Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (4): 184-193.DOI: 10.13745/j.esf.sf.2021.5.28
Previous Articles Next Articles
WANG Wenxiang1,2(), LI Wenpeng3, CAI Yuemei1,2, AN Yonghui2, SHAO Xinmin2, WU Xi2, YIN Dechao2
Received:
2020-07-30
Revised:
2021-03-19
Online:
2021-07-25
Published:
2021-07-25
CLC Number:
WANG Wenxiang, LI Wenpeng, CAI Yuemei, AN Yonghui, SHAO Xinmin, WU Xi, YIN Dechao. The hydrogeochemical evolution of groundwater in the middle reaches of the Heihe River Basin[J]. Earth Science Frontiers, 2021, 28(4): 184-193.
样品 编号 | 采样 深度/m | ρB/(mg·L-1) | δ18O/‰ | δD/‰ | 水化学类型 | 分组 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | Na+ | K+ | | Cl- | | TDS | ||||||
HG14 | 260 | 52.5 | 23.6 | 15.3 | 2.5 | 181.8 | 29.8 | 68.7 | 374.2 | -8.9 | -57.0 | | 黑-1 |
ST165 | 280 | 36.1 | 19.4 | 13.6 | 2.2 | 170.8 | 5.0 | 50.0 | 224.8 | — | — | | 黑-1 |
HG13 | 260 | 50.9 | 22.6 | 30.2 | 2.2 | 196.5 | 27.6 | 85.5 | 415.5 | -9.2 | -58.0 | | 黑-1 |
HQ10 | 112 | 68.1 | 24.3 | 18.4 | 2.2 | 173.3 | 9.2 | 142.2 | 362.2 | -9.2 | -59.4 | | 黑-1 |
SF012 | 60 | 57.7 | 25.8 | 18.0 | 2.3 | 207.5 | 9.2 | 98.0 | 337.5 | -8.0 | -47.4 | | 黑-2 |
SF060 | 120 | 48.1 | 70.5 | 25.9 | 3.3 | 341.7 | 24.8 | 144.1 | 516.8 | -8.0 | -48.9 | | 黑-2 |
SS012 | 100 | 60.1 | 54.7 | 36.8 | 3.5 | 268.5 | 28.4 | 168.1 | 538.5 | -8.1 | -49.0 | | 黑-2 |
SS064 | 80 | 60.1 | 43.8 | 35.9 | 3.1 | 323.4 | 39.0 | 96.1 | 458.3 | -8.2 | -50.5 | | 黑-2 |
SS159 | 80 | 67.3 | 85.6 | 91.0 | 4.9 | 390.5 | 60.3 | 278.6 | 823.0 | — | — | | 黑-2 |
ST124 | 36 | 56.9 | 73.4 | 95.0 | 18.5 | 268.5 | 65.9 | 296.8 | 794.3 | — | — | | 黑-2 |
SS463 | 36 | 68.1 | 132.7 | 221.3 | 31.8 | 263.6 | 145.4 | 745.5 | 1 523.0 | -8.1 | -51.2 | | 黑-2 |
SF381 | 16 | 93.8 | 135.1 | 408.0 | 14.1 | 454.0 | 128.3 | 1052.0 | 2 105.0 | — | — | | 黑-3 |
SF358 | 10 | 93.0 | 108.4 | 372.0 | 5.7 | 427.1 | 166.6 | 879.5 | 1 864.0 | — | — | | 黑-3 |
SS390 | 13 | 79.4 | 130.3 | 352.0 | 7.6 | 563.8 | 125.5 | 887.6 | 1 880.0 | — | — | | 黑-3 |
HHQ025 | 18 | 110.6 | 107.9 | 254.4 | 6.2 | 580.9 | 159.5 | 581.2 | 1 526.0 | -7.9 | -49.1 | | 黑-3 |
HHQ085 | 15 | 137.9 | 155.1 | 718.9 | 11.8 | 544.3 | 455.9 | 1441.0 | 3 209.0 | -7.0 | -47.2 | | 黑-3 |
HHQ032 | 20 | 135.5 | 221.2 | 374.6 | 31.4 | 619.9 | 504.1 | 925.1 | 2 560.0 | -7.2 | -45.5 | | 黑-3 |
HHQ124 | 20 | 104.2 | 106.9 | 167.0 | 20.6 | 507.7 | 126.9 | 450.5 | 1 267.0 | — | — | | 黑-3 |
HA006 | 290 | 44.5 | 54.2 | 24.2 | 4.5 | 240.4 | 36.2 | 126.8 | 439.5 | -9.2 | -57.5 | | 丰-1 |
HA044 | 130 | 26.7 | 33.0 | 22.4 | 6.1 | 187.9 | 7.8 | 76.4 | 283.9 | -9.7 | -60.6 | | 丰-1 |
HA068 | 120 | 27.3 | 28.7 | 18.3 | 3.3 | 135.5 | 20.6 | 74.9 | 273.2 | -10.0 | -62.8 | | 丰-1 |
HC011 | 128 | 51.7 | 70.3 | 36.1 | 9.2 | 205.0 | 67.4 | 257.5 | 628.2 | -9.7 | -59.3 | | 丰-1 |
HC013 | 120 | 24.3 | 51.4 | 24.9 | 8.3 | 146.4 | 41.8 | 141.2 | 384.9 | -9.8 | -61.2 | | 丰-1 |
HA035 | 100 | 35.5 | 52.3 | 30.0 | 9.1 | 157.4 | 56.7 | 143.6 | 420.4 | -10.1 | -63.2 | | 丰-1 |
SF775 | 100 | 47.4 | 54.2 | 190.4 | 14.5 | 112.3 | 135.4 | 406.8 | 927.0 | -10.9 | -72.3 | | 丰-2 |
SF776 | 50 | 523.0 | 248.0 | 2 745.0 | 42.0 | 148.9 | 4 889.0 | 1 656.0 | 10 267.0 | -10.5 | -75.6 | Cl--Na+ | 丰-2 |
Table 1 Hydrochemical and isotopic data for groundwater samples
样品 编号 | 采样 深度/m | ρB/(mg·L-1) | δ18O/‰ | δD/‰ | 水化学类型 | 分组 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | Na+ | K+ | | Cl- | | TDS | ||||||
HG14 | 260 | 52.5 | 23.6 | 15.3 | 2.5 | 181.8 | 29.8 | 68.7 | 374.2 | -8.9 | -57.0 | | 黑-1 |
ST165 | 280 | 36.1 | 19.4 | 13.6 | 2.2 | 170.8 | 5.0 | 50.0 | 224.8 | — | — | | 黑-1 |
HG13 | 260 | 50.9 | 22.6 | 30.2 | 2.2 | 196.5 | 27.6 | 85.5 | 415.5 | -9.2 | -58.0 | | 黑-1 |
HQ10 | 112 | 68.1 | 24.3 | 18.4 | 2.2 | 173.3 | 9.2 | 142.2 | 362.2 | -9.2 | -59.4 | | 黑-1 |
SF012 | 60 | 57.7 | 25.8 | 18.0 | 2.3 | 207.5 | 9.2 | 98.0 | 337.5 | -8.0 | -47.4 | | 黑-2 |
SF060 | 120 | 48.1 | 70.5 | 25.9 | 3.3 | 341.7 | 24.8 | 144.1 | 516.8 | -8.0 | -48.9 | | 黑-2 |
SS012 | 100 | 60.1 | 54.7 | 36.8 | 3.5 | 268.5 | 28.4 | 168.1 | 538.5 | -8.1 | -49.0 | | 黑-2 |
SS064 | 80 | 60.1 | 43.8 | 35.9 | 3.1 | 323.4 | 39.0 | 96.1 | 458.3 | -8.2 | -50.5 | | 黑-2 |
SS159 | 80 | 67.3 | 85.6 | 91.0 | 4.9 | 390.5 | 60.3 | 278.6 | 823.0 | — | — | | 黑-2 |
ST124 | 36 | 56.9 | 73.4 | 95.0 | 18.5 | 268.5 | 65.9 | 296.8 | 794.3 | — | — | | 黑-2 |
SS463 | 36 | 68.1 | 132.7 | 221.3 | 31.8 | 263.6 | 145.4 | 745.5 | 1 523.0 | -8.1 | -51.2 | | 黑-2 |
SF381 | 16 | 93.8 | 135.1 | 408.0 | 14.1 | 454.0 | 128.3 | 1052.0 | 2 105.0 | — | — | | 黑-3 |
SF358 | 10 | 93.0 | 108.4 | 372.0 | 5.7 | 427.1 | 166.6 | 879.5 | 1 864.0 | — | — | | 黑-3 |
SS390 | 13 | 79.4 | 130.3 | 352.0 | 7.6 | 563.8 | 125.5 | 887.6 | 1 880.0 | — | — | | 黑-3 |
HHQ025 | 18 | 110.6 | 107.9 | 254.4 | 6.2 | 580.9 | 159.5 | 581.2 | 1 526.0 | -7.9 | -49.1 | | 黑-3 |
HHQ085 | 15 | 137.9 | 155.1 | 718.9 | 11.8 | 544.3 | 455.9 | 1441.0 | 3 209.0 | -7.0 | -47.2 | | 黑-3 |
HHQ032 | 20 | 135.5 | 221.2 | 374.6 | 31.4 | 619.9 | 504.1 | 925.1 | 2 560.0 | -7.2 | -45.5 | | 黑-3 |
HHQ124 | 20 | 104.2 | 106.9 | 167.0 | 20.6 | 507.7 | 126.9 | 450.5 | 1 267.0 | — | — | | 黑-3 |
HA006 | 290 | 44.5 | 54.2 | 24.2 | 4.5 | 240.4 | 36.2 | 126.8 | 439.5 | -9.2 | -57.5 | | 丰-1 |
HA044 | 130 | 26.7 | 33.0 | 22.4 | 6.1 | 187.9 | 7.8 | 76.4 | 283.9 | -9.7 | -60.6 | | 丰-1 |
HA068 | 120 | 27.3 | 28.7 | 18.3 | 3.3 | 135.5 | 20.6 | 74.9 | 273.2 | -10.0 | -62.8 | | 丰-1 |
HC011 | 128 | 51.7 | 70.3 | 36.1 | 9.2 | 205.0 | 67.4 | 257.5 | 628.2 | -9.7 | -59.3 | | 丰-1 |
HC013 | 120 | 24.3 | 51.4 | 24.9 | 8.3 | 146.4 | 41.8 | 141.2 | 384.9 | -9.8 | -61.2 | | 丰-1 |
HA035 | 100 | 35.5 | 52.3 | 30.0 | 9.1 | 157.4 | 56.7 | 143.6 | 420.4 | -10.1 | -63.2 | | 丰-1 |
SF775 | 100 | 47.4 | 54.2 | 190.4 | 14.5 | 112.3 | 135.4 | 406.8 | 927.0 | -10.9 | -72.3 | | 丰-2 |
SF776 | 50 | 523.0 | 248.0 | 2 745.0 | 42.0 | 148.9 | 4 889.0 | 1 656.0 | 10 267.0 | -10.5 | -75.6 | Cl--Na+ | 丰-2 |
剖面 名称 | 样品 编号 | 矿物饱和度值的常用对数 | |||
---|---|---|---|---|---|
CaCO3 | CaSO4·2H2O | SiO2 | CaMg(CO3)2 | ||
黑河干流 | HG14 | 0.69 | -1.89 | 0.15 | 1.38 |
ST165 | 0.66 | -2.14 | 0.20 | 1.40 | |
HG13 | 0.71 | -1.82 | 0.36 | 1.41 | |
HQ10 | 0.79 | -1.51 | -0.01 | 1.48 | |
SF012 | 0.63 | -1.72 | 0.33 | 1.27 | |
SF060 | 0.46 | -1.74 | 0.23 | 1.44 | |
SS012 | 0.50 | -1.56 | 0.19 | 1.31 | |
SS064 | 0.75 | -1.77 | 0.22 | 1.72 | |
SS159 | 0.87 | -1.40 | 0.29 | 2.19 | |
ST124 | 0.72 | -1.42 | 0.26 | 1.90 | |
SS463 | 0.21 | -1.12 | 0.21 | 1.05 | |
SF381 | 1.06 | -0.92 | 0.28 | 2.62 | |
SF358 | 1.00 | -0.95 | 0.33 | 2.41 | |
SS390 | 1.02 | -1.03 | 0.25 | 2.59 | |
HHQ025 | 0.56 | -1.01 | 0.29 | 1.46 | |
HHQ085 | 0.67 | -0.72 | 0.28 | 1.73 | |
HHQ032 | 0.68 | -0.87 | 0.22 | 1.92 | |
HHQ124 | 0.49 | -1.10 | 0.35 | 1.33 | |
丰乐河 | HA006 | 0.58 | -1.78 | 0.04 | 1.60 |
HA044 | 0.35 | -2.13 | 0.08 | 1.18 | |
HA068 | 0.71 | -2.12 | 0.09 | 1.80 | |
HC011 | 0.36 | -1.48 | 0.16 | 1.20 | |
HC013 | 0.00 | -1.96 | 0.20 | 0.66 | |
HA035 | 0.41 | -1.81 | 0.21 | 1.34 | |
SF775 | 0.65 | -1.37 | 0.08 | 1.71 | |
SF776 | 0.22 | -0.31 | 0.22 | 0.42 |
Table 2 Results of calcite, gypsum and quartz saturation index calculations for groundwater samples
剖面 名称 | 样品 编号 | 矿物饱和度值的常用对数 | |||
---|---|---|---|---|---|
CaCO3 | CaSO4·2H2O | SiO2 | CaMg(CO3)2 | ||
黑河干流 | HG14 | 0.69 | -1.89 | 0.15 | 1.38 |
ST165 | 0.66 | -2.14 | 0.20 | 1.40 | |
HG13 | 0.71 | -1.82 | 0.36 | 1.41 | |
HQ10 | 0.79 | -1.51 | -0.01 | 1.48 | |
SF012 | 0.63 | -1.72 | 0.33 | 1.27 | |
SF060 | 0.46 | -1.74 | 0.23 | 1.44 | |
SS012 | 0.50 | -1.56 | 0.19 | 1.31 | |
SS064 | 0.75 | -1.77 | 0.22 | 1.72 | |
SS159 | 0.87 | -1.40 | 0.29 | 2.19 | |
ST124 | 0.72 | -1.42 | 0.26 | 1.90 | |
SS463 | 0.21 | -1.12 | 0.21 | 1.05 | |
SF381 | 1.06 | -0.92 | 0.28 | 2.62 | |
SF358 | 1.00 | -0.95 | 0.33 | 2.41 | |
SS390 | 1.02 | -1.03 | 0.25 | 2.59 | |
HHQ025 | 0.56 | -1.01 | 0.29 | 1.46 | |
HHQ085 | 0.67 | -0.72 | 0.28 | 1.73 | |
HHQ032 | 0.68 | -0.87 | 0.22 | 1.92 | |
HHQ124 | 0.49 | -1.10 | 0.35 | 1.33 | |
丰乐河 | HA006 | 0.58 | -1.78 | 0.04 | 1.60 |
HA044 | 0.35 | -2.13 | 0.08 | 1.18 | |
HA068 | 0.71 | -2.12 | 0.09 | 1.80 | |
HC011 | 0.36 | -1.48 | 0.16 | 1.20 | |
HC013 | 0.00 | -1.96 | 0.20 | 0.66 | |
HA035 | 0.41 | -1.81 | 0.21 | 1.34 | |
SF775 | 0.65 | -1.37 | 0.08 | 1.71 | |
SF776 | 0.22 | -0.31 | 0.22 | 0.42 |
样品 编号 | TDS质 量浓度/ (g·L-1) | 溶滤作用 | 蒸发作用 | ||||
---|---|---|---|---|---|---|---|
地下水咸 化增量/ (mg·L-1) | 贡献 比例 | 地下水咸 化增量/ (mg·L-1) | 贡献 比例 | ||||
HHQ025 | 1.526 | 0.860 | 72.4% | 0.328 | 27.6% | ||
HHQ032 | 2.560 | 0.498 | 22.4% | 1.724 | 77.6% | ||
HHQ085 | 3.209 | 0.860 | 30.0% | 2.011 | 70.0% | ||
SF776 | 10.367 | 8.564 | 90.7% | 0.876 | 9.3% |
Table 3 Contributions from leaching and evaporation to groundwater salinization in the Heihe River discharge area
样品 编号 | TDS质 量浓度/ (g·L-1) | 溶滤作用 | 蒸发作用 | ||||
---|---|---|---|---|---|---|---|
地下水咸 化增量/ (mg·L-1) | 贡献 比例 | 地下水咸 化增量/ (mg·L-1) | 贡献 比例 | ||||
HHQ025 | 1.526 | 0.860 | 72.4% | 0.328 | 27.6% | ||
HHQ032 | 2.560 | 0.498 | 22.4% | 1.724 | 77.6% | ||
HHQ085 | 3.209 | 0.860 | 30.0% | 2.011 | 70.0% | ||
SF776 | 10.367 | 8.564 | 90.7% | 0.876 | 9.3% |
[1] | 李文鹏, 郝爱兵. 中国西北内陆干旱盆地地下水形成演化模式及其意义[J]. 水文地质工程地质, 1999, 26(4):28-32. |
[2] | 郝爱兵, 康卫东, 黎志恒, 等. 河西走廊张掖盆地含水层的水资源调节能力分析[J]. 地学前缘, 2010, 17(6):208-214. |
[3] | 李向全, 侯新伟, 周志超, 等. 太原盆地地下水系统水化学特征及形成演化机制[J]. 现代地质, 2009, 23(1):1-8. |
[4] | JIN K, RAO W B, TAN H B, et al. H-O isotopic and chemical characteristics of a precipitation - lake water - groundwater system in a desert area[J]. Journal of Hydrology, 2018, 559:848-860. |
[5] |
GUO H M, ZHANG D, NI P, et al. Hydrogeological and geochemical comparison of high arsenic groundwaters in inland basins, P.R. China[J]. Procedia Earth and Planetary Science, 2017, 17:416-419.
DOI URL |
[6] |
MIRZAVAND M, GHASEMIEH H, JAVAD SADATINEJAD S, et al. Delineating the source and mechanism of groundwater salinization in crucial declining aquifer using multi-chemo-isotopes approaches[J]. Journal of Hydrology, 2020, 586:124877.
DOI URL |
[7] |
SENARATHNE S, JAYAWARDANA J M C K, EDIRISINGHE E A N V, et al. Geochemical and isotope evidence for groundwater mineralization in a semi-arid river basin, Sri Lanka[J]. Applied Geochemistry, 2021, 124:104799.
DOI URL |
[8] | YIDANA S M, BAWOYOBIE P, SAKYI P, et al. Evolutionary analysis of groundwater flow: application of multivariate statistical analysis to hydrochemical data in the Densu Basin, Ghana[J]. Journal of African Earth Sciences, 2018, 138:167-176. |
[9] | PAZAND K, KHOSRAVI D, GHADERI M R, et al. Identification of the hydrogeochemical processes and assessment of groundwater in a semi-arid region using major ion chemistry: a case study of Ardestan basin in Central Iran[J]. Groundwater for Sustainable Development, 2018, 6:245-254. |
[10] |
KARROUM M, ELGETTAFI M, ELMANDOUR A, et al. Geochemical processes controlling groundwater quality under semi arid environment: a case study in central Morocco[J]. Science of the Total Environment, 2017, 609:1140-1151.
DOI URL |
[11] | GNING A A, ORBAN P, GESELS J, et al. Factors controlling the evolution of groundwater dynamics and chemistry in the Senegal River Delta[J]. Journal of Hydrology: Regional Studies, 2017, 10:133-144. |
[12] |
BUCCI A, FRANCHINO E, DE LUCA D A, et al. Groundwater chemistry characterization using multi-criteria approach: the upper Samalá River basin (SW Guatemala)[J]. Journal of South American Earth Sciences, 2017, 78:150-163.
DOI URL |
[13] | 阮云峰, 赵良菊, 姚治君, 等. 黑河流域地下水电导率空间分异特征及影响因素研究[J]. 北京师范大学学报(自然科学版), 2016, 52(3):289-296. |
[14] | 刘蔚, 王涛, 高晓清, 等. 黑河流域水体化学特征及其演变规律[J]. 中国沙漠, 2004, 24(6):755-762. |
[15] | 温小虎, 仵彦卿, 常娟, 等. 黑河流域水化学空间分异特征分析[J]. 干旱区研究, 2004, 21(1):1-6. |
[16] | 郜银梁, 陈军锋, 张成才, 等. 黑河中游灌区水化学空间变异特征[J]. 干旱区地理, 2011, 34(4):575-583. |
[17] | 党慧慧, 董军, 董阳, 等. 甘肃梨园河流域地下水水化学演化规律[J]. 兰州大学学报(自然科学版), 2015, 51(4):454-461. |
[18] | 聂振龙, 陈宗宇, 程旭学, 等. 黑河干流浅层地下水与地表水相互转化的水化学特征[J]. 吉林大学学报(地球科学版), 2005, 35(1):48-53. |
[19] |
ZHAO L J, EASTOE C J, LIU X H, et al. Origin and residence time of groundwater based on stable and radioactive isotopes in the Heihe River Basin, northwestern China[J]. Journal of Hydrology: Regional Studies, 2018, 18:31-49.
DOI URL |
[20] |
WANG L H, DONG Y H, XU Z F. A synjournal of hydrochemistry with an integrated conceptual model for groundwater in the Hexi Corridor, northwestern China[J]. Journal of Asian Earth Sciences, 2017, 146:20-29.
DOI URL |
[21] | 侯国华, 高茂生, 党显璋. 唐山曹妃甸浅层地下水水化学特征及咸化成因[J]. 地学前缘, 2019, 26(6):49-57. |
[22] | 许琦, 李建鸿, 孙平安, 等. 西江水氢氧同位素组成的空间变化及环境意义[J]. 环境科学, 2017, 38(6):2308-2316. |
[23] | 殷秀兰, 凤蔚, 王瑞久, 等. 乌鲁木齐河流域西山地区地下水化学特征[J]. 地球与环境, 2016, 44(6):628-636. |
[24] | 姚锦梅, 周训, 李娟, 等. 广东雷州半岛玄武岩地下水水文地球化学特征及演化模拟[J]. 地质通报, 2007, 26(3):327-334. |
[25] | 李文鹏. 甘肃省民勤盆地深层淡水及表层咸水成因[J]. 地质论评, 1991, 37(6):546-554. |
[26] | 殷秀兰, 王庆兵, 凤蔚. 济南岩溶泉域泉群区水化学与环境同位素研究[J]. 地质学报, 2017, 91(7):1651-1660. |
[27] | 沈照理. 水文地球化学基础[M]. 北京: 地质出版社, 1993. |
[28] | 郝爱兵, 李文鹏, 梁志强. 利用TDS和δ18O确定溶滤和蒸发作用对内陆干旱区地下水咸化贡献的一种方法[J]. 水文地质工程地质, 2000, 27(1):4-6. |
[1] | LI Jiexiang, XU Yadong, LIN Wenjing. The applicability of traditional chemical geothermometers [J]. Earth Science Frontiers, 2024, 31(6): 145-157. |
[2] | ZHAO Zengfeng, WANG Chuyou, QIU Xiaocong, ZHOU Ruijuan, YANG Qiangqiang, ZHAO Ruizhi. Hydrochemical characteristics of surface water and genetic mechanism of high fluorine water in Qingshui River Basin in Ningxia [J]. Earth Science Frontiers, 2024, 31(6): 462-473. |
[3] | ZHANG Chunlai, YANG Hui, HUANG Fen, QIU Cheng, ZHU Tongbin. Hydrochemical characteristics and karst carbon sink effect of border polje river in subtropical monsoon region: A case study of the Qingbo River in Mashan County, Guangxi [J]. Earth Science Frontiers, 2024, 31(5): 377-386. |
[4] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[5] | HE Jiahui, MAO Hairu, XUE Yang, LIAO Fu, GAO Bai, RAO Zhi, YANG Yang, LIU Yuanyuan, WANG Guangcai. Variability in spatiotemporal groundwater nitrate concentrations in the northeast Ganfu Plain [J]. Earth Science Frontiers, 2024, 31(3): 360-370. |
[6] | FU Yu, CAO Wengeng, ZHANG Chunju, ZHAI Wenhua, REN Yu, NAN Tian, LI Zeyan. Risk assessment of groundwater arsenic in Hetao Basin base on ensemble learning optimization [J]. Earth Science Frontiers, 2024, 31(3): 371-380. |
[7] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[8] | CHEN Hongwei, YANG Yao, HUANG He, ZHOU Hui, PENG Xiangxun, YU Shasha, YU Weihou, LI Zhengzui, WANG Zhaoguo. Interaction between surface water and groundwater during the dry season in Lake Dongting based on 222Rn tracing [J]. Earth Science Frontiers, 2024, 31(2): 423-434. |
[9] | LÜ Lianghua, QIAO Wenjing, ZHANG Han, YE Shujun, WU Jichun, WANG Shui, JIANG Jiandong. Degradation of 1,2,4-trichlorobenzene by an anaerobic enrichment culture mediated by Dehalobacter species [J]. Earth Science Frontiers, 2024, 31(2): 472-480. |
[10] | GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi [J]. Earth Science Frontiers, 2024, 31(1): 384-399. |
[11] | XU Rongzhen, WEI Shibo, LI Chengye, CHENG Xuxue, ZHOU Xiangyu. Groundwater circulation in the Ejina Plain: Insights from hydrochemical and environmental isotope studies [J]. Earth Science Frontiers, 2023, 30(4): 440-450. |
[12] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
[13] | WANG Zhen, GUO Huaming, LIU Haiyan, XING Shiping. Geochemical characteristics of rare earth elements in high-fluoride groundwater in the Guide Basin and its implications [J]. Earth Science Frontiers, 2023, 30(3): 505-514. |
[14] | XING Shiping, WU Ping, HU Xueda, GUO Huaming, ZHAO Zhen, YUAN Youjing. Geochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua basin [J]. Earth Science Frontiers, 2023, 30(2): 526-538. |
[15] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||