[1] |
LIU Z H, DREYBRODT W, WANG H J. A new direction in effective accounting for the atmospheric CO2 budget: considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3/4): 162-172.
|
[2] |
李汇文, 王世杰, 白晓永, 等. 中国石灰岩化学风化碳汇时空演变特征分析[J]. 中国科学: 地球科学, 2019, 49(6): 986-1003.
|
[3] |
徐森, 李思亮, 钟君, 等. 赤水河流域水化学特征与岩石风化机制[J]. 生态学杂志, 2018, 37(3): 667-678.
|
[4] |
郎赟超, 刘丛强, 赵志琦, 等. 贵阳市地表水地下水化学组成: 喀斯特水文系统水-岩反应及污染特征[J]. 水科学进展, 2005, 16(6): 826-832.
|
[5] |
孙厚云, 王晨昇, 卫晓锋, 等. 大兴安岭南段巴音高勒流域水化学特征及驱动因子[J]. 环境化学, 2020, 39(9): 2507-2519.
|
[6] |
周长松, 邹胜章, 冯启言, 等. 岩溶关键带水文地球化学研究进展[J]. 地学前缘, 2022, 29(3): 37-50.
DOI
|
[7] |
郭永丽, 吴佩艳, 黄芬, 等. 环境同位素示踪的毛村地下河流域水流特征[J]. 中国岩溶, 2022, 41(4): 577-587.
|
[8] |
邢立亭, 周娟, 宋广增, 等. 济南四大泉群泉水补给来源混合比探讨[J]. 地学前缘, 2018, 25(3): 260-272.
DOI
|
[9] |
袁道先. 岩溶学词典[M]. 北京: 地质出版社, 1988: 55.
|
[10] |
唐伟. 外源水对碳酸盐岩溶蚀速率与碳汇效应影响研究[D]. 重庆: 西南大学, 2011.
|
[11] |
单晓静. 济南市典型岩溶泉域碳循环过程及碳汇效应研究[D]. 青岛: 青岛大学, 2018.
|
[12] |
肖成芳, 魏兴萍, 张爱国, 等. 重庆市岩溶泉发育特征与流量控制机制分析[J]. 地理科学进展, 2022, 41(4): 693-706.
DOI
|
[13] |
张春来, 黄芬, 蒲俊兵, 等. 中国岩溶碳汇通量估算与人工干预增汇途径[J]. 中国地质调查, 2021, 8(4): 40-52.
|
[14] |
熊康宁, 秦启万, 张汉刚, 等. 盘县十里坪喀斯特地貌的形态结构与洞穴形成过程[J]. 人类学学报, 1997, 16(3): 247-253.
|
[15] |
杨明德. 岩溶峡谷区溶洞发育特征及水动力条件[J]. 贵州地质, 1998, 15(1): 17-25.
|
[16] |
PONTA G M L, LIMBERT H, LIMBERT D, et al. Geological, mineralogical, and hydrogeological analysis of karst development in Phong Nha-Kè Bàng/Tu Lan, Vietnam, and Hin Nam No, Laos[J]. Carbonates and Evaporites, 2022, 37(4): 37-73.
|
[17] |
SHAN X J, LIU P Y, ZHANG L K, et al. Hydrochemical characteristics and karst carbon sink estimation under the influence of allogenic water[J]. Carbonates and Evaporites, 2019, 34(4): 1855-1863.
|
[18] |
刘朋雨, 张连凯, 黄奇波, 等. 外源水和外源酸对万华岩地下河系统岩溶碳汇效应的影响[J]. 中国岩溶, 2020, 39(1): 17-23.
|
[19] |
何若雪, 孙平安, 何师意, 等. 漓江流域中下游无机碳通量动态变化及影响因素[J]. 中国岩溶, 2017, 36(1): 109-118.
|
[20] |
张春来. 岩溶坡立谷土壤中重金属元素迁移特征及控制因素研究[D]. 武汉: 中国地质大学(武汉), 2022.
|
[21] |
韩翠红, 孙海龙, 魏榆, 等. 喀斯特筑坝河流中生物碳泵效应的碳施肥及对水化学时空变化的影响: 以贵州平寨水库及红枫湖为例[J]. 湖泊科学, 2020, 32(6): 1683-1694.
|
[22] |
GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30.
|
[23] |
GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
DOI
PMID
|
[24] |
张春潮, 侯新伟, 李向全, 等. 三姑泉域岩溶地下水水化学特征及形成演化机制[J]. 水文地质工程地质, 2021, 48(3): 62-71.
|
[25] |
李晓波, 李杭, 杨宝萍, 等. 泰安市旧县水源地水化学特征及成因分析[J]. 环境工程技术学报, 2022, 12(6): 2002-2010.
|
[26] |
WANG Y X, GUO Q, SU C, et al. Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China[J]. Journal of Hydrology, 2006, 328(3/4): 592-603.
|
[27] |
刘再华. 外源水对灰岩和白云岩的侵蚀速率野外试验研究: 以桂林尧山为例[J]. 中国岩溶, 2000, 19(1): 1-4.
|
[28] |
张福初, 吴彬, 高凡, 等. 奎屯河流域平原区地下水水化学特征及成因分析[J]. 环境科学研究, 2021, 34(7): 1663-1671.
|
[29] |
聂发运. 新田县岩溶地下水水文地球化学与同位素特征[D]. 北京: 中国地质大学(北京), 2018.
|
[30] |
MOORE P J, MARTIN J B, SCREATON E J, et al. Conduit enlargement in an eogenetic karst aquifer[J]. Journal of Hydrology, 2010, 393(3/4): 143-155.
|