Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (6): 474-489.DOI: 10.13745/j.esf.sf.2024.2.18
DONG Shu1,2(), LIU Haiyan1,2,*(
), ZHANG Yifan1,2, WANG Zhen1,2, GUO Huaming3, SUN Zhanxue1,2, ZHOU Zhongkui1,2
Received:
2024-01-17
Revised:
2024-03-09
Online:
2024-11-25
Published:
2024-11-25
Contact:
LIU Haiyan
CLC Number:
DONG Shu, LIU Haiyan, ZHANG Yifan, WANG Zhen, GUO Huaming, SUN Zhanxue, ZHOU Zhongkui. Bioaccumulation of rare earth elements, uranium and thorium in plant-rhizosphere soil in Xiangshan uranium tailings areas[J]. Earth Science Frontiers, 2024, 31(6): 474-489.
植物编号 | 采样位置 | 植物名称 |
---|---|---|
ZW1 | 尾矿库内 | 石菖蒲 |
ZW2 | 蕨菜 | |
ZW3 | 芨芨草 | |
ZW4 | 尾矿库坝上 | 芒萁 |
ZW5 | 皱叶酸模 | |
ZW6 | 尾矿库坝下 | 小蓬草 |
ZW7 | 翅果菊 | |
ZW8 | 坝下农田 | 水稻 |
Table 1 Sampled plants and their names
植物编号 | 采样位置 | 植物名称 |
---|---|---|
ZW1 | 尾矿库内 | 石菖蒲 |
ZW2 | 蕨菜 | |
ZW3 | 芨芨草 | |
ZW4 | 尾矿库坝上 | 芒萁 |
ZW5 | 皱叶酸模 | |
ZW6 | 尾矿库坝下 | 小蓬草 |
ZW7 | 翅果菊 | |
ZW8 | 坝下农田 | 水稻 |
Fig.2 Photos of plant sample ((a): Acori tatarinowii Rhizoma; (b): Pteridium aquilinum; (c): Achnatherum splendens;(d): Dicranopteris dichotoma; (e): Rumex crispus; (f): Erigeron canadensis; (g): Lactuca indica; (h): Oryza sativa)
植物名称 | 植物部位 | 元素含量/(mg·kg-1) | ||||
---|---|---|---|---|---|---|
U | Th | ∑REEs | ∑LREEs | ∑HREEs | ||
石菖蒲 | 叶 | 3.70 | 1.85 | 3.49 | 2.32 | 1.17 |
茎 | 4.74 | 2.52 | 3.40 | 1.94 | 1.46 | |
根 | 78.7 | 5.73 | 9.20 | 5.17 | 4.03 | |
根际土壤 | 208 | 92.4 | 205.12 | 139.92 | 65.21 | |
蕨菜 | 叶 | 0.39 | 0.25 | 1.11 | 0.94 | 0.17 |
茎 | 1.27 | 0.34 | 0.65 | 0.45 | 0.20 | |
根 | 197 | 59.6 | 67.29 | 36.37 | 30.92 | |
根际土壤 | 458 | 293 | 390.7 | 224.3 | 166.4 | |
芨芨草 | 穗 | 0.40 | 0.18 | 2.16 | 1.72 | 0.44 |
叶 | 0.56 | 0.24 | 0.58 | 0.41 | 0.17 | |
茎 | 0.29 | 0.12 | 0.34 | 0.26 | 0.08 | |
根 | 653 | 20.1 | 23.89 | 11.24 | 12.65 | |
根际土壤 | 1 050 | 149 | 258.8 | 164.41 | 94.39 | |
芒萁 | 叶 | 0.20 | 0.16 | 1 973.04 | 1 490.8 | 482.24 |
茎 | 0.15 | 0.11 | 239.14 | 217.30 | 21.83 | |
根 | 1.10 | 2.24 | 171.16 | 119.13 | 52.03 | |
根际土壤 | 7.24 | 26.0 | 324.18 | 270.88 | 53.30 | |
皱叶酸模 | 叶 | 1.0 | 0.23 | 2.06 | 1.12 | 0.95 |
茎 | 0.41 | 0.21 | 0.89 | 0.61 | 0.28 | |
根 | 20.6 | 15.8 | 21.0 | 12.77 | 8.23 | |
根际土壤 | 257 | 219 | 347.5 | 240.8 | 106.7 | |
小蓬草 | 叶 | 1.19 | 1.05 | 24.08 | 18.84 | 5.24 |
茎 | 0.56 | 0.13 | 5.70 | 4.23 | 1.47 | |
根 | 24.9 | 3.07 | 132.03 | 85.06 | 46.98 | |
根际土壤 | 78.6 | 46.6 | 748.3 | 509.9 | 238.4 | |
翅果菊 | 叶 | 1.98 | 1.63 | 47.81 | 38.41 | 9.40 |
茎 | 0.14 | 0.05 | 6.18 | 4.88 | 1.30 | |
根 | 3.85 | 3.46 | 104.09 | 76.96 | 27.14 | |
根际土壤 | 23.2 | 28.2 | 588.4 | 443.7 | 144.7 | |
水稻 | 叶 | 0.51 | 0.15 | 6.2 | 4.62 | 1.58 |
茎 | 0.38 | 0.89 | 21.49 | 17.62 | 3.87 | |
根 | 3.3 | 13.0 | 286.6 | 234.2 | 52.39 | |
根际土壤 | 5.22 | 19.5 | 446.2 | 345.3 | 100.9 | |
全国表层土壤背景值 | 3.03 | 13.75 | 187.9 | 143.2 | 37.2 | |
江西表层土壤背景值 | 4.19 | 20.71 | 228.9 | 176.12 | 55.88 |
Table 2 Contents of REEs, U and Th in plants samples
植物名称 | 植物部位 | 元素含量/(mg·kg-1) | ||||
---|---|---|---|---|---|---|
U | Th | ∑REEs | ∑LREEs | ∑HREEs | ||
石菖蒲 | 叶 | 3.70 | 1.85 | 3.49 | 2.32 | 1.17 |
茎 | 4.74 | 2.52 | 3.40 | 1.94 | 1.46 | |
根 | 78.7 | 5.73 | 9.20 | 5.17 | 4.03 | |
根际土壤 | 208 | 92.4 | 205.12 | 139.92 | 65.21 | |
蕨菜 | 叶 | 0.39 | 0.25 | 1.11 | 0.94 | 0.17 |
茎 | 1.27 | 0.34 | 0.65 | 0.45 | 0.20 | |
根 | 197 | 59.6 | 67.29 | 36.37 | 30.92 | |
根际土壤 | 458 | 293 | 390.7 | 224.3 | 166.4 | |
芨芨草 | 穗 | 0.40 | 0.18 | 2.16 | 1.72 | 0.44 |
叶 | 0.56 | 0.24 | 0.58 | 0.41 | 0.17 | |
茎 | 0.29 | 0.12 | 0.34 | 0.26 | 0.08 | |
根 | 653 | 20.1 | 23.89 | 11.24 | 12.65 | |
根际土壤 | 1 050 | 149 | 258.8 | 164.41 | 94.39 | |
芒萁 | 叶 | 0.20 | 0.16 | 1 973.04 | 1 490.8 | 482.24 |
茎 | 0.15 | 0.11 | 239.14 | 217.30 | 21.83 | |
根 | 1.10 | 2.24 | 171.16 | 119.13 | 52.03 | |
根际土壤 | 7.24 | 26.0 | 324.18 | 270.88 | 53.30 | |
皱叶酸模 | 叶 | 1.0 | 0.23 | 2.06 | 1.12 | 0.95 |
茎 | 0.41 | 0.21 | 0.89 | 0.61 | 0.28 | |
根 | 20.6 | 15.8 | 21.0 | 12.77 | 8.23 | |
根际土壤 | 257 | 219 | 347.5 | 240.8 | 106.7 | |
小蓬草 | 叶 | 1.19 | 1.05 | 24.08 | 18.84 | 5.24 |
茎 | 0.56 | 0.13 | 5.70 | 4.23 | 1.47 | |
根 | 24.9 | 3.07 | 132.03 | 85.06 | 46.98 | |
根际土壤 | 78.6 | 46.6 | 748.3 | 509.9 | 238.4 | |
翅果菊 | 叶 | 1.98 | 1.63 | 47.81 | 38.41 | 9.40 |
茎 | 0.14 | 0.05 | 6.18 | 4.88 | 1.30 | |
根 | 3.85 | 3.46 | 104.09 | 76.96 | 27.14 | |
根际土壤 | 23.2 | 28.2 | 588.4 | 443.7 | 144.7 | |
水稻 | 叶 | 0.51 | 0.15 | 6.2 | 4.62 | 1.58 |
茎 | 0.38 | 0.89 | 21.49 | 17.62 | 3.87 | |
根 | 3.3 | 13.0 | 286.6 | 234.2 | 52.39 | |
根际土壤 | 5.22 | 19.5 | 446.2 | 345.3 | 100.9 | |
全国表层土壤背景值 | 3.03 | 13.75 | 187.9 | 143.2 | 37.2 | |
江西表层土壤背景值 | 4.19 | 20.71 | 228.9 | 176.12 | 55.88 |
Fig.3 UCC-normalized REEs patterns for different organs of the eight plants in study area ((a): Acori tatarinowii Rhizoma;(b): Pteridium aquilinum; (c): Achnatherum splendens; (d): Dicranopteris dichotoma; (e): Rumex crispus; (f): Erigeron canadensis;(g): Lactuca indica; (h): Oryza sativa)
Fig.4 Total REEs (ΣREEs) contents of different organs of eight plants in study area ((a): Acori tatarinowii Rhizoma;(b): Pteridium aquilinum; (c): Achnatherum splendens; (d): Dicranopteris dichotoma; (e): Rumex crispus; (f): Erigeron canadensis;(g): Lactuca indica; (h): Oryza sativa)
Fig.6 Pearson correlation analysis of soil pH, total carbon (TC), REEs, U and Th contents (represented by S) and DTPA extracted REEs, U and Th contents (represented by D)
Fig.8 Distribution diagram of Bioconcentration Factor (BCF) and Translocation Factor (TF) ((a), (c), (e): BCF of ∑REEs and U, Th; (b), (d), (f): TF of ∑REEs and U, Th)
[1] | NEA(NUCLEAR ENERGY AGENCY), IAEA(INTERNATIONAL ATOMIC ENERGY AGENCY). Uranium 2018:resources, production and demand[R]. Paris: Organisation for Economic Co-Operation and Development, 2018. |
[2] | 魏光普, 张彦妮, 于晓燕, 等. 典型稀土矿区植被对重金属、稀土元素和放射性核素富集特征研究[J]. 稀土, 2023, 44(3): 74-85. |
[3] | YUE Q, HE J, ZHI S, et al. Fuel cycles optimization of nuclear power industry in China[J]. Annals of Nuclear Energy, 2018, 111(2018): 635-643. |
[4] | US Geological Survey and ORIENTEERING S. Mineral commodity summaries[M]. Reston: US Geological Survey, 2009. |
[5] |
ALONSO E, SHERMAN A M, WALLINGTON T J, et al. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies[J]. Environmental Science and Technology, 2012, 46(6): 3406-3414.
DOI PMID |
[6] | 孙占学, 刘媛媛, 马文洁, 等. 铀矿区地下水及其生态安全研究进展[J]. 地学前缘, 2014, 21(4): 158-167. |
[7] |
孙占学, 马文洁, 刘亚洁, 等. 地浸采铀矿山地下水环境修复研究进展[J]. 地学前缘, 2021, 28(5): 215-225.
DOI |
[8] | BHALARA P D, PUNETHA D, BALASUBRAMANIAN K. A review of potential remediation techniques for uranium(VI) ion retrieval from contaminated aqueous environment[J]. Journal of Environmental Chemical Engineering, 2014, 2(3): 1621-1634. |
[9] | 王清良, 韦克钢, 张琪, 等. 二氧化硅胶体聚合体吸附铀的研究[J]. 南华大学学报(自然科学版), 2016, 30(4): 11-15. |
[10] | 易正戟. 硫酸盐还原菌和零价铁协同治理地浸采铀矿山废水的机理研究[D]. 广州: 中国科学院广州地球化学研究所, 2007. |
[11] | CWANEK A, MIETELSKI J W, ŁOKAS E, et al. The radioactive contamination study in south-western Greenland tundra in 2012—2013[J]. Journal of Environmental Radioactivity, 2020, 212: 106125. |
[12] | 季建文. 铀矿山废水处理: 铀镭的去除[M]. 北京: 原子能出版社, 1982. |
[13] | 柳建祥, 杨勇, 刘迎九, 等. 南方某铀矿山地下水的监测[J]. 矿业快报, 2007, 23(5): 63-64. |
[14] | 王学锋, 许春雪, 顾雪, 等. 典型稀土矿区周边土壤中稀土元素含量及赋存形态研究[J]. 岩矿测试, 2019, 38(2): 137-146. |
[15] | 逯秋源, 樊丽, 姚芸, 等. 植物联合修复土壤重金属污染的研究进展[J]. 四川环境, 2023, 42(4): 319-327. |
[16] | 何东, 邱波, 彭尽晖, 等. 湖南下水湾铅锌尾矿库优势植物重金属含量及富集特征[J]. 环境科学, 2013, 34(9): 3595-3600. |
[17] | 张巧玲, 陈志强, 林强, 等. 南方离子型稀土矿区芒萁的稀土提取能力[J]. 稀土, 2020, 41(4): 73-81. |
[18] | 宋刚, 冯颖思, 祝秋萍, 等. 芒萁: 一种新发现的226Ra和232Th富集植物[J]. 广州大学学报(自然科学版), 2014, 13(2): 81-87. |
[19] | 魏光普, 闫伟, 于晓燕, 等. 轻稀土尾矿库区植被修复的镧、铈富集植物筛选[J]. 林业科学, 2019, 55(5): 20-26. |
[20] | 丁德馨, 李广悦, 胡南, 等. 铀尾砂中植物采铀方法研究[J]. 矿冶工程, 2010, 30(4): 58-60. |
[21] | 黄常, 杨瑞丽, 郭腾, 等. 苏丹草对铀的积累特征试验研究[J]. 南华大学学报(自然科学版), 2015, 29(3): 21-24. |
[22] | 唐丽, 柏云, 邓大超, 等. 修复铀污染土壤超积累植物的筛选及积累特征研究[J]. 核技术, 2009, 32(2): 136-141. |
[23] | LIANGT, DING S M, SONG W C, et al. A review of fractionations of rare earth elements in plants[J]. Journal of Rare Earths, 2008, 26(1): 7-15. |
[24] | 张立锋, 刘杰民, 张翼明. 白云鄂博矿区土壤和植物中稀土元素的分布特征[J]. 岩矿测试, 2019, 38(5): 556-564. |
[25] | NKRUMAH P N, ERSKINE P D, ERSKINE J D, et al. Rare earth elements (REE) in soils and plants of a uranium-REE mine site and exploration target in Central Queensland, Australia[J]. Plant and Soil, 2021, 464(1): 375-389. |
[26] | 董泽彬. 江西相山铀矿田横涧铀矿床重稀土元素赋存状态研究[D]. 抚州: 东华理工大学, 2020. |
[27] | 巫建华, 劳玉军, 谢国发, 等. 江西相山铀矿田火山岩系地层学、年代学特征及地质意义[J]. 中国地质, 2017, 44(5): 974-992. |
[28] | 赵沔, 杨水源, 左仁广, 等. 赣杭构造带相山火山侵入杂岩的岩浆演化特征: 来自斜长石和黑云母的化学成分研究[J]. 岩石学报, 2015, 31(3): 759-768. |
[29] | 张万良, 郭福生, 李嘉, 等. 相山铀矿田矿体分布规律研究新进展[J]. 东华理工大学学报(自然科学版), 2022, 45(4): 311-318. |
[30] | 谢国发, 姚亦军, 胡志华, 等. 相山火山盆地西部铀矿床分布特征[J]. 铀矿地质, 2014, 30(6): 328-334. |
[31] | 周加云, 夏菲, 段小刚, 等. 江西乐安李家岭铀矿床稀土元素地球化学特征[J]. 南方国土资源, 2015(10): 32-34. |
[32] | 李海英, 银涌兵, 李仲琴. 相山西部居隆庵铀矿床水文地质特征[C]//中国地质学会2015年学术年会论文集. 西安: 中国地质学会, 2015: 7. |
[33] | 高娟琴, 于扬, 李以科, 等. 内蒙白云鄂博稀土矿土壤—植物稀土元素及重金属分布特征[J]. 岩矿测试, 2021, 40(6): 871-882. |
[34] | 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. |
[35] | 林卓玲, 黄光庆. 土壤稀土元素的迁移—富集机制及其生态效应[J]. 地球环境学报, 2023, 14(5): 521-538. |
[36] | XU Y Y, LUO C K, GAO L, et al. Anomalous concentrations and environmental implications of rare earth elements in the rock-soil-moss system in the black shale area[J]. Chemosphere, 2022, 307: 135770. |
[37] | BAU M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect[J]. Geochimica et Cosmochimica Acta, 1999, 63(1): 67-77. |
[38] | LAVEUF C, CORNU S. A review on the potentiality of Rare Earth Elements to trace pedogenetic processes[J]. Geoderma, 2009, 154(1/2): 1-12. |
[39] | BROOKINS D G. Aqueous geochemistry of Rare Earth Elements[J]. Geochemistryand Mineralogy of Rare Earth Elements, 1989, 21(1): 201-225. |
[40] | 吴征镒. 中国植物志[M]. 北京: 科学出版社, 2010. |
[41] | SUN J X, ZHAO H H, WANG Y Q. Study on the contents of trace rare earth elements and their distribution in wheat and rice samples by RNAA[J]. Journal of Radioanalytical and Nuclear Chemistry, 1994, 179(2): 377-383. |
[42] | CHABAUX F, STILLE P, PRUNIER J, et al. Plant-soil-water interactions: implications from U-Th-Ra isotope analysis in soils, soil solutions and vegetation (strengbach CZO, France)[J]. Geochimica et Cosmochimica Acta, 2019, 259: 188-210. |
[43] | 陈井影. 铀尾矿库周边土壤中铀的污染特征及迁移转化机制研究[D]. 南昌: 南昌大学, 2019. |
[44] | 姜晓燕, 闫冬, 何映雪, 等. 放射性核素对植物的生物效应[J]. 癌变·畸变·突变, 2022, 34(3): 237-241. |
[45] |
DINALI G S, ROOT R A, AMISTADI M K, et al. Rare earth elements (REY) sorption on soils of contrasting mineralogy and texture[J]. Environment International, 2019, 128: 279-291.
DOI PMID |
[46] | CHANG C Y, LI F B, LIU C S, et al. Fractionation characteristics of rare earth elements (REEs) linked with secondary Fe, Mn, and Al minerals in soils[J]. Acta Geochimica, 2016, 35(4): 329-339. |
[47] | LAND M, ÖHLANDER B, INGRI J, et al. Solid speciation and fractionation of rare earth elements in a spodosol profile from northern Sweden as revealed by sequential extraction[J]. Chemical Geology, 1999, 160(1/2): 121-138. |
[48] | MARTINEZ R E, POURRET O, FAUCON M P, et al. Effect of rare earth elements on rice plant growth[J]. Chemical Geology, 2018, 489: 28-37. |
[49] | GALÁN E, FERNÁNDEZ-CALIANI J C, MIRAS A, et al. Residence and fractionation of rare earth elements during kaolinization of alkaline peraluminous granites in NW Spain[J]. Clay Minerals, 2007, 42(3): 341-352. |
[50] | ÖHLANDER B, LAND M, INGRI J, et al. Mobility of rare earth elements during weathering of till in northern Sweden[J]. Applied Geochemistry, 1996, 11(1/2): 93-99. |
[51] | YUSOFF Z M, NGWENYA B T, PARSONS I. Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia[J]. Chemical Geology, 2013, 349: 71-86. |
[52] | NDJIGUI P D, BILONG P, BITOM D, et al. Mobilization and redistribution of major and trace elements in two weathering profiles developed on serpentinites in the Lomié ultramafic complex, South-East Cameroon[J]. Journal of African Earth Sciences, 2008, 50(5): 305-328. |
[53] | BABECHUK M G, WIDDOWSON M, KAMBER B S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India[J]. Chemical Geology, 2014, 363: 56-75. |
[54] | 李朝峰, 李启航, 刘岚君, 等. 贵州蓝莓核心产区岩石—土壤—植物系统稀土元素地球化学特征[J]. 中国稀土学报, 2021, 39(4): 653-662. |
[55] | 彭钰欣, 刘叶, 陈子武, 等. 废弃稀土尾砂地先锋植物根区核心菌群研究[J]. 环境科学与技术, 2022, 45(4): 173-183. |
[56] | BULGARELLI D, GARRIDO-OTER R, MÜNCH P, et al. Structure and function of the bacterial root microbiota in wild and domesticated barley[J]. Cell Host and Microbe, 2015, 17(3): 392-403. |
[57] | BOUFFAUD M L, POIRIER M A, MULLER D, et al. Root microbiome relates to plant host evolution in maize and other Poaceae[J]. Environmental Microbiology, 2014, 16(9): 2804-2814. |
[58] | EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, et al. Structure,variation, and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): E911-E920. |
[59] | 陈莺燕, 刘文深, 袁鸣, 等. 超富集植物对稀土元素吸收转运解毒与分异的研究进展[J]. 土壤学报, 2019, 56(4): 785-795. |
[60] |
DING, LIANG T, ZHANG, et al. Fractionation mechanisms of rare earth elements (REEs) in hydroponic wheat: an application for metal accumulation by plants[J]. Environmental Science and Technology, 2006, 40(8): 2686-2691.
PMID |
[1] | QIU Linfei, LI Ziying, ZHANG Zilong, WANG Longhui, LI Zhencheng, HAN Meizhi, WANG Tingting. Characteristics of organic matter in Lower Cretaceous ore-bearing sandstones and its relationship with uranium mineralization in the northern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(4): 281-296. |
[2] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[3] | LUO Huan, SHAO Deyong, MENG Kang, ZHANG Yu, SONG Hui, YAN Jianping, ZHANG Tongwei. Origin of excess barium in the Cambrian shale of Yichang area, western Hubei, and its implication for organic matter accumulation [J]. Earth Science Frontiers, 2023, 30(3): 66-82. |
[4] | WANG Zhen, GUO Huaming, LIU Haiyan, XING Shiping. Geochemical characteristics of rare earth elements in high-fluoride groundwater in the Guide Basin and its implications [J]. Earth Science Frontiers, 2023, 30(3): 505-514. |
[5] | LIU Haiyan, LIU Maohan, ZHANG Weimin, SUN Zhanxue, WANG Zhen, WU Tonghang, GUO Huaming. Distribution and fractionation of rare earth elements in high fluoride groundwater from the North China Plain [J]. Earth Science Frontiers, 2022, 29(3): 129-144. |
[6] | LIANG Xiaoliang, TAN Wei, MA Lingya, ZHU Jianxi, HE Hongping. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits [J]. Earth Science Frontiers, 2022, 29(1): 29-41. |
[7] | REN Jiangbo, DENG Yinan, LAI Peixin, HE Gaowen, WANG Fenlian, YAO Huiqiang, DENG Xiguang, LIU Yonggang. Geochemical characteristics and genesis of the polymetallic nodules in the Pacific survey area [J]. Earth Science Frontiers, 2021, 28(2): 412-425. |
[8] | HONG Jin,GAN Chengshi,LIU Jie. Prediction of REEs in OIB by major elements based on machine learning [J]. Earth Science Frontiers, 2019, 26(4): 45-54. |
[9] | ZHOU Hongying,TU Jiarun,LI Guozhan,XIAO Zhibin,GENG Jianzhen,GUO Hu,YE Lijuan,XU Yawen,ZHANG Jian,LI Huimin. Research on the current status and future of U-Pb chronology study of uranium minerals from the sandstone-type uranium deposits. [J]. Earth Science Frontiers, 2018, 25(6): 290-295. |
[10] | LIU Qingqing,CHI Qinghua,WANG Xueqiu,ZHOU Jian,LIU Hanliang,LIU Dongsheng,GAO Yanfang,ZHAI Daxing. Distribution and influencing factors of rare earth elements in carbonate rocks along three continentalscale transects in eastern China. [J]. Earth Science Frontiers, 2018, 25(4): 99-115. |
[11] | HUANG Shaohua,QIN Mingkuan,David SELBY,LIU Yinshan,XU Qiang,HE Zhongbo,LIU Zhangyue,LIU Junjie. Geochemistry characteristics and Re-Os isotopic dating of Jurassic oil sands in the northwestern margin of the Junggar Basin. [J]. Earth Science Frontiers, 2018, 25(2): 254-266. |
[12] | GUO Jiangfeng,YAO Duoxi,CHEN Jian,CHEN Ping. Geochemistry of the rare earth elements of coals from the Longtan Formation in Chongqing and its geological implication [J]. Earth Science Frontiers, 2016, 23(3): 51-58. |
[13] | JIAO Yang-Quan, WU Li-Qun, PANG Yun-Biao, RONG Hui, JI Dong-Min, MIAO Ai-Sheng, LI Hong-Liang. Sedimentarytectonic setting of the depositiontype uranium deposits forming in the PaleoAsian tectonic domain, North China. [J]. Earth Science Frontiers, 2015, 22(1): 189-205. |
[14] | . The relationship between granite evolution and uraniumthorium enrichment: An example from the Guidong granite body, North Guangdong Province. [J]. Earth Science Frontiers, 2011, 18(1): 110-117. |
[15] | YANG Tian, SHU Zhao-Yu, TUN Yi, QIU Shi-Fan, RAO Zhi-Guo, HAN Jiang-Wei. Rare earth elements geochemistry in topsoils from the eastern part of China. [J]. Earth Science Frontiers, 2010, 17(3): 233-241. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||