漠化 | 102.899 915 | 23.611 430 | 1 397 | |||
轻度石漠化 | 102.899 995 | 23.616 745 | 1 382 | |||
中度石漠化 | 102.941 560 | 23.693 235 | 1 446 | |||
重度石漠化 | 102.942 465 | 23.714 835 | 1 466 |
Fig.5 Correlation between variables of three shrubs and biomass of each organ. D, base diameter;H, plant height; C, crown; A, canopy area, A=π(C/2)2,cm2; V, canopy volume, V=A×H,cm3; D2H, product of base diameter square and plant height, D2H=D×D×H,mm2·cm.
物种 | 最佳方程 | 最佳变量 | 参数a | 参数b | R2 | p | 样本数n |
---|---|---|---|---|---|---|---|
华西小石积 Osteomeles schwerinae | YLeaf=abH | H | 33.959 | 0.752 | 0.530 | <0.001 | 25 |
YStem=a(D2H)b | D2H | 310.853 | 0.812 | 0.764 | <0.001 | 25 | |
YAboveground=a(D2H)b | D2H | 426.577 | 0.736 | 0.736 | <0.001 | 25 | |
YRoot=abA | A | 186.256 | 0.148 | 0.177 | 0.021 | 25 | |
YTotal=a(D2H)b | D2H | 677.669 | 0.604 | 0.632 | <0.001 | 25 | |
沙针 Osyris lanceolata | YLeaf=aDb | D | 158.578 | 0.639 | 0.337 | 0.001 | 25 |
YStem=aDb | D | 557.734 | 1.022 | 0.475 | <0.001 | 25 | |
YAboveground=aDb | D | 731.468 | 0.948 | 0.482 | <0.001 | 25 | |
YRoot=abD | D | 285.531 | 0.214 | 0.144 | 0.035 | 25 | |
YTotal=aDb | D | 1 090.11 | 0.797 | 0.412 | <0.001 | 25 | |
车桑子 Dodonaea viscosa | YLeaf=a+blnD | D | 126.16 | 243.544 | 0.527 | <0.001 | 25 |
YStem=a+bA | A | -117.092 | 519.028 | 0.771 | <0.001 | 25 | |
YAboveground=a+bA | A | 11.03 | 567.017 | 0.766 | <0.001 | 25 | |
YRoot=aDb | D | 184.018 | 1.464 | 0.712 | <0.001 | 25 | |
YTotal=a+bC | C | -1 751.826 | 2 080.701 | 0.781 | <0.001 | 25 |
Table 3 Best fitting models of three shrubs
物种 | 最佳方程 | 最佳变量 | 参数a | 参数b | R2 | p | 样本数n |
---|---|---|---|---|---|---|---|
华西小石积 Osteomeles schwerinae | YLeaf=abH | H | 33.959 | 0.752 | 0.530 | <0.001 | 25 |
YStem=a(D2H)b | D2H | 310.853 | 0.812 | 0.764 | <0.001 | 25 | |
YAboveground=a(D2H)b | D2H | 426.577 | 0.736 | 0.736 | <0.001 | 25 | |
YRoot=abA | A | 186.256 | 0.148 | 0.177 | 0.021 | 25 | |
YTotal=a(D2H)b | D2H | 677.669 | 0.604 | 0.632 | <0.001 | 25 | |
沙针 Osyris lanceolata | YLeaf=aDb | D | 158.578 | 0.639 | 0.337 | 0.001 | 25 |
YStem=aDb | D | 557.734 | 1.022 | 0.475 | <0.001 | 25 | |
YAboveground=aDb | D | 731.468 | 0.948 | 0.482 | <0.001 | 25 | |
YRoot=abD | D | 285.531 | 0.214 | 0.144 | 0.035 | 25 | |
YTotal=aDb | D | 1 090.11 | 0.797 | 0.412 | <0.001 | 25 | |
车桑子 Dodonaea viscosa | YLeaf=a+blnD | D | 126.16 | 243.544 | 0.527 | <0.001 | 25 |
YStem=a+bA | A | -117.092 | 519.028 | 0.771 | <0.001 | 25 | |
YAboveground=a+bA | A | 11.03 | 567.017 | 0.766 | <0.001 | 25 | |
YRoot=aDb | D | 184.018 | 1.464 | 0.712 | <0.001 | 25 | |
YTotal=a+bC | C | -1 751.826 | 2 080.701 | 0.781 | <0.001 | 25 |
[1] | ALI A, YAN E R. Relationships between biodiversity and carbon stocks in forest ecosystems: a systematic literature review[J]. Tropical Ecology, 2017, 58(1): 1-14. |
[2] | FANG T, RAO M D, CHEN Q T, et al. Different biomass allocation strategies of geophytes and non-geophytes along an altitude gradient[J]. Ecological Indicators, 2023, 146: 109805. |
[3] | BECHTOLD H A, INOUYE R S. Distribution of carbon and nitrogen in sagebrush steppe after six years of nitrogen addition and shrub removal[J]. Journal of Arid Environments, 2007, 71(1): 122-132. |
[4] | 曾伟生. 国内外灌木生物量模型研究综述[J]. 世界林业研究, 2015, 28(1): 31-36. |
[5] | FERRAZ A, SAATCHI S, MALLET C, et al. Lidar detection of individual tree size in tropical forests[J]. Remote Sensing of Environment, 2016, 183: 318-333. |
[6] |
JUCKER T, CASPERSEN J, CHAVE J, et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes[J]. Global Change Biology, 2017, 23(1): 177-190.
DOI PMID |
[7] |
POORTER H, SACK L. Pitfalls and possibilities in the analysis of biomass allocation patterns in plants[J]. Frontiers in Plant Science, 2012, 3: 259.
DOI PMID |
[8] |
詹瑾, 李玉霖, 韩丹, 等. 半干旱沙区3种优势固沙灌木生物量分配及其生态学意义[J]. 中国沙漠, 2020, 40(5): 149-157.
DOI |
[9] | 金文云. 猴耳环人工林地上部分生物量估测及其分配特征研究[D]. 北京: 中国林业科学研究院, 2018. |
[10] | FRESCHET G T, VIOLLE C, BOURGET M Y, et al. Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress[J]. The New Phytologist, 2018, 219(4): 1338-1352. |
[11] | 宋同清, 彭晚霞, 杜虎, 等. 中国西南喀斯特石漠化时空演变特征、发生机制与调控对策[J]. 生态学报, 2014, 34(18): 5328-5341. |
[12] | 赵丽苹. 基于MODIS数据的喀斯特地区石漠化时空演变特征研究[D]. 北京: 中国地质大学(北京), 2015: 68. |
[13] | 李艳琼. 湘西南石漠化灌丛生物量及养分循环[D]. 长沙: 中南林业科技大学, 2016. |
[14] | 朱守谦, 魏鲁明, 陈正仁, 等. 茂兰喀斯特森林生物量构成初步研究[J]. 植物生态学报, 1995, 19(4): 358-367. |
[15] | 刘之洲, 宁晨, 闫文德, 等. 喀斯特地区3种针叶林林分生物量及碳储量研究[J]. 中南林业科技大学学报, 2017, 37(10): 105-111. |
[16] | 汪珍川, 杜虎, 宋同清, 等. 广西主要树种(组)异速生长模型及森林生物量特征[J]. 生态学报, 2015, 35(13): 4462-4472. |
[17] | 赵磊磊, 雷艳娇, 陈俊松, 等. 云南红河州石漠化演变过程及其综合治理成效[J]. 中国岩溶, 2019, 38(5): 704-712. |
[18] | 曾伟生, 唐守正. 立木生物量方程的优度评价和精度分析[J]. 林业科学, 2011, 47(11): 106-113. |
[19] | 曾嘉庆, 祝佳杏, 王微, 等. 重庆喀斯特地区不同干扰生境中山麻杆种群的结构与格局[J]. 生态学杂志, 2016, 35(9): 2313-2320. |
[20] | 肖林颖, 吴秀芹, 周金星, 等. 岩溶断陷盆地典型县域石漠化治理综合效益评价: 以云南建水县为例[J]. 地球学报, 2021, 42(3): 444-450. |
[21] | 盛茂银, 刘洋, 熊康宁. 中国南方喀斯特石漠化演替过程中土壤理化性质的响应[J]. 生态学报, 2013, 33(19): 6303-6313. |
[22] | 李周, 高凯敏, 刘锦春, 等. 西南喀斯特地区两种草本对干湿交替和N添加的生长响应[J]. 生态学报, 2016, 36(11): 3372-3380. |
[23] | 程杰, 刘永辉, 田瑛. 宁夏半干旱区柠条锦鸡儿灌木林生长特征[J]. 水土保持通报, 2016, 36(1): 332-336. |
[24] | 潘睿炽, 王小菁, 李娘辉, 等. 植物生理学[M]. 北京: 高等教育出版社, 2017. |
[25] | 李莹, 曾晓琳, 游明鸿, 等. 5种川西北沙化地草本植物生态适应策略的差异性[J]. 草业科学, 2016, 33(5): 843-850. |
[26] | YANG B J, XUE W Y, YU S C, et al. Effects of stand age on biomass allocation and allometry of quercus acutissima in the central Loess Plateau of China[J]. Forests, 2019, 10-41. |
[27] |
严月, 朱建军, 张彬, 等. 草原生态系统植物地下生物量分配及对全球变化的响应[J]. 植物生态学报, 2017, 41(5): 585-596.
DOI |
[28] | 高玉尧, 刘洋, 许文天, 等. 不同施肥处理对橡胶草生物量积累与分配变化及相关性分析[J]. 分子植物育种, 2018, 16(9): 2979-2986. |
[29] | HILBERT D W, CANADELL J. Biomass partitioning and resource allocation of plants from Mediterranean-type ecosystems: possible responses to elevated atmospheric CO2[M]//MORENO J M, OECHEL W C. Global change and mediterranean-type ecosystems. New York: Springer, 1995: 76-101. |
[30] | 谢宗强, 王杨, 唐志尧, 等. 中国常见灌木生物量模型手册[M]. 北京: 科学出版社, 2018. |
[31] |
罗永开, 方精云, 胡会峰. 山西芦芽山14种常见灌木生物量模型及生物量分配[J]. 植物生态学报, 2017, 41(1): 115-125.
DOI |
[32] | LUSK C H. Leaf area and growth of juvenile temperate evergreens in low light: species of contrasting shade tolerance change rank during ontogeny[J]. Functional Ecology, 2004, 18(6): 820-828. |
[33] | MA S H, HE F, TIAN D, et al. Variations and determinants of carbon content in plants: a global synthesis[J]. Biogeosciences Discussions, 2018, 15, 693-702. |
[34] | CHEN R F, RAN J Z, HUANG H, et al. Life history strategies drive size‐dependent biomass allocation patterns of dryland ephemerals and shrubs[J]. Ecosphere, 2019, 10(4): e02709. |
[35] | 蒋忠诚, 罗为群, 童立强, 等. 21世纪西南岩溶石漠化演变特点及影响因素[J]. 中国岩溶, 2016, 35(5): 461-468. |
[1] | MA Hailong, YANG Debin, WANG Zhen, ZHANG Juan, WU Bo, ZHANG Shiliang, YUAN Feiyu. Coupling relationship between strike-slip fault and paleokarst in Tahe Oilfield and its influence on the development of Ordovician reservoirs [J]. Earth Science Frontiers, 2024, 31(5): 227-246. |
[2] | CAO Jianhua, YANG Hui, HUANG Fen, ZHANG Chunlai, ZHANG Liankai, ZHU Tongbin, ZHOU Mengxia, YUAN Daoxian. The principle, process, and measurement of karst carbon sink [J]. Earth Science Frontiers, 2024, 31(5): 358-376. |
[3] | ZHANG Chunlai, YANG Hui, HUANG Fen, QIU Cheng, ZHU Tongbin. Hydrochemical characteristics and karst carbon sink effect of border polje river in subtropical monsoon region: A case study of the Qingbo River in Mashan County, Guangxi [J]. Earth Science Frontiers, 2024, 31(5): 377-386. |
[4] | HUANG Siyu, PU Junbing, PAN Moucheng, LI Jianhong, ZHANG Tao. Effects of algae-derived organic matter source on sediment mineralization in the karst reservoir [J]. Earth Science Frontiers, 2024, 31(5): 387-396. |
[5] | WU Qing, HUANG Fen, GUO Yongli, XIAO Qiong, SUN Ping’an, YANG Hui, BAI Bing. Geochemical characteristics of trace elements and their implications in the small karst basin, Southwest China [J]. Earth Science Frontiers, 2024, 31(5): 397-408. |
[6] | SUN Caiyun, ZHENG Bingqing, LI Jun, FU Hongming, SUN Rongqing, LIU Honghao, LIAO Zuying, JIANG Hongsheng, WU Zhenbin, XIA Shibin, WANG Pei. Study on the effect of submerged plants on the stability of karst carbon sink [J]. Earth Science Frontiers, 2024, 31(5): 430-439. |
[7] | LÜ Lianghua, WANG Shui. Quantitative analysis of scaling tendency of karstic geothermal water coupled with CO2 degassing [J]. Earth Science Frontiers, 2024, 31(3): 402-409. |
[8] | JIN Yanlin, ZHANG Huitao, LIU Yao, JI Yuwen. Reservoir development characteristics and karst models for the “strata bound” karst reservoirs in the Tahe Oilfield [J]. Earth Science Frontiers, 2023, 30(6): 125-134. |
[9] | LU Pengda, LI Zeqi, TIAN Tengzhen, WU Juan, SUN Wei, QIAO Zhanfeng, WANG Yongsheng, LIU Shugen, DENG Bin. The botryoidal-lace texture and its role in dolomite reservoir control in the 2nd member, Sinian Dengying Formation in Sichuan Basin [J]. Earth Science Frontiers, 2023, 30(6): 14-31. |
[10] | LI Bisong, JIN Mindong, ZHU Xiang, DAI Lincheng, YANG Yi. Reservoir diagenesis and porosity evolution of the 4th member of the Dengying Formation in northeastern Sichuan Basin [J]. Earth Science Frontiers, 2023, 30(6): 32-44. |
[11] | YOU Donghua, PENG Shoutao, HE Zhiliang, LIU Yongli, HAN Jun, XIAO Chongyang, LI Yingtao. Scope and mechanism of deep fluid circulation in karst systems, northern Awati-Manjiaer transition zone, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 69-79. |
[12] | YU Shi, PU Junbing, LIU Fan, YANG Hui. Effect of vegetation on carbon sequestration in karst systems-a critical review [J]. Earth Science Frontiers, 2023, 30(4): 418-428. |
[13] | YANG Debin, LU Xinbian, GAO Zhiqian, CAO Fei, WANG Yan, BAO Dian, LI Shengqing. Hydrocarbon accumulation and reservoir characteristics of deep marine fault-karst reservoirs in northern Tarim Basin [J]. Earth Science Frontiers, 2023, 30(4): 43-50. |
[14] | CHEN Xuan, LIU Wanghan, BAO Dian, ZHANG Liping, CHEN Lixiong, YANG Min, ZHANG Juan, LI Yingju, LI Guangye, JIA Yufeng. Ordovician palaeokarst caves in the Tahe oilfield: Burial age of cave fills and its implication for hydrocarbon reservoirs [J]. Earth Science Frontiers, 2023, 30(4): 65-75. |
[15] | JIANG Xingchao, XU Jing, LI Ruyi, JIA Yifan, YANG Pan, LUO Jie. Soil chromium in Shantou City, Guangdong Province: Spatial distribution characteristics, source apportionment and influencing factors [J]. Earth Science Frontiers, 2023, 30(2): 514-525. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||