Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (3): 505-514.DOI: 10.13745/j.esf.sf.2022.9.3
Previous Articles Next Articles
WANG Zhen1(), GUO Huaming2,*(
), LIU Haiyan1, XING Shiping2
Received:
2022-06-30
Revised:
2022-08-19
Online:
2023-05-25
Published:
2023-04-27
CLC Number:
WANG Zhen, GUO Huaming, LIU Haiyan, XING Shiping. Geochemical characteristics of rare earth elements in high-fluoride groundwater in the Guide Basin and its implications[J]. Earth Science Frontiers, 2023, 30(3): 505-514.
水样 编号 | pH | Eh/ mV | ρB/(mg·L-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDS | NH4-N | F- | Cl- | K+ | Ca2+ | Na+ | Mg2+ | ||||||
4 | 8.38 | 110 | 290 | 0.15 | 221 | 0.77 | 35.6 | 0.00 | 60.6 | 0.99 | 23.3 | 91.8 | 3.83 |
5 | 8.60 | 145 | 572 | 0.04 | 92.6 | 3.15 | 225 | 0.67 | 124 | 2.28 | 14.3 | 196 | 0.07 |
6 | 8.79 | 142 | 375 | 0.11 | 166 | 2.23 | 81.4 | 0.24 | 79.6 | 1.47 | 5.44 | 140 | 0.17 |
8 | 8.55 | 147 | 639 | 0.21 | 185 | 3.59 | 218 | 0.42 | 106 | 2.37 | 8.90 | 236 | 0.33 |
9 | 8.81 | 99 | 520 | 0.42 | 299 | 4.08 | 125 | 0.35 | 68.6 | 2.12 | 4.51 | 212 | 1.11 |
10 | 8.60 | 99 | 730 | 0.32 | 312 | 3.62 | 230 | 0.32 | 91.5 | 3.14 | 7.83 | 280 | 5.08 |
12 | 9.07 | 116 | 325 | 0.05 | 117 | 1.85 | 81.4 | 0.32 | 77.4 | 1.13 | 5.86 | 114 | 0.17 |
13 | 8.97 | 113 | 365 | 0.05 | 112 | 1.84 | 101 | 0.84 | 90.8 | 1.08 | 8.65 | 124 | 0.22 |
19 | 8.74 | 123 | 482 | 0.08 | 134 | 2.83 | 155 | 0.35 | 98.6 | 1.69 | 9.27 | 176 | 0.30 |
20 | 8.70 | 152 | 475 | 0.09 | 166 | 3.47 | 127 | 0.23 | 78.1 | 1.39 | 7.66 | 175 | 0.19 |
21 | 8.90 | 146 | 538 | 0.012 | 115 | 2.18 | 145 | 0.57 | 140 | 1.56 | 8.87 | 191 | 0.42 |
23 | 8.99 | 195 | 435 | 0.08 | 115 | 1.32 | 105 | 0.26 | 137 | 1.15 | 7.85 | 144 | 0.26 |
24 | 8.95 | 97 | 510 | 0.12 | 107 | 2.07 | 135 | 0.32 | 145 | 1.41 | 8.02 | 174 | 0.40 |
25 | 8.80 | 143 | 492 | 0.15 | 156 | 1.90 | 112 | 0.22 | 139 | 1.55 | 6.62 | 175 | 0.31 |
32 | 8.87 | 131 | 540 | 0.36 | 388 | 5.67 | 90.3 | 0.05 | 104 | 1.88 | 3.44 | 225 | 0.55 |
34 | 8.82 | 141 | 572 | 0.34 | 305 | 4.84 | 98.1 | 0.38 | 104 | 1.78 | 3.76 | 226 | 0.64 |
35 | 8.70 | 86 | 623 | 0.585 | 373 | 5.02 | 121 | 0.40 | 90.4 | 1.93 | 3.97 | 243 | 1.48 |
41 | 9.08 | 150 | 365 | 0.25 | 217 | 1.39 | 46.0 | 0.06 | 86.5 | 1.05 | 3.05 | 127 | 0.32 |
43 | 8.84 | 29 | 328 | 0.25 | 188 | 0.86 | 43.8 | 0.47 | 78.7 | 1.13 | 5.87 | 114 | 0.52 |
44 | 8.70 | 100 | 315 | — | 171 | 0.66 | 44.2 | 0.44 | 73.9 | 1.21 | 11.0 | 105 | 1.66 |
Table 1 Summary table of hydrochemical composition of groundwater samples in the study area
水样 编号 | pH | Eh/ mV | ρB/(mg·L-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDS | NH4-N | F- | Cl- | K+ | Ca2+ | Na+ | Mg2+ | ||||||
4 | 8.38 | 110 | 290 | 0.15 | 221 | 0.77 | 35.6 | 0.00 | 60.6 | 0.99 | 23.3 | 91.8 | 3.83 |
5 | 8.60 | 145 | 572 | 0.04 | 92.6 | 3.15 | 225 | 0.67 | 124 | 2.28 | 14.3 | 196 | 0.07 |
6 | 8.79 | 142 | 375 | 0.11 | 166 | 2.23 | 81.4 | 0.24 | 79.6 | 1.47 | 5.44 | 140 | 0.17 |
8 | 8.55 | 147 | 639 | 0.21 | 185 | 3.59 | 218 | 0.42 | 106 | 2.37 | 8.90 | 236 | 0.33 |
9 | 8.81 | 99 | 520 | 0.42 | 299 | 4.08 | 125 | 0.35 | 68.6 | 2.12 | 4.51 | 212 | 1.11 |
10 | 8.60 | 99 | 730 | 0.32 | 312 | 3.62 | 230 | 0.32 | 91.5 | 3.14 | 7.83 | 280 | 5.08 |
12 | 9.07 | 116 | 325 | 0.05 | 117 | 1.85 | 81.4 | 0.32 | 77.4 | 1.13 | 5.86 | 114 | 0.17 |
13 | 8.97 | 113 | 365 | 0.05 | 112 | 1.84 | 101 | 0.84 | 90.8 | 1.08 | 8.65 | 124 | 0.22 |
19 | 8.74 | 123 | 482 | 0.08 | 134 | 2.83 | 155 | 0.35 | 98.6 | 1.69 | 9.27 | 176 | 0.30 |
20 | 8.70 | 152 | 475 | 0.09 | 166 | 3.47 | 127 | 0.23 | 78.1 | 1.39 | 7.66 | 175 | 0.19 |
21 | 8.90 | 146 | 538 | 0.012 | 115 | 2.18 | 145 | 0.57 | 140 | 1.56 | 8.87 | 191 | 0.42 |
23 | 8.99 | 195 | 435 | 0.08 | 115 | 1.32 | 105 | 0.26 | 137 | 1.15 | 7.85 | 144 | 0.26 |
24 | 8.95 | 97 | 510 | 0.12 | 107 | 2.07 | 135 | 0.32 | 145 | 1.41 | 8.02 | 174 | 0.40 |
25 | 8.80 | 143 | 492 | 0.15 | 156 | 1.90 | 112 | 0.22 | 139 | 1.55 | 6.62 | 175 | 0.31 |
32 | 8.87 | 131 | 540 | 0.36 | 388 | 5.67 | 90.3 | 0.05 | 104 | 1.88 | 3.44 | 225 | 0.55 |
34 | 8.82 | 141 | 572 | 0.34 | 305 | 4.84 | 98.1 | 0.38 | 104 | 1.78 | 3.76 | 226 | 0.64 |
35 | 8.70 | 86 | 623 | 0.585 | 373 | 5.02 | 121 | 0.40 | 90.4 | 1.93 | 3.97 | 243 | 1.48 |
41 | 9.08 | 150 | 365 | 0.25 | 217 | 1.39 | 46.0 | 0.06 | 86.5 | 1.05 | 3.05 | 127 | 0.32 |
43 | 8.84 | 29 | 328 | 0.25 | 188 | 0.86 | 43.8 | 0.47 | 78.7 | 1.13 | 5.87 | 114 | 0.52 |
44 | 8.70 | 100 | 315 | — | 171 | 0.66 | 44.2 | 0.44 | 73.9 | 1.21 | 11.0 | 105 | 1.66 |
Fig.3 Variation trends of ∑REE and water-quality parameters along the flow path (top panel) and percentage variations of different forms of fluoride along the flow path and with pH (bottom panel)
Fig.4 Main minerals identified in aquifer sediments at depths of (a) 18.8 m, (b) 104 m and (c) 362 m under optical microscope, and (d) SEM-EDS analysis results on sediment at depth of 362 m. Pl, Qtz, Ab and Hm represent plagioclase, quartz, albitite and hematite, respectively.
统计量 | ρB/(ng·L-1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ||
最小值 | 6 | 9 | 1.21 | 4.5 | 1.18 | 2.11 | 2.09 | 0.18 | 0.98 | 0.21 | 0.76 | 0.07 | 0.56 | 0.00 | |
最大值 | 50 | 92 | 20.7 | 88.7 | 14.3 | 30.5 | 13.1 | 1.52 | 6.87 | 1.47 | 3.62 | 0.73 | 3.48 | 0.68 | |
平均值 | 22 | 39 | 6.84 | 26.2 | 4.74 | 10.6 | 5.37 | 0.58 | 3.03 | 0.65 | 1.83 | 0.28 | 1.57 | 0.18 | |
标准差 | 12 | 21 | 4.44 | 19.0 | 3.11 | 6.59 | 2.85 | 0.36 | 1.88 | 0.30 | 0.82 | 0.19 | 0.75 | 0.15 |
Table 2 Descriptive statistics of raw data on REE contents in groundwater of the Guide Basin
统计量 | ρB/(ng·L-1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ||
最小值 | 6 | 9 | 1.21 | 4.5 | 1.18 | 2.11 | 2.09 | 0.18 | 0.98 | 0.21 | 0.76 | 0.07 | 0.56 | 0.00 | |
最大值 | 50 | 92 | 20.7 | 88.7 | 14.3 | 30.5 | 13.1 | 1.52 | 6.87 | 1.47 | 3.62 | 0.73 | 3.48 | 0.68 | |
平均值 | 22 | 39 | 6.84 | 26.2 | 4.74 | 10.6 | 5.37 | 0.58 | 3.03 | 0.65 | 1.83 | 0.28 | 1.57 | 0.18 | |
标准差 | 12 | 21 | 4.44 | 19.0 | 3.11 | 6.59 | 2.85 | 0.36 | 1.88 | 0.30 | 0.82 | 0.19 | 0.75 | 0.15 |
[1] |
AYOOB S, GUPTA A K. Fluoride in drinking water: a review on the status and stress effects[J]. Critical Reviews in Environmental Science and Technology, 2006, 36(6): 433-487.
DOI URL |
[2] |
SU C L, WANG Y X, XIE X J, et al. Aqueous geochemistry of high-fluoride groundwater in Datong Basin, northern China[J]. Journal of Geochemical Exploration, 2013, 135: 79-92.
DOI URL |
[3] |
吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水氟分布特征及富集机理[J]. 地学前缘, 2021, 28(2): 426-436.
DOI |
[4] |
CHOWDHURY A, ADAK M K, MUKHERJEE A, et al. A critical review on geochemical and geological aspects of fluoride belts, fluorosis and natural materials and other sources for alternatives to fluoride exposure[J]. Journal of Hydrology, 2019, 574: 333-359.
DOI URL |
[5] |
WANG Y X, SHVARTSEV S L, SU C L. Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China[J]. Applied Geochemistry, 2009, 24(4): 641-649.
DOI URL |
[6] |
CURRELL M, CARTWRIGHT I, RAVEGGI M, et al. Controls on elevated fluoride and arsenic concentrations in groundwater from the Yuncheng Basin, China[J]. Applied Geochemistry, 2011, 26(4): 540-552.
DOI URL |
[7] | 国家卫生健康委员会. 2019年中国卫生健康统计年鉴[M]. 北京: 北京协和医科大学出版社, 2019. |
[8] |
梁晓亮, 谭伟, 马灵涯, 等. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘, 2022, 29(1): 29-41.
DOI |
[9] |
YANG K F, FAN H R, SANTOSH M, et al. Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China: constraints for the mechanism of super accumulation of rare earth elements[J]. Ore Geology Reviews, 2011, 40(1): 122-131.
DOI URL |
[10] |
QUINN K A, BYRNE R H, SCHIJF J. Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of solution complexation with carbonate[J]. Geochimica et Cosmochimica Acta, 2006, 70(16): 4151-4165.
DOI URL |
[11] |
DECRÉE S, POURRET O, BAELE J M. Rare earth element fractionation in heterogenite (CoOOH): implication for cobalt oxidized ore in the Katanga Copperbelt (Democratic Republic of Congo)[J]. Journal of Geochemical Exploration, 2015, 159: 290-301.
DOI URL |
[12] |
刘海燕, 刘茂涵, 张卫民, 等. 华北平原高氟地下水中稀土元素分布和分异特征[J]. 地学前缘, 2022, 29(3): 129-144.
DOI |
[13] | 郑天亮, 邓娅敏, 鲁宗杰, 等. 江汉平原浅层含砷地下水稀土元素特征及其指示意义[J]. 地球科学, 2017, 42(5): 693-706. |
[14] |
GUO H M, ZHANG B, WANG G C, et al. Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia[J]. Chemical Geology, 2010, 270(1/2/3/4): 117-125.
DOI URL |
[15] | 石维栋, 郭建强, 张森琦, 等. 贵德盆地高氟、高砷地下热水分布及水化学特征[J]. 水文地质工程地质, 2010, 37(2): 36-41. |
[16] |
WANG Z, GUO H M, XING S P, et al. Hydrogeochemical and geothermal controls on the formation of high fluoride groundwater[J]. Journal of Hydrology, 2021, 598: 126372.
DOI URL |
[17] |
邢世平, 郭华明, 吴萍, 等. 化隆—循化盆地不同类型含水层组高氟地下水的分布及形成过程[J]. 地学前缘, 2022, 29(3): 115-128.
DOI |
[18] |
YAN M D, VAN DER VOO R, TAUXE L, et al. Shallow bias in Neogene palaeomagnetic directions from the Guide Basin, NE Tibet, caused by inclination error[J]. Geophysical Journal International, 2005, 163(3): 944-948.
DOI URL |
[19] |
ZHANG X B, GUO Q H, LIU M L, et al. Hydrogeochemical processes occurring in the hydrothermal systems of the Gonghe-Guide Basin, northwestern China: critical insights from a principal components analysis (PCA)[J]. Environmental Earth Sciences, 2016, 75(16): 1186-1203.
DOI URL |
[20] |
WANG Z, GUO H M, XIU W, et al. High arsenic groundwater in the Guide Basin, northwestern China: distribution and genesis mechanisms[J]. Science of the Total Environment, 2018, 640/641: 194-206.
DOI URL |
[21] | XIE X J, WANG Y X, LI J X, et al. Characteristics and implications of rare earth elements in high arsenic groundwater from the Datong Basin[J]. Earth Science: Journal of China University Geosciences, 2012, 37(2): 381-390. |
[22] |
TANG J W, JOHANNESSON K H. Controls on the geochemistry of rare earth elements along a groundwater flow path in the Carrizo Sand aquifer, Texas, USA[J]. Chemical Geology, 2006, 225(1/2): 156-171.
DOI URL |
[23] |
NOACKC W, DZOMBAK D A, KARAMALIDIS A K. Rare earth element distributions and trends in natural waters with a focus on groundwater[J]. Environmental Science and Technology, 2014, 48(8): 4317-4326.
DOI PMID |
[24] |
JANSSEN R P T, VERWEIJ W. Geochemistry of some rare earth elements in groundwater, Vierlingsbeek, The Netherlands[J]. Water Research, 2003, 37(6): 1320-1350.
PMID |
[25] |
LEYBOURNE M I, PETER J M, LAYTON-MATTHEWS D, et al. Mobility and fractionation of rare earth elements during supergene weathering and gossan formation and chemical modification of massive sulfide gossan[J]. Geochimica et Cosmochimica Acta, 2006, 70(5): 1097-1112.
DOI URL |
[26] |
RÖNNBACK P, ÅSTRÖM M, GUSTAFSSON J P. Comparison of the behaviour of rare earth elements in surface waters, overburden groundwaters and bedrock groundwaters in two granitoidic settings, eastern Sweden[J]. Applied Geochemistry, 2008, 23(7): 1862-1880.
DOI URL |
[27] |
TANG J W, JOHANNESSON K H. Ligand extraction of rare earth elements from aquifer sediments: implications for rare earth element complexation with organic matter in natural waters[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6690-6705.
DOI URL |
[28] |
JOHANNESSON K H, TANG J W, DANIELS J M, et al. Rare earth element concentrations and speciation in organic-rich blackwaters of the Great Dismal Swamp, Virginia, USA[J]. Chemical Geology, 2004, 209(3/4): 271-294.
DOI URL |
[29] |
LIU H Y, POURRET O, GUO H M, et al. Rare earth elements sorption to iron oxyhydroxide: model development and application to groundwater[J]. Applied Geochemistry, 2017, 87: 158-166.
DOI URL |
[30] |
BAU M, KOSCHINSKY A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts[J]. Geochemical Journal, 2009, 43(1): 37-47.
DOI URL |
[31] |
LAVEUF C, CORNU S. A review on the potentiality of rare earth elements to trace pedogenetic processes[J]. Geoderma, 2009, 154(1/2): 1-12.
DOI URL |
[32] |
YAN Z C, LIU G J, SUN R Y, et al. Geochemistry of rare earth elements in groundwater from the Taiyuan Formation limestone aquifer in the Wolonghu coal mine, Anhui Province, China[J]. Journal of Geochemical Exploration, 2013, 135: 54-62.
DOI URL |
[33] |
BRIOSCHI L, STEINMANN M, LUCOT E, et al. Transfer of rare earth elements (REE) from natural soil to plant systems: implications for the environmental availability of anthropogenic REE[J]. Plant and Soil, 2013, 366(1/2): 143-163.
DOI URL |
[34] |
VÁZQUEZ-ORTEGA A, PERDRIAL J, HARPOLD A, et al. Rare earth elements as reactive tracers of biogeochemical weathering in forested rhyolitic terrain[J]. Chemical Geology, 2015, 391: 19-32.
DOI URL |
[35] |
NOGARO G, BURGIN A J. Influence of bioturbation on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in freshwater sediments[J]. Biogeochemistry, 2014, 120: 279-294.
DOI URL |
[36] |
XING S P, GUO H M, ZHANG L Z, et al. Silicate weathering contributed to arsenic enrichment in geotherm-affected groundwater in Pliocene aquifers of the Guide Basin, China[J]. Journal of Hydrology, 2022, 606: 127444.
DOI URL |
[37] |
VAN LITH Y, WARTHMANN R, VASCONCELOS C, et al. Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation[J]. Geobiology, 2003, 1(1): 71-79.
DOI URL |
[38] |
MEENAKSHI V. Groundwater quality in some villages of Haryana, India: focus on fluoride and fluorosis[J]. Journal of Hazardous Materials, 2004, 106(1/2): 85-97.
DOI URL |
[39] |
GAO X B, LUO W T, LUO X S, et al. Indigenous microbes induced fluoride release from aquifer sediments[J]. Environmental Pollution, 2019, 252: 580-590.
DOI PMID |
[40] |
GOMEZ M L, BLARASIN M T, MARTÍNEZ D E. Arsenic and fluoride in a loess aquifer in the central area of Argentina[J]. Environmental Geology, 2009, 57(1): 143-155.
DOI URL |
[1] | DONG Shu, LIU Haiyan, ZHANG Yifan, WANG Zhen, GUO Huaming, SUN Zhanxue, ZHOU Zhongkui. Bioaccumulation of rare earth elements, uranium and thorium in plant-rhizosphere soil in Xiangshan uranium tailings areas [J]. Earth Science Frontiers, 2024, 31(6): 474-489. |
[2] | LAN Chunyuan, ZHANG Lifei, TAO Renbiao, HU Han, ZHANG Lijuan, WANG Chao. Calculation methods for fluid composition and water-rock interaction in the deep Earth based on DEW model—a review [J]. Earth Science Frontiers, 2024, 31(1): 64-76. |
[3] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
[4] | LUO Huan, SHAO Deyong, MENG Kang, ZHANG Yu, SONG Hui, YAN Jianping, ZHANG Tongwei. Origin of excess barium in the Cambrian shale of Yichang area, western Hubei, and its implication for organic matter accumulation [J]. Earth Science Frontiers, 2023, 30(3): 66-82. |
[5] | XING Shiping, WU Ping, HU Xueda, GUO Huaming, ZHAO Zhen, YUAN Youjing. Geochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua basin [J]. Earth Science Frontiers, 2023, 30(2): 526-538. |
[6] | GUO Huaming, GAO Zhipeng, XIU Wei. Typical redox-sensitive components in groundwater systems: Research highlights and trends [J]. Earth Science Frontiers, 2022, 29(3): 64-75. |
[7] | WANG Guangcai, WANG Yanxin, LIU Fei, GUO Huaming. Advances and trends in hydrogeochemical studies: Insights from bibliometric analysis [J]. Earth Science Frontiers, 2022, 29(3): 25-36. |
[8] | LIU Haiyan, LIU Maohan, ZHANG Weimin, SUN Zhanxue, WANG Zhen, WU Tonghang, GUO Huaming. Distribution and fractionation of rare earth elements in high fluoride groundwater from the North China Plain [J]. Earth Science Frontiers, 2022, 29(3): 129-144. |
[9] | XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin [J]. Earth Science Frontiers, 2022, 29(3): 115-128. |
[10] | LIANG Xiaoliang, TAN Wei, MA Lingya, ZHU Jianxi, HE Hongping. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits [J]. Earth Science Frontiers, 2022, 29(1): 29-41. |
[11] | REN Jiangbo, DENG Yinan, LAI Peixin, HE Gaowen, WANG Fenlian, YAO Huiqiang, DENG Xiguang, LIU Yonggang. Geochemical characteristics and genesis of the polymetallic nodules in the Pacific survey area [J]. Earth Science Frontiers, 2021, 28(2): 412-425. |
[12] | DAI Wan, JIANG Xiaowei, LUO Yinfei, ZHANG Hong, LEI Yude, TONG Jue. Identification and quantification of factors controlling hydrogen and oxygen isotopes of geothermal water: An example from the Guide Basin, Qinghai Province [J]. Earth Science Frontiers, 2021, 28(1): 420-427. |
[13] | MA Yuehua, TANG Baochun, SU Shengyun, ZHANG Shengsheng, LI Chengying. Geochemical characteristics of geothermal fluids and water-rock interaction in geothermal reservoirs in and around the Gonghe Basin, Qinghai Province [J]. Earth Science Frontiers, 2020, 27(1): 123-133. |
[14] | HONG Jin,GAN Chengshi,LIU Jie. Prediction of REEs in OIB by major elements based on machine learning [J]. Earth Science Frontiers, 2019, 26(4): 45-54. |
[15] | LIANG Mengyu,GUO Huaming,LI Xiaomeng,WANG Zhen,XIU Wei. Excitation-emission matrix spectroscopic characteristics of dissolved organic matters and the significance in high arsenic groundwater research in the Guide Basin, China [J]. Earth Science Frontiers, 2019, 26(3): 243-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||