Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (1): 420-427.DOI: 10.13745/j.esf.sf.2020.7.8
Previous Articles Next Articles
DAI Wan1(), JIANG Xiaowei1,*(
), LUO Yinfei2,3,4, ZHANG Hong1, LEI Yude2,3,4, TONG Jue2,3,4
Received:
2020-03-29
Revised:
2020-04-27
Online:
2021-01-25
Published:
2021-01-28
Contact:
JIANG Xiaowei
CLC Number:
DAI Wan, JIANG Xiaowei, LUO Yinfei, ZHANG Hong, LEI Yude, TONG Jue. Identification and quantification of factors controlling hydrogen and oxygen isotopes of geothermal water: An example from the Guide Basin, Qinghai Province[J]. Earth Science Frontiers, 2021, 28(1): 420-427.
类 型 | 编号 | 地名 | 类别 | 井深/ m | pH | 温度/ ℃ | 阴阳离 子平衡 误差/% | ρB/(mg·L-1) | δ18O/ ‰ | δD/ ‰ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1- | S | C | HC | Na+ | K+ | Mg2+ | Ca2+ | TDS | SiO2 | ||||||||||
地 热 水 | HS1-QNH | 贵德县曲乃亥 | 温泉 | 8.1 | >93.0 | 8.70 | 1 079.9 | 205.2 | 0.0 | 111.0 | 632.0 | 48.3 | 0.2 | 38.7 | 2 059.9 | 182.1 | -9.7 | -79 | |
HS2-QNH | 贵德县曲乃亥 | 温泉 | 8.3 | 54.0 | 3.15 | 916.3 | 222.2 | 6.4 | 91.4 | 621.0 | 48.0 | 0.5 | 38.3 | 1 898.8 | 169.5 | -9.1 | -78 | ||
HS1-ZCS | 贵德县扎仓寺 | 温泉 | 8.1 | 81.9 | 1.86 | 464.7 | 465.4 | 0.0 | 65.3 | 430.0 | 17.6 | 0.6 | 75.8 | 1 487.8 | 102.4 | -9.7 | -81 | ||
HW1-ZCS | 贵德县扎仓寺 | 地热井 | 110 | 8.4 | >93.0 | 0.85 | 471.0 | 440.7 | 19.3 | 26.1 | 443.0 | 20.0 | 0.4 | 66.3 | 1 473.7 | 119.5 | -10.2 | -82 | |
HW2-ZCS | 贵德县扎仓寺 | 地热井 | 100 | 8.6 | 52.7 | 1.11 | 448.7 | 469.0 | 19.3 | 26.1 | 441.0 | 19.7 | 0.2 | 65.4 | 1 476.6 | 100.2 | -10.2 | -83 | |
HS-XJ | 贵德县新街 | 温泉 | 8.5 | 74.0 | 1.81 | 28.4 | 235.4 | 12.0 | 109.8 | 156.0 | 5.5 | 2.4 | 10.0 | 504.6 | 68.9 | -12.8 | -94 | ||
HS-LC | 同仁县兰采 | 温泉 | 8.7 | 87.0 | 0.74 | 42.5 | 148.9 | 30.0 | 73.2 | 138.0 | 4.0 | 0.5 | 5.2 | 405.8 | 110.7 | -12.3 | -90 | ||
HS-XBS | 同仁县西卜沙 | 温泉 | 8.8 | 46.6 | 1.06 | 31.9 | 158.5 | 18.0 | 48.8 | 118.0 | 2.0 | 0.5 | 5.2 | 360.7 | 65.5 | -12.4 | -89 | ||
冷 水 | R-QNH | 贵德县曲乃亥 | 河水 | 8.5 | 30.8 | -0.19 | 60.4 | 44.6 | 0.0 | 261.2 | 63.2 | 4.6 | 21.4 | 45.8 | 372.5 | 9.9 | -8.4 | -59 | |
CS-QNH | 贵德县曲乃亥 | 冷泉 | 7.5 | 24.5 | -4.77 | 351.2 | 207.5 | 0.0 | 417.9 | 345.0 | 5.2 | 47.7 | 81.4 | 1 247.2 | 14.6 | -10.2 | -74 | ||
CS-ZCS* | 贵德县扎仓寺 | 冷泉 | — | 10.0 | -1.50 | 96.3 | 494.9 | - | 219.7 | 272.2 | — | 34.4 | 48.6 | 1 172.0 | — | -8.6 | -59 | ||
R-XJ | 贵德县新街 | 河水 | 8.5 | 18.0 | -5.86 | 4.7 | 12.3 | 6.4 | 169.8 | 13.7 | 1.3 | 5.8 | 53.9 | 183.7 | 7.8 | -8.9 | -57 | ||
R-LC | 同仁县兰采 | 河水 | 8.5 | 19.5 | -2.90 | 5.8 | 11.4 | 12.8 | 150.2 | 6.1 | 1.4 | 6.3 | 53.2 | 173.1 | 11.2 | -8.7 | -59 | ||
CS-LC | 同仁县兰采 | 冷泉 | 8.2 | 23.4 | -3.98 | 9.1 | 20.5 | 0.0 | 215.5 | 11.1 | 1.5 | 12.3 | 60.4 | 225.0 | 11.2 | -9.4 | -62 | ||
R-XBS | 同仁县西卜沙 | 河水 | 8.2 | 20.0 | -9.55 | 5.7 | 14.4 | 0.0 | 189.4 | 7.8 | 1.8 | 12.1 | 58.5 | 196.1 | 7.0 | -9.2 | -61 |
Table 1 Measurements of hydrochemical components and oxygen and hydrogen isotopes for thermal and cold water samples from the Guide Basin
类 型 | 编号 | 地名 | 类别 | 井深/ m | pH | 温度/ ℃ | 阴阳离 子平衡 误差/% | ρB/(mg·L-1) | δ18O/ ‰ | δD/ ‰ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1- | S | C | HC | Na+ | K+ | Mg2+ | Ca2+ | TDS | SiO2 | ||||||||||
地 热 水 | HS1-QNH | 贵德县曲乃亥 | 温泉 | 8.1 | >93.0 | 8.70 | 1 079.9 | 205.2 | 0.0 | 111.0 | 632.0 | 48.3 | 0.2 | 38.7 | 2 059.9 | 182.1 | -9.7 | -79 | |
HS2-QNH | 贵德县曲乃亥 | 温泉 | 8.3 | 54.0 | 3.15 | 916.3 | 222.2 | 6.4 | 91.4 | 621.0 | 48.0 | 0.5 | 38.3 | 1 898.8 | 169.5 | -9.1 | -78 | ||
HS1-ZCS | 贵德县扎仓寺 | 温泉 | 8.1 | 81.9 | 1.86 | 464.7 | 465.4 | 0.0 | 65.3 | 430.0 | 17.6 | 0.6 | 75.8 | 1 487.8 | 102.4 | -9.7 | -81 | ||
HW1-ZCS | 贵德县扎仓寺 | 地热井 | 110 | 8.4 | >93.0 | 0.85 | 471.0 | 440.7 | 19.3 | 26.1 | 443.0 | 20.0 | 0.4 | 66.3 | 1 473.7 | 119.5 | -10.2 | -82 | |
HW2-ZCS | 贵德县扎仓寺 | 地热井 | 100 | 8.6 | 52.7 | 1.11 | 448.7 | 469.0 | 19.3 | 26.1 | 441.0 | 19.7 | 0.2 | 65.4 | 1 476.6 | 100.2 | -10.2 | -83 | |
HS-XJ | 贵德县新街 | 温泉 | 8.5 | 74.0 | 1.81 | 28.4 | 235.4 | 12.0 | 109.8 | 156.0 | 5.5 | 2.4 | 10.0 | 504.6 | 68.9 | -12.8 | -94 | ||
HS-LC | 同仁县兰采 | 温泉 | 8.7 | 87.0 | 0.74 | 42.5 | 148.9 | 30.0 | 73.2 | 138.0 | 4.0 | 0.5 | 5.2 | 405.8 | 110.7 | -12.3 | -90 | ||
HS-XBS | 同仁县西卜沙 | 温泉 | 8.8 | 46.6 | 1.06 | 31.9 | 158.5 | 18.0 | 48.8 | 118.0 | 2.0 | 0.5 | 5.2 | 360.7 | 65.5 | -12.4 | -89 | ||
冷 水 | R-QNH | 贵德县曲乃亥 | 河水 | 8.5 | 30.8 | -0.19 | 60.4 | 44.6 | 0.0 | 261.2 | 63.2 | 4.6 | 21.4 | 45.8 | 372.5 | 9.9 | -8.4 | -59 | |
CS-QNH | 贵德县曲乃亥 | 冷泉 | 7.5 | 24.5 | -4.77 | 351.2 | 207.5 | 0.0 | 417.9 | 345.0 | 5.2 | 47.7 | 81.4 | 1 247.2 | 14.6 | -10.2 | -74 | ||
CS-ZCS* | 贵德县扎仓寺 | 冷泉 | — | 10.0 | -1.50 | 96.3 | 494.9 | - | 219.7 | 272.2 | — | 34.4 | 48.6 | 1 172.0 | — | -8.6 | -59 | ||
R-XJ | 贵德县新街 | 河水 | 8.5 | 18.0 | -5.86 | 4.7 | 12.3 | 6.4 | 169.8 | 13.7 | 1.3 | 5.8 | 53.9 | 183.7 | 7.8 | -8.9 | -57 | ||
R-LC | 同仁县兰采 | 河水 | 8.5 | 19.5 | -2.90 | 5.8 | 11.4 | 12.8 | 150.2 | 6.1 | 1.4 | 6.3 | 53.2 | 173.1 | 11.2 | -8.7 | -59 | ||
CS-LC | 同仁县兰采 | 冷泉 | 8.2 | 23.4 | -3.98 | 9.1 | 20.5 | 0.0 | 215.5 | 11.1 | 1.5 | 12.3 | 60.4 | 225.0 | 11.2 | -9.4 | -62 | ||
R-XBS | 同仁县西卜沙 | 河水 | 8.2 | 20.0 | -9.55 | 5.7 | 14.4 | 0.0 | 189.4 | 7.8 | 1.8 | 12.1 | 58.5 | 196.1 | 7.0 | -9.2 | -61 |
地点 | 饱和指数 | 石英温标/℃ | 钻孔温度/℃ |
---|---|---|---|
西卜沙 | 0.40 | 115 | |
新街 | 0.19 | 118 | |
兰采 | 0.20 | 143 | |
扎仓寺 | 0.24 | 147 | 150 |
曲乃亥 | 0.46 | 174 |
Table 2 Quartz saturation indices and geothermal reservoir temperatures of the five studied hot springs
地点 | 饱和指数 | 石英温标/℃ | 钻孔温度/℃ |
---|---|---|---|
西卜沙 | 0.40 | 115 | |
新街 | 0.19 | 118 | |
兰采 | 0.20 | 143 | |
扎仓寺 | 0.24 | 147 | 150 |
曲乃亥 | 0.46 | 174 |
编号 | 实测数据 | 水汽分离前(冷水混合后) | 冷水混合前(水岩反应后) | 水岩反应(初始) | ||||
---|---|---|---|---|---|---|---|---|
δD/‰ | δ18O/‰ | δD/‰ | δ18O/‰ | δD/‰ | δ18O/‰ | δD/‰ | δ18O/‰ | |
HS1-ZCS | -81 | -9.7 | -81.8 | -9.82 | -92.5 | -10.39 | -92.5 | -12.66 |
HW1-ZCS | -82 | -10.2 | -82.2 | -10.25 | -93.1 | -11.02 | -93.1 | -12.73 |
HW2-ZCS | -83 | -10.2 | -83.2 | -10.27 | -94.6 | -11.06 | -94.6 | -12.90 |
Table 3 Results of calculated hydrogen and oxygen isotopic compositions of geothermal water in Zhacangsi
编号 | 实测数据 | 水汽分离前(冷水混合后) | 冷水混合前(水岩反应后) | 水岩反应(初始) | ||||
---|---|---|---|---|---|---|---|---|
δD/‰ | δ18O/‰ | δD/‰ | δ18O/‰ | δD/‰ | δ18O/‰ | δD/‰ | δ18O/‰ | |
HS1-ZCS | -81 | -9.7 | -81.8 | -9.82 | -92.5 | -10.39 | -92.5 | -12.66 |
HW1-ZCS | -82 | -10.2 | -82.2 | -10.25 | -93.1 | -11.02 | -93.1 | -12.73 |
HW2-ZCS | -83 | -10.2 | -83.2 | -10.27 | -94.6 | -11.06 | -94.6 | -12.90 |
[1] | 汪集旸, 熊亮萍, 庞忠和, 等. 中低温对流型地热系统[M]. 北京: 科学出版社, 1993. |
[2] | 王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1):1-9. |
[3] | NICHOLSON K. Geothermal fluids[M]. Berlin, Heidelberg: Springer-Verlag, 1993. |
[4] | 顾慰祖, 庞忠和, 王全九, 等. 同位素水文学[M]. 北京: 科学出版社, 2011. |
[5] | 庞忠和, 樊志成, 汪集旸. 漳州盆地地下热水成因与海水混入的同位素证据[J]. 地球化学, 1990(4):296-302. |
[6] |
GIGGENBACH W F. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin[J]. Earth and Planetary Science Letters, 1992, 113(4):495-510.
DOI URL |
[7] |
QIU X L, WANG Y, WANG Z Z, et al. Determining the origin, circulation path and residence time of geothermal groundwater using multiple isotopic techniques in the Heyuan Fault Zone of Southern China[J]. Journal of Hydrology, 2018, 567:339-350.
DOI URL |
[8] |
PANG Z H, KONG Y L, LI J, et al. An isotopic geoindicator in the hydrological cycle[J]. Procedia Earth and Planetary Science, 2017, 17:534-537.
DOI URL |
[9] | CRAIG H. The isotope geochemistry of water and carbon in geothermal areas[M]∥TONGIORGI E. Nuclear geology on geothermal areas. Pisa, Italy: CNR, 1963: 17-53. |
[10] |
TRUESDELL A H, NATHENSON M, RYE R O. The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters[J]. Journal of Geophysical Research, 1977, 82(26):3694-3704.
DOI URL |
[11] |
HORITA J, WESOLOWSKI D J. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature[J]. Geochimica et Cosmochimica Acta, 1994, 58(16):3425-3437.
DOI URL |
[12] |
MUNOZ-SAEZ C, MANGA M, HURWITZ S. Hydrothermal discharge from the El Tatio Basin, Atacama, Chile[J]. Journal of Volcanology and Geothermal Research, 2018, 361:25-35.
DOI URL |
[13] | 赵振, 罗银飞, 孟梦, 等. 青海省地热资源概况及勘查开发利用部署初步研究[J]. 青海环境, 2013, 23(3):130-135. |
[14] |
LIU M L, GUO Q H, ZHANG X B, et al. Geochemistry of geothermal waters from the Gonghe region, northwestern China: implications for identification of the heat source[J]. Environmental Earth Sciences, 2016, 75(8):1-13.
DOI URL |
[15] | 马月花, 唐保春, 苏生云, 等. 青海共和盆地地热流体地球化学特征及热储水-岩相互作用过程[J]. 地学前缘, 2020, 27(1):123-133. |
[16] | 周小波, 李纯, 李育昆. 青海省贵德县扎仓地热田成因探讨[J]. 青海科技, 2005, 12(2):17-20. |
[17] | 方斌, 周训, 梁四海. 青海贵德县扎仓温泉特征及其开发利用[J]. 现代地质, 2009, 23(1):59-65. |
[18] | 李小林, 吴国禄, 雷玉德, 等. 青海省贵德扎仓寺地热成因机理及开发利用建议[J]. 吉林大学学报(地球科学版), 2016, 46(1):220-229. |
[19] | 薛建球, 甘斌, 李百祥, 等. 青海共和—贵德盆地增强型地热系统(干热岩)地质-地球物理特征[J]. 物探与化探, 2013, 37(1):35-41. |
[20] | 马维明, 罗永统, 马英, 等. 青海干热岩地热资源潜力分析: 基于贵德县干热岩地热资源调查研究[J]. 西部探矿工程, 2016, 28(4):111-114. |
[21] | 罗银飞. 青海省贵德县扎仓沟地热: 干热岩资源勘查研究进展[J]. 地热能, 2016(6):9-10. |
[22] | 童珏, 罗银飞, 袁有靖, 等. 青海省东部地区干热岩靶区分析[J]. 工程勘察, 2018, 46(11):36-42. |
[23] | 李林果, 李百祥. 从青海共和—贵德盆地与山地地温场特征探讨热源机制和地热系统[J]. 物探与化探, 2017, 41(1):29-34. |
[24] | 廖媛, 马腾, 陈柳竹, 等. 青海贵德盆地高砷低温地热水水化学特征[J]. 水文地质工程地质, 2013, 40(4):123-127. |
[25] | 郎旭娟, 蔺文静, 刘志明, 等. 贵德盆地地下热水水文地球化学特征[J]. 地球科学, 2016, 41(10):1723-1734. |
[26] | 李乐乐. 青海贵德盆地地热资源赋存规律及成因模式研究[D]. 抚州: 东华理工大学, 2016. |
[27] | 刘明亮. 不同热源类型地热系统的地球化学对比[D]. 武汉: 中国地质大学(武汉), 2015. |
[28] |
JIANG Z J, XU T F, OWEN D D R, et al. Geothermal fluid circulation in the Guide Basin of the north-eastern Tibetan Plateau: isotopic analysis and numerical modeling[J]. Geothermics, 2018, 71:234-244.
DOI URL |
[29] |
JIANG Z J, XU T F, MALLANTS D, et al. Numerical modelling of stable isotope (2H and 18O) transport in a hydrogeothermal system: model development and implementation to the Guide Basin, China[J]. Journal of Hydrology, 2019, 569:93-105.
DOI URL |
[30] | 侯兆云. 基于流体渗流-化学(同位素)耦合模拟的共和—贵德地热储层特征分析[D]. 长春: 吉林大学, 2019. |
[31] | 陈惠娟, 赵振, 罗银飞, 等. 青海省贵德盆地地热资源赋存条件及开发利用前景分析[J]. 青海环境, 2010, 20(4):44-47. |
[32] | 张森琦, 贾小丰, 李胜涛, 等. 青藏高原北缘重点区1∶5万水文地质调查成果报告[R]. 保定: 中国地质调查局水文地质环境地质调查中心, 2016. |
[33] |
VERMA S P, SANTOYO E. New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection[J]. Journal of Volcanology and Geothermal Research, 1997, 79(1):9-24.
DOI URL |
[34] | CLARK I. Groundwater geochemistry and isotopes[M]. Abingdon: Taylor and Francis Group, 2015. |
[35] |
CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465):1702-1703.
DOI URL |
[36] |
GIGGENBACH W F, STEWART M K. Processes controlling the isotopic composition of steam and water discharges from steam vents and steam-heated pools in geothermal areas[J]. Geothermics, 1982, 11(2):71-80.
DOI URL |
[37] |
RAO N S. Geochemistry of groundwater in parts of Guntur district, Andhra Pradesh, India[J]. Environmental Geology, 2002, 41(5):552-562.
DOI URL |
[38] |
GIGGENBACH W F. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12):2749-2765.
DOI URL |
[39] | 吴华武, 李小雁, 赵国琴, 等. 青海湖流域降水和河水中δ18O和δD变化特征[J]. 自然资源学报, 2014, 9:1552-1564. |
[40] | 马致远, 吴敏, 郑会菊, 等. 对关中盆地腹部深层地下热水δ18O富集主控因素的再认识[J]. 地质通报, 2018, 37(2):487-495. |
[41] | FOURNIER R O, TRUESDELL A H, PARK M, et al. Geochemical indicators of subsurface temperature part 2, estimation of temperature and fraction of hot water mixed with cold water[J]. Journal of Research of the US Geological Survey, 1974, 2(3):263-270. |
[42] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地热资源地质勘查规范: GB/T 11615—2010[S]. 北京: 中国标准出版社, 2011. |
[1] | LAN Chunyuan, ZHANG Lifei, TAO Renbiao, HU Han, ZHANG Lijuan, WANG Chao. Calculation methods for fluid composition and water-rock interaction in the deep Earth based on DEW model—a review [J]. Earth Science Frontiers, 2024, 31(1): 64-76. |
[2] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
[3] | WANG Zhen, GUO Huaming, LIU Haiyan, XING Shiping. Geochemical characteristics of rare earth elements in high-fluoride groundwater in the Guide Basin and its implications [J]. Earth Science Frontiers, 2023, 30(3): 505-514. |
[4] | XING Shiping, WU Ping, HU Xueda, GUO Huaming, ZHAO Zhen, YUAN Youjing. Geochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua basin [J]. Earth Science Frontiers, 2023, 30(2): 526-538. |
[5] | GUO Huaming, GAO Zhipeng, XIU Wei. Typical redox-sensitive components in groundwater systems: Research highlights and trends [J]. Earth Science Frontiers, 2022, 29(3): 64-75. |
[6] | WANG Guangcai, WANG Yanxin, LIU Fei, GUO Huaming. Advances and trends in hydrogeochemical studies: Insights from bibliometric analysis [J]. Earth Science Frontiers, 2022, 29(3): 25-36. |
[7] | LIU Haiyan, LIU Maohan, ZHANG Weimin, SUN Zhanxue, WANG Zhen, WU Tonghang, GUO Huaming. Distribution and fractionation of rare earth elements in high fluoride groundwater from the North China Plain [J]. Earth Science Frontiers, 2022, 29(3): 129-144. |
[8] | XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin [J]. Earth Science Frontiers, 2022, 29(3): 115-128. |
[9] | MA Yuehua, TANG Baochun, SU Shengyun, ZHANG Shengsheng, LI Chengying. Geochemical characteristics of geothermal fluids and water-rock interaction in geothermal reservoirs in and around the Gonghe Basin, Qinghai Province [J]. Earth Science Frontiers, 2020, 27(1): 123-133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||