Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 129-144.DOI: 10.13745/j.esf.sf.2021.7.24
Previous Articles Next Articles
LIU Haiyan1,2(), LIU Maohan1,2, ZHANG Weimin1,2, SUN Zhanxue1,2, WANG Zhen1,2, WU Tonghang1,2, GUO Huaming3,*()
Received:
2021-04-28
Revised:
2021-06-30
Online:
2022-05-25
Published:
2022-04-28
Contact:
GUO Huaming
CLC Number:
LIU Haiyan, LIU Maohan, ZHANG Weimin, SUN Zhanxue, WANG Zhen, WU Tonghang, GUO Huaming. Distribution and fractionation of rare earth elements in high fluoride groundwater from the North China Plain[J]. Earth Science Frontiers, 2022, 29(3): 129-144.
反应 | 平衡常数 | 参考文献 |
---|---|---|
Mg2+ + F- = MgF+ | 1.82 | [ |
Ca2+ + F- = CaF+ | 0.94 | [ |
Na+ + F- = NaF | -0.24 | [ |
Al3+ + F- = AlF2+ | 7.0 | [ |
Al3+ + 2F- = Al | 12.7 | [ |
Al3+ + 3F- = AlF3 | 16.8 | [ |
Al3+ + 4F- = Al | 19.4 | [ |
Fe3+ + F- = FeF2+ | 6.2 | [ |
Fe3+ + 2F- = Fe | 10.8 | [ |
Fe3+ + 3F- = FeF3 | 14 | [ |
Table 1 Chemical equations and equilibrium constants used for simulating F--cation complexation reactions in WATEQ4F
反应 | 平衡常数 | 参考文献 |
---|---|---|
Mg2+ + F- = MgF+ | 1.82 | [ |
Ca2+ + F- = CaF+ | 0.94 | [ |
Na+ + F- = NaF | -0.24 | [ |
Al3+ + F- = AlF2+ | 7.0 | [ |
Al3+ + 2F- = Al | 12.7 | [ |
Al3+ + 3F- = AlF3 | 16.8 | [ |
Al3+ + 4F- = Al | 19.4 | [ |
Fe3+ + F- = FeF2+ | 6.2 | [ |
Fe3+ + 2F- = Fe | 10.8 | [ |
Fe3+ + 3F- = FeF3 | 14 | [ |
Table 2 Chemical equations and equilibrium constants added to the WATEQ4F database in PHREEQC calculation for REE- anion complexation reactions (ionic strength, 0; temperature, 25℃)
区域 | 统计量 | pH | 地下水中各化学组分的指标参数统计值 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDS | Cl- | F- | K+ | Na+ | Ca2+ | Mg2+ | |||||||||||
一区 | 最大值 | 7.97 | 963.00 | 461.16 | 376.63 | 115.85 | 76.08 | 1.33 | 1.86 | 37.49 | 220.71 | 68.14 | |||||
最小值 | 7.10 | 222.00 | 204.96 | 3.60 | 0.00 | 11.99 | 0.28 | 0.05 | 3.55 | <检出限 | 24.55 | ||||||
平均值 | 7.64 | 391.61 | 302.15 | 48.78 | 44.49 | 43.17 | 0.70 | 1.23 | 11.69 | 91.14 | 31.77 | ||||||
标准差 | 0.20 | 155.61 | 65.88 | 83.97 | 37.81 | 17.98 | 0.24 | 0.53 | 7.06 | 43.04 | 9.61 | ||||||
变异系数 | 0.03 | 0.40 | 0.22 | 1.72 | 0.85 | 0.42 | 0.34 | 0.43 | 0.60 | 0.47 | 0.30 | ||||||
二区 | 最大值 | 8.80 | 4 349.00 | 924.76 | 984.36 | 123.16 | 2 890.38 | 7.07 | 5.66 | 973.42 | 333.18 | 476.73 | |||||
最小值 | 7.08 | 274.00 | 31.72 | 4.71 | 0.44 | 17.99 | 0.71 | 0.33 | 28.14 | 3.59 | 1.50 | ||||||
平均值 | 7.96 | 1 031.38 | 438.27 | 209.92 | 8.84 | 395.00 | 2.91 | 1.35 | 261.08 | 81.93 | 72.75 | ||||||
标准差 | 0.55 | 1 047.07 | 193.14 | 263.43 | 27.14 | 735.41 | 1.81 | 1.26 | 234.02 | 98.49 | 113.32 | ||||||
变异系数 | 0.07 | 1.02 | 0.44 | 1.25 | 3.07 | 1.86 | 0.62 | 0.93 | 0.90 | 1.20 | 1.56 | ||||||
三区 | 最大值 | 8.51 | 1 179.00 | 405.04 | 463.45 | 5.77 | 242.52 | 9.33 | 2.60 | 429.25 | 13.87 | 14.41 | |||||
最小值 | 8.20 | 796.00 | 275.72 | 56.01 | 1.72 | 40.70 | 1.39 | 0.76 | 277.00 | 7.32 | 1.62 | ||||||
平均值 | 8.42 | 996.80 | 340.14 | 292.06 | 3.52 | 122.18 | 5.12 | 1.59 | 361.71 | 10.27 | 5.81 | ||||||
标准差 | 0.12 | 132.50 | 41.77 | 134.64 | 1.58 | 94.54 | 2.87 | 0.60 | 52.50 | 2.24 | 4.44 | ||||||
变异系数 | 0.01 | 0.13 | 0.12 | 0.46 | 0.45 | 0.77 | 0.56 | 0.37 | 0.15 | 0.22 | 0.76 |
Table 3 Statistical table of chemical composition of groundwater in three study zones
区域 | 统计量 | pH | 地下水中各化学组分的指标参数统计值 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDS | Cl- | F- | K+ | Na+ | Ca2+ | Mg2+ | |||||||||||
一区 | 最大值 | 7.97 | 963.00 | 461.16 | 376.63 | 115.85 | 76.08 | 1.33 | 1.86 | 37.49 | 220.71 | 68.14 | |||||
最小值 | 7.10 | 222.00 | 204.96 | 3.60 | 0.00 | 11.99 | 0.28 | 0.05 | 3.55 | <检出限 | 24.55 | ||||||
平均值 | 7.64 | 391.61 | 302.15 | 48.78 | 44.49 | 43.17 | 0.70 | 1.23 | 11.69 | 91.14 | 31.77 | ||||||
标准差 | 0.20 | 155.61 | 65.88 | 83.97 | 37.81 | 17.98 | 0.24 | 0.53 | 7.06 | 43.04 | 9.61 | ||||||
变异系数 | 0.03 | 0.40 | 0.22 | 1.72 | 0.85 | 0.42 | 0.34 | 0.43 | 0.60 | 0.47 | 0.30 | ||||||
二区 | 最大值 | 8.80 | 4 349.00 | 924.76 | 984.36 | 123.16 | 2 890.38 | 7.07 | 5.66 | 973.42 | 333.18 | 476.73 | |||||
最小值 | 7.08 | 274.00 | 31.72 | 4.71 | 0.44 | 17.99 | 0.71 | 0.33 | 28.14 | 3.59 | 1.50 | ||||||
平均值 | 7.96 | 1 031.38 | 438.27 | 209.92 | 8.84 | 395.00 | 2.91 | 1.35 | 261.08 | 81.93 | 72.75 | ||||||
标准差 | 0.55 | 1 047.07 | 193.14 | 263.43 | 27.14 | 735.41 | 1.81 | 1.26 | 234.02 | 98.49 | 113.32 | ||||||
变异系数 | 0.07 | 1.02 | 0.44 | 1.25 | 3.07 | 1.86 | 0.62 | 0.93 | 0.90 | 1.20 | 1.56 | ||||||
三区 | 最大值 | 8.51 | 1 179.00 | 405.04 | 463.45 | 5.77 | 242.52 | 9.33 | 2.60 | 429.25 | 13.87 | 14.41 | |||||
最小值 | 8.20 | 796.00 | 275.72 | 56.01 | 1.72 | 40.70 | 1.39 | 0.76 | 277.00 | 7.32 | 1.62 | ||||||
平均值 | 8.42 | 996.80 | 340.14 | 292.06 | 3.52 | 122.18 | 5.12 | 1.59 | 361.71 | 10.27 | 5.81 | ||||||
标准差 | 0.12 | 132.50 | 41.77 | 134.64 | 1.58 | 94.54 | 2.87 | 0.60 | 52.50 | 2.24 | 4.44 | ||||||
变异系数 | 0.01 | 0.13 | 0.12 | 0.46 | 0.45 | 0.77 | 0.56 | 0.37 | 0.15 | 0.22 | 0.76 |
区域 | 统计量 | 元素含量/(pmol·L-1) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | |||||
一区 | 最小值 | 40 | 20 | 6 | 27 | 10 | 85 | 14 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | |||
最大值 | 242 | 444 | 57 | 218 | 38 | 589 | 43 | 7 | 44 | 13 | 45 | 9 | 65 | 13 | ||||
平均值 | 124 | 135 | 24 | 102 | 22 | 209 | 26 | 3 | 19 | 5 | 16 | 2 | 16 | 3 | ||||
二区 | 最小值 | 36 | 27 | 6 | 16 | 8 | 18 | 10 | 1 | 5 | 1 | 4 | 1 | 2 | 1 | |||
最大值 | 982 | 1 503 | 273 | 835 | 342 | 559 | 404 | 49 | 224 | 32 | 85 | 13 | 61 | 14 | ||||
平均值 | 212 | 306 | 46 | 171 | 45 | 197 | 51 | 6 | 33 | 7 | 20 | 3 | 18 | 4 | ||||
三区 | 最小值 | 35 | 70 | 12 | 42 | 7 | 85 | 11 | 1 | 6 | 4 | 5 | 1 | 5 | 1 | |||
最大值 | 1 648 | 2 545 | 377 | 1 471 | 282 | 309 | 291 | 38 | 183 | 39 | 109 | 16 | 95 | 16 | ||||
平均值 | 514 | 822 | 120 | 471 | 91 | 181 | 89 | 12 | 60 | 13 | 36 | 5 | 29 | 5 | ||||
区域 | 统计量 | 元素含量/(pmol·L-1) | (La/Sm)UCC | (Gd/Yb)UCC | Ce/Ce* | Eu/Eu* | ||||||||||||
∑REE | ∑LREE | ∑HREE | ||||||||||||||||
一区 | 最小值 | 392 | 368 | 23 | 0.48 | 0.33 | 0.11 | 19.03 | ||||||||||
最大值 | 1 176 | 1 039 | 236 | 1.08 | 3.51 | 2.29 | 89.81 | |||||||||||
平均值 | 707 | 617 | 90 | 0.8 | 1.2 | 0.61 | 43.52 | |||||||||||
二区 | 最小值 | 174 | 113 | 31 | 0.33 | 0.22 | 0.31 | 2.27 | ||||||||||
最大值 | 4 631 | 3 786 | 846 | 2.77 | 4.26 | 1.52 | 90.62 | |||||||||||
平均值 | 1 119 | 977 | 142 | 0.74 | 1.62 | 0.8 | 43.04 | |||||||||||
三区 | 最小值 | 286 | 251 | 35 | 0.73 | 1.14 | 0.74 | 2.56 | ||||||||||
最大值 | 7 266 | 6 480 | 786 | 0.81 | 1.82 | 0.81 | 45.79 | |||||||||||
平均值 | 2 447 | 2 198 | 249 | 0.76 | 1.49 | 0.77 | 22.28 |
Table 4 REE concentrations and fractionation parameters in groundwater collected from the North China Plain (NCP)
区域 | 统计量 | 元素含量/(pmol·L-1) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | |||||
一区 | 最小值 | 40 | 20 | 6 | 27 | 10 | 85 | 14 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | |||
最大值 | 242 | 444 | 57 | 218 | 38 | 589 | 43 | 7 | 44 | 13 | 45 | 9 | 65 | 13 | ||||
平均值 | 124 | 135 | 24 | 102 | 22 | 209 | 26 | 3 | 19 | 5 | 16 | 2 | 16 | 3 | ||||
二区 | 最小值 | 36 | 27 | 6 | 16 | 8 | 18 | 10 | 1 | 5 | 1 | 4 | 1 | 2 | 1 | |||
最大值 | 982 | 1 503 | 273 | 835 | 342 | 559 | 404 | 49 | 224 | 32 | 85 | 13 | 61 | 14 | ||||
平均值 | 212 | 306 | 46 | 171 | 45 | 197 | 51 | 6 | 33 | 7 | 20 | 3 | 18 | 4 | ||||
三区 | 最小值 | 35 | 70 | 12 | 42 | 7 | 85 | 11 | 1 | 6 | 4 | 5 | 1 | 5 | 1 | |||
最大值 | 1 648 | 2 545 | 377 | 1 471 | 282 | 309 | 291 | 38 | 183 | 39 | 109 | 16 | 95 | 16 | ||||
平均值 | 514 | 822 | 120 | 471 | 91 | 181 | 89 | 12 | 60 | 13 | 36 | 5 | 29 | 5 | ||||
区域 | 统计量 | 元素含量/(pmol·L-1) | (La/Sm)UCC | (Gd/Yb)UCC | Ce/Ce* | Eu/Eu* | ||||||||||||
∑REE | ∑LREE | ∑HREE | ||||||||||||||||
一区 | 最小值 | 392 | 368 | 23 | 0.48 | 0.33 | 0.11 | 19.03 | ||||||||||
最大值 | 1 176 | 1 039 | 236 | 1.08 | 3.51 | 2.29 | 89.81 | |||||||||||
平均值 | 707 | 617 | 90 | 0.8 | 1.2 | 0.61 | 43.52 | |||||||||||
二区 | 最小值 | 174 | 113 | 31 | 0.33 | 0.22 | 0.31 | 2.27 | ||||||||||
最大值 | 4 631 | 3 786 | 846 | 2.77 | 4.26 | 1.52 | 90.62 | |||||||||||
平均值 | 1 119 | 977 | 142 | 0.74 | 1.62 | 0.8 | 43.04 | |||||||||||
三区 | 最小值 | 286 | 251 | 35 | 0.73 | 1.14 | 0.74 | 2.56 | ||||||||||
最大值 | 7 266 | 6 480 | 786 | 0.81 | 1.82 | 0.81 | 45.79 | |||||||||||
平均值 | 2 447 | 2 198 | 249 | 0.76 | 1.49 | 0.77 | 22.28 |
Fig.9 UCC-normalized REE pattern for groundwater in study zones I-III (a-c) and horizontal variations of Ce/Ce* and Eu/Eu* (d) in groundwater in the study area
Fig.12 (a) Relationship between HCO 3 - and F- in groundwater and (b) variation of equilibrium constants for REE-carbonate complexation reactions with increasing atomic number (data from [26,28,39⇓-41])
[1] |
WANG G, CHENG G. Fluoride distribution in water and the governing factors of environment in arid north-west China[J]. Journal of Arid Environments, 2001, 49(3): 601-614.
DOI URL |
[2] | MSONDA K W M, MASAMBA W R L, FABIANO E. A study of fluoride groundwater occurrence in Nathenje, Lilongwe, Malawi[J]. Physics and Chemistry of the Earth, 2007, 32(15): 1178-1184. |
[3] |
SU C L, WANG Y X, XIE X J, et al. Aqueous geochemistry of high-fluoride groundwater in Datong Basin, Northern China[J]. Journal of Geochemical Exploration, 2013, 135: 79-92.
DOI URL |
[4] |
FUGE R. Fluorine in the environment, a review of its sources and geochemistry[J]. Applied Geochemistry, 2019, 100: 393-406.
DOI URL |
[5] | 何锦, 张福存, 韩双宝, 等. 中国北方高氟地下水分布特征和成因分析[J]. 中国地质, 2010, 37(3): 621-626. |
[6] |
RAFIQUE T, NASEEM S, HAIDER T, et al. Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area, Sindh, Pakistan[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 424-430.
DOI URL |
[7] | SCHAFER D, SUN J, JAMIESON J, et al. Fluoride release from carbonate-rich fluorapatite during managed aquifer recharge: model-based development of mitigation strategies[J]. Water Research, 2021, 193: 116880. |
[8] |
SAJIL KUMAR P J, JEGATHAMBAL P, JAMES E J. Factors influencing the high fluoride concentration in groundwater of Vellore District, South India[J]. Environmental Earth Sciences, 2014, 72(7): 2437-2446.
DOI URL |
[9] |
MATTHEW C, IAN C, MASSIMO R, et al. Controls on elevated fluoride and arsenic concentrations in groundwater from the Yuncheng Basin, China[J]. Applied Geochemistry, 2011, 26(4): 540-552.
DOI URL |
[10] |
JACKS G, BHATTACHARYA P, CHAUDHARY V, et al. Controls on the genesis of some high-fluoride groundwaters in India[J]. Applied Geochemistry, 2005, 20(2):221-228.
DOI URL |
[11] |
KIM K, JEONG G Y. Factors influencing natural occurrence of fluoride-rich groundwaters: a case study in the southeastern part of the Korean Peninsula[J]. Chemosphere, 2005, 58(10): 1399-1408.
DOI URL |
[12] |
JOHANNESSON K, STETZENBACH K, HODGE V. Rare earth elements as geochemical tracers of regional groundwater mixing[J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3605-3618.
DOI URL |
[13] |
TANG J, JOHANNESSON K H. Controls on the geochemistry of rare earth elements along a groundwater flow path in the Carrizo Sand aquifer, Texas, USA[J]. Chemical Geology, 2006, 225(1/2): 156-171.
DOI URL |
[14] |
CHEVIS D A., JOHANNESSON K H, BURDIGE D J, et al. Submarine groundwater discharge of rare earth elements to a tidally-mixed estuary in Southern Rhode Island[J]. Chemical Geology, 2015, 397: 128-142.
DOI URL |
[15] | 周海玲, 苏春利, 李俊霞, 等. 大同盆地沉积物REE分布特征及其对碘富集的指示[J]. 地球科学, 2017, 42(2): 298-306. |
[16] | WILLIS S S. Trace element geochemistry in groundwater flow systems[D]. Arlington: the University of Texas at Arlington, 2010. |
[17] |
DECRÉE S, POURRET O, BAELE J M. Rare earth element fractionation in heterogenite (CoOOH): implication for cobalt oxidized ore in the Katanga Copperbelt (Democratic Republic of Congo)[J]. Journal of Geochemical Exploration, 2015, 159: 290-301.
DOI URL |
[18] |
GUO H, BO Z, WANG G, et al. Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia[J]. Chemical Geology, 2010, 270(1-4): 117-125.
DOI URL |
[19] | 张兆吉, 费宇红, 陈宗宇. 华北平原地下水可持续利用调查评价[M]. 北京: 地质出版社, 2009. |
[20] | 王金翠, 张英, 温吉利, 等. 华北平原气候时空演变特征[J]. 现代地质, 2015, 29(2): 299-306. |
[21] | 张宗祜, 沈照理, 薛禹群. 华北平原地下水环境演化[M]. 北京: 地质出版社, 2000. |
[22] | NORDSTROM D K, PLUMMER L N, LANGMUIR D, et al. Revised chemical equilibrium data for major water-mineral reactions and their limitations[M]// BASSETT R L, MELCHIOR D. Chemical modeling in aqueous systems II. Washington: American Chemical Society, 1990, 416: 398-413. |
[23] | NORDSTROM D K, MAY H M. Aqueous equilibrium data for mononuclear aluminum species[M]//SPOSITO G. The environmental chemistry of aluminum. Boca Raton: CRC Press Inc, 1996: 39-80. |
[24] |
KLUNGNESS G D, BYRNE R H. Comparative hydrolysis behavior of the rare earths and yttrium: the influence of temperature and ionic strength[J]. Polyhedron, 2000, 19(1): 99-107.
DOI URL |
[25] | LEE J H, BYRNE R H. Examination of comparative rare earth element complexation behavior using linear free-energy relationships[J]. Pergamon, 1992, 56(3): 1127-1137. |
[26] | LUO Y R, BYRNE R H. Carbonate complexation of yttrium and the rare earth elements in natural waters[J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 0-699. |
[27] |
SCHIJF J, BYRNE R H. Determination of SO4β1 for yttrium and the rare earth elements at I=0.66 m and t=25 ℃: implications for YREE solution speciation in sulfate-rich waters[J]. Geochimica et Cosmochimica Acta, 2004, 68(13): 2825-2837.
DOI URL |
[28] | MILLERO F J. Stability constants for the formation of rare earth-inorganic complexes as a function of ionic strength[J]. Pergamon, 1992, 56(8): 3123-3132. |
[29] |
MIGDISOV A A, WILLIAMS-JONES A E, WAGNER T. An experimental study of the solubility and speciation of the Rare Earth Elements (III) in fluoride and chloride-bearing aqueous solutions at temperatures up to 300℃[J]. Geochimica et Cosmochimica Acta, 2009, 73(23): 7087-7109.
DOI URL |
[30] | 张威, 傅新锋, 张甫仁. 地下水中氟含量与温度、pH值、(Na++K+)/Ca2+的关系: 以河南省永城矿区为例[J]. 地质与资源, 2004, 13(2): 109-111, 95. |
[31] | 刘海燕. 华北平原典型区地下水稀土元素的分布特征及其与铁、锰络合反应的模拟研究[D]. 北京: 中国地质大学(北京), 2018. |
[32] | 王亚平, 王岚, 许春雪, 等. 长江水系水文地球化学特征及主要离子的化学成因[J]. 地质通报, 2010, 29(2): 446-456. |
[33] |
DENG Y M, NORDSTROM D K, MCCLESKEY R B. Fluoride geochemistry of thermal waters in Yellowstone National Park: I. Aqueous fluoride speciation[J]. Geochimica et Cosmochimica Acta, 2011, 75(16): 4476-4489.
DOI URL |
[34] | MCLENNAN S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 1021. |
[35] | 王慧群, 胡斌, 滕彦国, 等. 拉林河流域地下水中稀土元素质量浓度及分异特征[J]. 南水北调与水利科技(中英文), 2021, 19(1): 158-167. |
[36] |
LIU H, GUO H, XING L, et al. Geochemical behaviors of rare earth elements in groundwater along a flow path in the North China Plain[J]. Journal of Asian Earth Sciences, 2016, 117: 33-51
DOI URL |
[37] |
WILKIN R T, LEE T R, LUDWIG R D, et al. Rare-earth elements as natural tracers for in situ remediation of groundwater[J]. Environmental Science and Technology, 2021, 55(2): 1251-1259.
DOI URL |
[38] | 樊连杰, 裴建国, 卢丽, 等. 桂林寨底地下河系统中地下水稀土元素含量及分异特征[J]. 中国稀土学报, 2018, 36(2): 247-256. |
[39] |
LEE J H, BYRNE R H. Complexation of trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions[J]. Geochimica et Cosmochimica Acta, 1993, 57(2): 295-302.
DOI URL |
[40] |
OHTA A, KAWABE I. Rare earth element partitioning between Fe oxyhydroxide precipitates and aqueous NaCl solutions doped with NaHCO3: determinations of rare earth element complexation constants with carbonate ions[J]. Geochemical Journal, 2000, 34(6): 439-454.
DOI URL |
[41] |
LIU X W, BYRNE R H. Comprehensive investigation of yttrium and rare earth element complexation by carbonate ions using ICP-mass spectrometry[J]. Journal of Solution Chemistry, 1998, 27(9): 803-815.
DOI URL |
[42] |
DUPRÉ B, GAILLARDET J, ROUSSEAU D, et al. Major and trace elements of river-borne material: the Congo Basin[J]. Geochimica et Cosmochimica Acta, 1996, 60(8): 1301-1321.
DOI URL |
[43] |
LEYBOURNE M I, GOODFELLOW W D, BOYLE D R, et al. Rapid development of negative Ce anomalies in surface waters and contrasting REE patterns in groundwaters associated with Zn-Pb massive sulphide deposits[J]. Applied Geochemistry, 2000, 15(6): 695-723.
DOI URL |
[44] |
LI J, ZHOU H, QIAN K, et al. Fluoride and iodine enrichment in groundwater of North China Plain: evidences from speciation analysis and geochemical modeling[J]. Science of the Total Environment, 2017, 598: 239-248.
DOI URL |
[45] |
KUMAR M, DAS N, GOSWAMI R, et al. Coupling fractionation and batch desorption to understand arsenic and fluoride co-contamination in the aquifer system[J]. Chemosphere, 2016, 164: 657-667.
DOI URL |
[46] |
KIM S H, KIM K, KO K S, et al. Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments[J]. Chemosphere, 2012, 87(8): 851-856.
DOI URL |
[1] | HOU Guohua, GAO Maosheng, YE Siyuan, ZHAO Guangming. Source of salt and the salinization process of shallow groundwater in the Yellow River Delta [J]. Earth Science Frontiers, 2022, 29(3): 145-154. |
[2] | LIANG Xiaoliang, TAN Wei, MA Lingya, ZHU Jianxi, HE Hongping. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits [J]. Earth Science Frontiers, 2022, 29(1): 29-41. |
[3] | WANG Wenxiang, LI Wenpeng, CAI Yuemei, AN Yonghui, SHAO Xinmin, WU Xi, YIN Dechao. The hydrogeochemical evolution of groundwater in the middle reaches of the Heihe River Basin [J]. Earth Science Frontiers, 2021, 28(4): 184-193. |
[4] | CAO Ruwen, ZHOU Xun, CHEN Binghua, LI Zhuang. Hydrogeochemical characteristics and genetic analysis of the Chaluo hot springs and geysers in the Batang County of Sichuan Province [J]. Earth Science Frontiers, 2021, 28(4): 361-372. |
[5] | HOU Guohua,GAO Maosheng,DANG Xianzhang. Hydrochemical characteristics and salinization causes of shallow groundwater in Caofeidian, Tangshan City [J]. Earth Science Frontiers, 2019, 26(6): 49-57. |
[6] | LIAO Lei,HE Jiangtao,PENG Cong,ZHANG Zhenguo,WANG Lei. Methodologies in calculating apparent background values of minor components in groundwater: a case study of the Liujiang Basin [J]. Earth Science Frontiers, 2018, 25(1): 267-275. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||