Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1): 64-76.DOI: 10.13745/j.esf.sf.2023.12.20
Previous Articles Next Articles
LAN Chunyuan1,2(), ZHANG Lifei1,*(), TAO Renbiao2, HU Han1, ZHANG Lijuan1, WANG Chao1
Received:
2023-10-05
Revised:
2023-11-22
Online:
2024-01-25
Published:
2024-01-25
CLC Number:
LAN Chunyuan, ZHANG Lifei, TAO Renbiao, HU Han, ZHANG Lijuan, WANG Chao. Calculation methods for fluid composition and water-rock interaction in the deep Earth based on DEW model—a review[J]. Earth Science Frontiers, 2024, 31(1): 64-76.
元素 | 基本流体物种 |
---|---|
Na | Na+ |
K | K+ |
Mg | Mg2+ |
Ca | Ca2+ |
Al | Al3+ |
Si | Si(OH)4 |
Fe | Fe2+ |
C | |
H | H+ |
Table 1 Elements and their corresponding basic fluid species
元素 | 基本流体物种 |
---|---|
Na | Na+ |
K | K+ |
Mg | Mg2+ |
Ca | Ca2+ |
Al | Al3+ |
Si | Si(OH)4 |
Fe | Fe2+ |
C | |
H | H+ |
元素 | 离子对流体物种 |
---|---|
Na | Na(OH)0 |
K | K(OH)0 |
Mg | Mg(OH)+,MgH |
Ca | Ca(OH)+, Ca |
Al | Al(OH |
Si | Si2O(OH |
Fe | Fe(OH)+, Fe(OH |
C | CH3COOH0, CH3COO-, |
H | OH- |
Table 2 Ionic pairs of fluid species corresponding to each element
元素 | 离子对流体物种 |
---|---|
Na | Na(OH)0 |
K | K(OH)0 |
Mg | Mg(OH)+,MgH |
Ca | Ca(OH)+, Ca |
Al | Al(OH |
Si | Si2O(OH |
Fe | Fe(OH)+, Fe(OH |
C | CH3COOH0, CH3COO-, |
H | OH- |
Fig.4 Deep-Earth carbon. (A) 3D plots showing the effects of pH and oxygen fugacity on the concentration of carbon species under 5 GPa and 600 ℃. (B) pH-log f O 2 diagram showing the stability field of acetate in deep Earth (adapted from [2]).
[1] |
DONG J J, FISCHER R A, STIXRUDE L P, et al. Water storage capacity of the martian mantle through time[J]. Icarus, 2022, 385: 115113.
DOI URL |
[2] |
SVERJENSKY D A, STAGNO V, HUANG F. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle[J]. Nature Geoscience, 2014, 7(12): 909-913.
DOI |
[3] | WANI S P. Natural water remediation: chemistry and technology[J]. Current Science, 2020, 119(12): 2025-2026. |
[4] |
TANG Y G, YANG C W, FINKELMAN R B, et al. Behavior of minerals and trace elements during cleaning of three coals with moderately high ash yields[J]. Energy and Fuels, 2020, 34(2): 2501-2515.
DOI URL |
[5] |
YADAV V B, GADI R, KALRA S. Clay based nanocomposites for removal of heavy metals from water: a review[J]. Journal of Environmental Management, 2019, 232: 803-817.
DOI PMID |
[6] |
TONG S, RODRIGUEZ-GONZALEZ L C, PAYNE K A, et al. Effect of pyrite pretreatment, particle size, dose, and biomass concentration on particulate pyrite autotrophic denitrification of nitrified domestic wastewater[J]. Environmental Engineering Science, 2018, 35(8): 875-886.
DOI URL |
[7] | GODDERIS Y, ROELANDT C, SCHOTT J, et al. Towards an integrated model of weathering, climate, and biospheric processes[M]//OELKERS E H, SCHOTT J. Thermodynamics and kinetics of water-rock interaction. Toulouse: Mineralogical Society of America, 2009: 411-434. |
[8] | SCHOTT J, POKROVSKY O S, OELKERS E H. The link between mineral dissolution/precipitation kinetics and solution chemistry[M]//OELKERS E H, SCHOTT J. Thermodynamics and kinetics of water-rock interaction. Toulouse: Mineralogical Society of America, 2009: 207-258. |
[9] |
SCHWEDA P, SJOBERG L, SODERVALL U. Near-surface composition of acid-leached labradorite investigated by SIMS[J]. Geochimica et Cosmochimica Acta, 1997, 61(10): 1985-1994.
DOI URL |
[10] |
WESTRICH H R, CYGAN R T, CASEY W H, et al. The dissolution kinetics of mixed-cation orthosilicate minerals[J]. American Journal of Science, 1993, 293(9): 869-893.
DOI URL |
[11] |
POKROVSKY O S, SCHOTT J. Experimental study of brucite dissolution and precipitation in aqueous solutions: surface speciation and chemical affinity control[J]. Geochimica et Cosmochimica Acta, 2004, 68(1): 31-45.
DOI URL |
[12] |
BELKHIRI L, MOUNI L, TIRI A. Water-rock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria[J]. Environmental Geochemistry and Health, 2012, 34(1): 1-13.
DOI PMID |
[13] |
STEELE-MACLNNIS M, MANNING C E. Hydrothermal properties of geologic fluids[J]. Elements, 2020, 16(6): 375-380.
DOI URL |
[14] | 李万财, 倪怀玮. 俯冲带脱水作用与板片流体地球化学[J]. 中国科学: 地球科学, 2020, 50(12): 1770-1784. |
[15] | GUO S, CHU X, HERMANN J, et al. Multiple episodes of fluid infiltration along a single metasomatic channel in metacarbonates (Mogok Metamorphic Belt, Myanmar) and implications for CO2 release in orogenic belts[J]. Journal of Geophysical Research: Solid Earth, 2021, 126: e2020JB02098. |
[16] |
JING X Y, YANG H B, CAO Y Q, et al. Identification of indicators of groundwater quality formation process using a zoning model[J]. Journal of Hydrology, 2014, 514: 30-40.
DOI URL |
[17] |
CHARLTON S R, PARKHURST D L. Modules based on the geochemical model PHREEQC for use in scripting and programming languages[J]. Computers and Geosciences, 2011, 37(10): 1653-1663.
DOI URL |
[18] |
MAFFEIS A, FERRANDO S, CONNOLLY J A D, et al. Thermodynamic analysis of HP-UHP fluid inclusions: the solute load and chemistry of metamorphic fluids[J]. Geochimica et Cosmochimica Acta, 2021, 315: 207-229.
DOI URL |
[19] |
DUAN Z H, MOLLER N, WEARE J H. An equation of state for the CH4-CO2-H2O style.1. Pure systems from 0 ℃ to 1000 ℃ and 0 to 8000 bar[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2605-2617.
DOI URL |
[20] |
DUAN Z H, MOLLER N, WEARE J H. An equation of state for the CH4-CO2-H2O style.2. Mixtures from 50 ℃ to 1000oC and 0 to 1000 bar[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2619-2631.
DOI URL |
[21] |
CONNOLLY J A D. Phase-diagram methods for graphitic rocks and application to the system C-O-H-FeO-TiO2-SiO2[J]. Contributions to Mineralogy and Petrology, 1995, 119(1): 94-116.
DOI URL |
[22] |
OHMOTO H, KERRICK D. Devolatilization equilibria in graphitic systems[J]. American Journal of Science, 1977, 277(8): 1013-1044.
DOI URL |
[23] |
FRENCH B M. Some geological implications of equilibrium between graphite and a C-H-O gas phase at high temperatures and pressures[J]. Reviews of Geophysics, 1966, 4(2): 223-253.
DOI URL |
[24] |
HUIZENGA J M. Thermodynamic modelling of a cooling C-O-H fluid-graphite system: implications for hydrothermal graphite precipitation[J]. Mineralium Deposita, 2011, 46(1): 23-33.
DOI URL |
[25] |
HUIZENGA J M. Thermodynamic modelling of C-O-H fluids[J]. Lithos, 2001, 55(1/2/3/4): 101-114.
DOI URL |
[26] |
FREZZOTTI M L, SELVERSTONE J, SHARP Z D, et al. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps[J]. Nature Geoscience, 2011, 4(10): 703-706.
DOI |
[27] |
FACQ S, DANIEL I, MONTAGNAC G, et al. In situ Raman study and thermodynamic model of aqueous carbonate speciation in equilibrium with aragonite under subduction zone conditions[J]. Geochimica et Cosmochimica Acta, 2014, 132: 375-390.
DOI URL |
[28] | 张志刚, 张驰, 耿明. 地幔条件下富水流体状态方程[J]. 中国科学: 地球科学, 2016, 46(5): 569-581. |
[29] |
TUMIATI S, TIRABOSCHI C, MIOZZI F, et al. Dissolution susceptibility of glass-like carbon versus crystalline graphite in high-pressure aqueous fluids and implications for the behavior of organic matter in subduction zones[J]. Geochimica et Cosmochimica Acta, 2020, 273: 383-402.
DOI URL |
[30] |
MANNING C E, FREZZOTTI M L. Subduction-zone fluids[J]. Elements, 2020, 16(6): 395-400.
DOI URL |
[31] |
SVERJENSKY D A, HARRISON B, AZZOLINI D. Water in the deep Earth: the dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 ℃[J]. Geochimica et Cosmochimica Acta, 2014, 129: 125-145.
DOI URL |
[32] | WOLERY T J. EQ3/6: a software package for geochemical modeling of aqueous systems: package overview and installation guide (version 7.0)[M]. Livermore: Lawrence Livermore National Laboratory, 1992. |
[33] |
CONNOLLY J A D, GALVEZ M E. Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer[J]. Earth and Planetary Science Letters, 2018, 501: 90-102.
DOI URL |
[34] |
HELGESON H C. Thermodynamics of hydrothermal systems at elevated temperatures and pressures[J]. American Journal of Science, 1969, 267(7): 729-804.
DOI URL |
[35] |
HELGESON H C, KIRKHAM D H, FLOWERS G C. Theoretical prediction of the thermodynamic behavior of aqueous-electrolytes at high-pressures and temperatures.4. Calculation of activity-coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 ℃ and 5 kb[J]. American Journal of Science, 1981, 281(10): 1249-1516.
DOI URL |
[36] |
HELGESON H C, KIRKHAM D H. Theoretical prediction of thermodynamic properties of aqueous electrolytes at high-pressures and temperatures.3. Equation of state for aqueous species at infinite dilution[J]. American Journal of Science, 1976, 276(2): 97-240.
DOI URL |
[37] |
HELGESON H C, KIRKHAM D H. Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures.2. Debye-Huckel parameters for activity-coefficients and relative partial molal properties[J]. American Journal of Science, 1974, 274(10): 1199-1261.
DOI URL |
[38] |
HELGESON H C, KIRKHAM D H. Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures.1. Summary of thermodynamic-electrostatic properties of solvent[J]. American Journal of Science, 1974, 274(10): 1089-1198.
DOI URL |
[39] |
SHOCK E L, SASSANI D C, WILLIS M, et al. Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes[J]. Geochimica et Cosmochimica Acta, 1997, 61(5): 907-950.
PMID |
[40] |
SHOCK E L, HELGESON H C, SVERJENSKY D A. Calculation of the thermodynamic and transport-properties of aqueous species at high-pressures and temperatures - standard partial molal properties of inorganic neutral species[J]. Geochimica et Cosmochimica Acta, 1989, 53(9): 2157-2183.
DOI URL |
[41] |
TANGER J C, HELGESON H C. Calculation of the thermodynamic and transport-properties of aqueous species at high-pressures and temperatures - revised equations of state for the standard partial molal properties of ions and electrolytes[J]. American Journal of Science, 1988, 288(1): 19-98.
DOI URL |
[42] |
SHOCK E L, HELGESON H C. Calculation of the thermodynamic and transport-properties of aqueous species at high-pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 ℃[J]. Geochimica et Cosmochimica Acta, 1988, 52(8): 2009-2036.
DOI URL |
[43] |
SVERJENSKY D A. Thermodynamic modelling of fluids from surficial to mantle conditions[J]. Journal of the Geological Society, 2019, 176(2): 348-374.
DOI |
[44] |
PAN D, SPANU L, HARRISON B, et al. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 6646-6650.
DOI PMID |
[45] |
HUANG F, SVERJENSKY D A. Extended deep Earth water model for predicting major element mantle metasomatism[J]. Geochimica et Cosmochimica Acta, 2019, 254: 192-230.
DOI URL |
[46] |
GALVEZ M E, MANNING C E, CONNOLLY J A D, et al. The solubility of rocks in metamorphic fluids: a model for rock-dominated conditions to upper mantle pressure and temperature[J]. Earth and Planetary Science Letters, 2015, 430: 486-498.
DOI URL |
[47] |
ZHANG C, DUAN Z H. A model for C-O-H fluid in the Earth's mantle[J]. Geochimica et Cosmochimica Acta, 2009, 73(7): 2089-2102.
DOI URL |
[48] |
CONNOLLY J A D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation[J]. Earth and Planetary Science Letters, 2005, 236(1/2): 524-541.
DOI URL |
[49] |
SHVAROV Y V. HCh: new potentialities for the thermodynamic simulation of geochemical systems offered by windows[J]. Geochemistry International, 2008, 46(8): 834-839.
DOI URL |
[50] | ZHONG R C, LI Y X, ETSCHMANN B, et al. HighPGibbs, a practical tool for fluid-rock thermodynamic simulation in deep earth and its application on calculating nitrogen speciation in subduction zone fluids[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(5). DOI: 10.1029/2020gc008973. |
[51] |
SZLACHTA V, VLASOV K, KEPPLER H. On the stability of acetate in subduction zone fluids[J]. Geochemical Perspectives Letters, 2022, 21: 28-31.
DOI URL |
[52] |
LAN C, TAO R, ZHANG L, et al. Carbon releasing mechanisms and flux estimation in subducting slabs: problems and progress[J]. Acta Petrologica Sinica, 2022, 38(5): 1523-1540.
DOI URL |
[53] |
CACIAGLI N C, MANNING C E. The solubility of calcite in water at 6-16 kbar and 500-800 ℃[J]. Contributions to Mineralogy and Petrology, 2003, 146(3): 275-285.
DOI URL |
[54] |
LI W C, WANG Q X. In situ determination of magnesite solubility and carbon speciation in water and NaCl solutions under subduction zone conditions[J]. Solid Earth Sciences, 2022, 7(3): 200-214.
DOI URL |
[55] |
FARSANG S, LOUVEL M, ZHAO C S, et al. Deep carbon cycle constrained by carbonate solubility[J]. Nature Communications, 2021, 12: 4311.
DOI PMID |
[56] |
FARSANG S, LOUVEL M, ROSA A D, et al. Effect of salinity, pressure and temperature on the solubility of smithsonite (ZnCO3) and Zn complexation in crustal and upper mantle hydrothermal fluids[J]. Chemical Geology, 2021, 578: 120320.
DOI URL |
[57] |
LAN C Y, TAO R B, HUANG F, et al. High-pressure experimental and thermodynamic constraints on the solubility of carbonates in subduction zone fluids[J]. Earth and Planetary Science Letters, 2023, 603: 117989.
DOI URL |
[58] |
TUMIATI S, TIRABOSCHI C, SVERJENSKY D A, et al. Silicate dissolution boosts the CO2 concentrations in subduction fluids[J]. Nature Communications, 2017, 8: 616.
DOI |
[59] |
ZHANG L J, ZHANG L F, TANG M, et al. Massive abiotic methane production in eclogite during cold subduction[J]. National Science Review, 2022, 10: nwac207.
DOI URL |
[60] |
WANG C, TAO R B, WALTERS J B, et al. Favorable p-T-fO2 conditions for abiotic CH4 production in subducted oceanic crusts: a comparison between CH4-bearing ultrahigh- and CO2-bearing high-pressure eclogite[J]. Geochimica et Cosmochimica Acta, 2022, 336: 269-290.
DOI URL |
[61] |
BROVARONE A V, MARTINEZ I, ELMALEH A, et al. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps[J]. Nature Communications, 2017, 8: 14134.
DOI PMID |
[62] |
PENG W G, ZHANG L F, TUMIATI S, et al. Abiotic methane generation through reduction of serpentinite-hosted dolomite: implications for carbon mobility in subduction zones[J]. Geochimica et Cosmochimica Acta, 2021, 311: 119-140.
DOI URL |
[63] |
BROVARONE A V, SVERJENSKY D A, PICCOLI F, et al. Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere[J]. Nature Communications, 2020, 11: 3880.
DOI |
[64] |
HU H, BROVARONE A V, ZHANG L F, et al. Retrograde carbon sequestration in orogenic complexes: a case study from the Chinese southwestern Tianshan[J]. Lithos, 2021, 392/393: 106151.
DOI URL |
[65] |
PENG W G, ZHANG L F, MENZEL M D, et al. Multistage CO2 sequestration in the subduction zone: insights from exhumed carbonated serpentinites, SW Tianshan UHP belt, China[J]. Geochimica et Cosmochimica Acta, 2020, 270: 218-243.
DOI URL |
[66] |
HUANG F, SVERJENSKY D A. Mixing of carbonatitic into saline fluid during panda diamond formation[J]. Geochimica et Cosmochimica Acta, 2020, 284: 1-20.
DOI URL |
[67] |
SVERJENSKY D A, HUANG F. Diamond formation due to a pH drop during fluid-rock interactions[J]. Nature Communications, 2015, 6: 8702.
DOI PMID |
[68] |
POKROVSKI G S, KOKH M A, GUILLAUME D, et al. Sulfur radical species form gold deposits on Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(44): 13484-13489.
DOI PMID |
[69] |
POKROVSKI G S, DUBESSY J. Stability and abundance of the trisulfur radical ion S3- in hydrothermal fluids[J]. Earth and Planetary Science Letters, 2015, 411: 298-309.
DOI URL |
[70] |
LI J L, SCHWARZENBACH E M, JOHN T, et al. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective[J]. Nature Communications, 2020, 11: 514.
DOI |
[1] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
[2] | WANG Zhen, GUO Huaming, LIU Haiyan, XING Shiping. Geochemical characteristics of rare earth elements in high-fluoride groundwater in the Guide Basin and its implications [J]. Earth Science Frontiers, 2023, 30(3): 505-514. |
[3] | XING Shiping, WU Ping, HU Xueda, GUO Huaming, ZHAO Zhen, YUAN Youjing. Geochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua basin [J]. Earth Science Frontiers, 2023, 30(2): 526-538. |
[4] | GUO Huaming, GAO Zhipeng, XIU Wei. Typical redox-sensitive components in groundwater systems: Research highlights and trends [J]. Earth Science Frontiers, 2022, 29(3): 64-75. |
[5] | WANG Guangcai, WANG Yanxin, LIU Fei, GUO Huaming. Advances and trends in hydrogeochemical studies: Insights from bibliometric analysis [J]. Earth Science Frontiers, 2022, 29(3): 25-36. |
[6] | LIU Haiyan, LIU Maohan, ZHANG Weimin, SUN Zhanxue, WANG Zhen, WU Tonghang, GUO Huaming. Distribution and fractionation of rare earth elements in high fluoride groundwater from the North China Plain [J]. Earth Science Frontiers, 2022, 29(3): 129-144. |
[7] | XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin [J]. Earth Science Frontiers, 2022, 29(3): 115-128. |
[8] | DAI Wan, JIANG Xiaowei, LUO Yinfei, ZHANG Hong, LEI Yude, TONG Jue. Identification and quantification of factors controlling hydrogen and oxygen isotopes of geothermal water: An example from the Guide Basin, Qinghai Province [J]. Earth Science Frontiers, 2021, 28(1): 420-427. |
[9] | MA Yuehua, TANG Baochun, SU Shengyun, ZHANG Shengsheng, LI Chengying. Geochemical characteristics of geothermal fluids and water-rock interaction in geothermal reservoirs in and around the Gonghe Basin, Qinghai Province [J]. Earth Science Frontiers, 2020, 27(1): 123-133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||