Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (4): 281-296.DOI: 10.13745/j.esf.sf.2023.9.23
Previous Articles Next Articles
QIU Linfei1(), LI Ziying1,*(
), ZHANG Zilong1, WANG Longhui2, LI Zhencheng2, HAN Meizhi1, WANG Tingting1
Received:
2023-07-16
Revised:
2023-09-18
Online:
2024-07-25
Published:
2024-07-10
CLC Number:
QIU Linfei, LI Ziying, ZHANG Zilong, WANG Longhui, LI Zhencheng, HAN Meizhi, WANG Tingting. Characteristics of organic matter in Lower Cretaceous ore-bearing sandstones and its relationship with uranium mineralization in the northern Ordos Basin[J]. Earth Science Frontiers, 2024, 31(4): 281-296.
Fig.1 Tectonic outline map of the Ordos Basin (a) (modified from [21]) and regional geological map of the North Ordos Basin (b) (modified from [10]) and geological map of ore deposit area (c) (modified according to data from No.208 Geological Party, CNNC)
钻孔号 | 样品编号 | 岩性 | 样品颜色 | 深度/m | 伽马强度/Ur |
---|---|---|---|---|---|
W20-1 | E2020-76 | 粗砂岩 | 浅红色 | 332.6 | 16 |
E2020-77 | 粗砂岩 | 灰绿色 | 337.8 | 17 | |
E2020-81 | 杂色粗砂岩 | 褐红-灰绿色 | 366.5 | 17 | |
E2020-86 | 粗砂岩 | 灰绿色 | 391.4 | 15 | |
E2020-89 | 粗砂岩 | 灰色(含紫红色) | 453 | 12 | |
E2020-334 | 粗砂岩(矿段) | 灰绿色 | 334 | 126 | |
E2020-335 | 粗砂岩(矿段) | 褐灰色 | 407.04 | 61 | |
E2020-634 | 粗砂岩 | 褐灰色 | 201.0 | 17 | |
W20-3 | W2020-17-1 | 中细砂岩 | 灰绿色 | 461.1 | 23 |
W2020-17-2 | 中砂岩 | 灰绿色 | 466.3 | 25 | |
W2020-17-3 | 中细砂岩 | 灰绿色 | 471.5 | 28 | |
W19-1 | E2020-225 | 粗砂岩 | 紫红色 | 80.41 | 10 |
E2020-234 | 中砂岩 | 绿色 | 198.38 | 10 | |
E2020-242 | 中砂岩 | 红色 | 286.6 | 11 | |
E2020-249 | 中砂岩 | 灰绿色 | 337.8 | 11 | |
E2020-279 | 粗砂岩 | 绿色 | 446.8 | 9 | |
E2020-283 | 粗砂岩 | 绿色 | 470.18 | 10 | |
Y31-0 | Y31-0-4 | 中细砂岩(矿段) | 灰绿色 | 358.31 | 23 |
Y0-31 | Y0-31-20 | 细砂岩(矿段) | 灰绿色 | 299.95 | 45 |
Y0-31-23 | 中砂岩(矿段) | 灰白色 | 328.7 | 12 | |
Y0-31-26 | 中粗砂岩(矿段) | 灰绿色 | 453.5 | 66 | |
Y0-31-37 | 条带状氧化细砂岩 | 浅红-灰色 | 148.6 | 12 | |
Y31-32 | Y31-32-1 | 细砂岩 | 灰绿色 | 264.4 | 9 |
Y31-32-J | 中粗砂岩(矿段) | 绛紫色 | 346.1 | 334 | |
Y31-32-C | 含有机质中粗砂岩(矿段) | 灰黑色 | 349.3 | 165 | |
Y32-31 | Y32-31-1 | 细砂岩(矿段) | 灰绿色 | 315.9 | 18 |
Table 1 Summary table of the main sample information in this study
钻孔号 | 样品编号 | 岩性 | 样品颜色 | 深度/m | 伽马强度/Ur |
---|---|---|---|---|---|
W20-1 | E2020-76 | 粗砂岩 | 浅红色 | 332.6 | 16 |
E2020-77 | 粗砂岩 | 灰绿色 | 337.8 | 17 | |
E2020-81 | 杂色粗砂岩 | 褐红-灰绿色 | 366.5 | 17 | |
E2020-86 | 粗砂岩 | 灰绿色 | 391.4 | 15 | |
E2020-89 | 粗砂岩 | 灰色(含紫红色) | 453 | 12 | |
E2020-334 | 粗砂岩(矿段) | 灰绿色 | 334 | 126 | |
E2020-335 | 粗砂岩(矿段) | 褐灰色 | 407.04 | 61 | |
E2020-634 | 粗砂岩 | 褐灰色 | 201.0 | 17 | |
W20-3 | W2020-17-1 | 中细砂岩 | 灰绿色 | 461.1 | 23 |
W2020-17-2 | 中砂岩 | 灰绿色 | 466.3 | 25 | |
W2020-17-3 | 中细砂岩 | 灰绿色 | 471.5 | 28 | |
W19-1 | E2020-225 | 粗砂岩 | 紫红色 | 80.41 | 10 |
E2020-234 | 中砂岩 | 绿色 | 198.38 | 10 | |
E2020-242 | 中砂岩 | 红色 | 286.6 | 11 | |
E2020-249 | 中砂岩 | 灰绿色 | 337.8 | 11 | |
E2020-279 | 粗砂岩 | 绿色 | 446.8 | 9 | |
E2020-283 | 粗砂岩 | 绿色 | 470.18 | 10 | |
Y31-0 | Y31-0-4 | 中细砂岩(矿段) | 灰绿色 | 358.31 | 23 |
Y0-31 | Y0-31-20 | 细砂岩(矿段) | 灰绿色 | 299.95 | 45 |
Y0-31-23 | 中砂岩(矿段) | 灰白色 | 328.7 | 12 | |
Y0-31-26 | 中粗砂岩(矿段) | 灰绿色 | 453.5 | 66 | |
Y0-31-37 | 条带状氧化细砂岩 | 浅红-灰色 | 148.6 | 12 | |
Y31-32 | Y31-32-1 | 细砂岩 | 灰绿色 | 264.4 | 9 |
Y31-32-J | 中粗砂岩(矿段) | 绛紫色 | 346.1 | 334 | |
Y31-32-C | 含有机质中粗砂岩(矿段) | 灰黑色 | 349.3 | 165 | |
Y32-31 | Y32-31-1 | 细砂岩(矿段) | 灰绿色 | 315.9 | 18 |
Fig.5 Microscopic characteristics of uranium minerals and their typical associated minerals in ore-bearing sandstones from the Tela’aobao uranium deposit, along with the Raman spectra of chlorite
Fig.6 Focused ion beam (FIB) cutting and transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS) characteristics of uranium minerals in ore from the Tela’aobao uranium deposit
样品编号 | 样品特征 | 铀含量/10-6 | TOC含量/% |
---|---|---|---|
E2020-76 | 褐灰色中粗砂岩 | 23.4 | 0.17 |
E2020-77 | 褐灰色中粗砂岩 | 21.2 | 0.10 |
E2020-81 | 绿色细砂岩 | 26.7 | 0.12 |
E2020-86 | 灰色粗砂岩 | 16.2 | 0.09 |
E2020-334 | 灰绿色粗砂岩(矿段) | 378.0 | 0.13 |
E2020-335 | 褐灰色粗砂岩(矿段) | 79.0 | 0.23 |
E2020-89 | 绿色粗砂岩 | 4.0 | 0.08 |
E2020-225 | 紫红粗砂岩 | 1.84 | 0.10 |
E2020-234 | 绿色中砂岩 | 7.99 | 0.09 |
E2020-242 | 红色中砂岩 | 7.15 | 0.13 |
E2020-249 | 灰绿色中砂岩 | 12.5 | 0.11 |
E2020-279 | 绿色粗砂岩 | 2.18 | 0.12 |
E2020-283 | 绿色粗砂岩 | 2.15 | 0.08 |
Y32-31-1 | 灰绿色细砂岩(矿段) | 11.8 | 0.09 |
Y31-32-1 | 灰绿色细砂岩 | 7.36 | 0.11 |
Y31-0-4 | 灰绿色中细砂岩(矿段) | 17.3 | 0.13 |
Y0-31-23 | 灰白色中砂岩 | 9.28 | 0.09 |
Y0-31-20 | 灰绿色细砂岩(矿段) | 39.5 | 0.08 |
Y0-31-26 | 灰绿色中粗砂岩(矿段) | 79.7 | 0.09 |
Y0-31-37 | 条带状氧化细砂岩 | 4.28 | 0.19 |
Y31-32-C | 灰黑色铀矿石(矿段) | 424 | 2.26 |
Table 2 Uranium and total organic carbon (TOC) content analysis results of ore-bearing sandstones of the Huanhe Formation from the Tela’aobao uranium deposit
样品编号 | 样品特征 | 铀含量/10-6 | TOC含量/% |
---|---|---|---|
E2020-76 | 褐灰色中粗砂岩 | 23.4 | 0.17 |
E2020-77 | 褐灰色中粗砂岩 | 21.2 | 0.10 |
E2020-81 | 绿色细砂岩 | 26.7 | 0.12 |
E2020-86 | 灰色粗砂岩 | 16.2 | 0.09 |
E2020-334 | 灰绿色粗砂岩(矿段) | 378.0 | 0.13 |
E2020-335 | 褐灰色粗砂岩(矿段) | 79.0 | 0.23 |
E2020-89 | 绿色粗砂岩 | 4.0 | 0.08 |
E2020-225 | 紫红粗砂岩 | 1.84 | 0.10 |
E2020-234 | 绿色中砂岩 | 7.99 | 0.09 |
E2020-242 | 红色中砂岩 | 7.15 | 0.13 |
E2020-249 | 灰绿色中砂岩 | 12.5 | 0.11 |
E2020-279 | 绿色粗砂岩 | 2.18 | 0.12 |
E2020-283 | 绿色粗砂岩 | 2.15 | 0.08 |
Y32-31-1 | 灰绿色细砂岩(矿段) | 11.8 | 0.09 |
Y31-32-1 | 灰绿色细砂岩 | 7.36 | 0.11 |
Y31-0-4 | 灰绿色中细砂岩(矿段) | 17.3 | 0.13 |
Y0-31-23 | 灰白色中砂岩 | 9.28 | 0.09 |
Y0-31-20 | 灰绿色细砂岩(矿段) | 39.5 | 0.08 |
Y0-31-26 | 灰绿色中粗砂岩(矿段) | 79.7 | 0.09 |
Y0-31-37 | 条带状氧化细砂岩 | 4.28 | 0.19 |
Y31-32-C | 灰黑色铀矿石(矿段) | 424 | 2.26 |
样品号 | 氯仿沥青A 含量/% | 饱和烃 含量/% | 芳香烃 含量/% | 胶质 含量/% | 沥青质 含量/% | 主碳数 | 饱芳比 | Pr/Ph | CPI | OEP | Pr/nC17 | Ph/nC18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
E2020-634 | 0.0023 | 46.67 | 11.11 | 33.33 | 8.89 | nC17 | 2.0 | 0.912 | 1.301 | 1.077 | 0.335 | 0.386 |
W2020-17-1 | 0.0021 | 54.00 | 15.00 | 22.00 | 9.00 | nC27 | 3.6 | 0.725 | 1.113 | 1.052 | 0.737 | 0.851 |
W2020-17-2 | 0.0012 | 35.00 | 20.00 | 31.67 | 13.33 | nC18/nC27 | 1.7 | 0.687 | 1.083 | 0.942 | 0.841 | 1.045 |
W2020-17-3 | 0.0016 | 57.14 | 12.86 | 17.14 | 12.86 | nC29 | 4.4 | 0.771 | 0.963 | 1.107 | 0.963 | 1.087 |
Table 3 Parameters of soluble organic matter extraction and gas chromatography-mass spectrometry (GC-MS) molecular geochemical analysis of ore-bearing sandstones of the Huanhe Formation from the Tela’aobao uranium deposit
样品号 | 氯仿沥青A 含量/% | 饱和烃 含量/% | 芳香烃 含量/% | 胶质 含量/% | 沥青质 含量/% | 主碳数 | 饱芳比 | Pr/Ph | CPI | OEP | Pr/nC17 | Ph/nC18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
E2020-634 | 0.0023 | 46.67 | 11.11 | 33.33 | 8.89 | nC17 | 2.0 | 0.912 | 1.301 | 1.077 | 0.335 | 0.386 |
W2020-17-1 | 0.0021 | 54.00 | 15.00 | 22.00 | 9.00 | nC27 | 3.6 | 0.725 | 1.113 | 1.052 | 0.737 | 0.851 |
W2020-17-2 | 0.0012 | 35.00 | 20.00 | 31.67 | 13.33 | nC18/nC27 | 1.7 | 0.687 | 1.083 | 0.942 | 0.841 | 1.045 |
W2020-17-3 | 0.0016 | 57.14 | 12.86 | 17.14 | 12.86 | nC29 | 4.4 | 0.771 | 0.963 | 1.107 | 0.963 | 1.087 |
Fig.9 Typical chromatograms of gas chromatography-mass spectrometry (GC-MS) analysis of residual organic matter extracts from ore-bearing sandstones of the Huanhe Formation from the Tela’aobao uranium deposit
[1] | 李子颖, 秦明宽, 蔡煜琦, 等. 鄂尔多斯盆地砂岩型铀矿成矿作用和前景分析[J]. 铀矿地质, 2020, 36(1): 1-13. |
[2] | LI Z Y, CHEN A P, FANG X H, et al. Origin and superposition metallogenic model of the sandstone-type uranium deposit in the northeastern Ordos Basin, China[J]. Acta Geologica Sinica (English Edition), 2008, 82(4): 745-749. |
[3] | 李子颖, 方锡珩, 陈安平, 等. 鄂尔多斯盆地东北部砂岩型铀矿叠合成矿模式[J]. 铀矿地质, 2009, 25(2): 65-70, 84. |
[4] | 薛春纪, 池国祥, 薛伟, 等. 鄂尔多斯盆地生烃过程与流体流动及铀矿化关系[J]. 地学前缘, 2011, 18(5): 19-28. |
[5] | 丁波, 刘红旭, 张宾, 等. 鄂尔多斯盆地北缘砂岩型铀矿含矿砂岩中钛铁矿蚀变及其聚铀过程探讨[J]. 地质论评, 2020, 66(2): 467-474. |
[6] | 王贵, 王强, 苗爱生, 等. 鄂尔多斯盆地纳岭沟铀矿床铀矿物特征与形成机理[J]. 矿物学报, 2017, 37(4): 461-468. |
[7] | 杨水胜, 王汇智, 闫骁龙, 等. 鄂尔多斯盆地中南部侏罗系直罗组流体包裹体特征[J]. 岩性油气藏, 2021, 33(6): 39-47. |
[8] | 陈霜, 王文旭, 聂逢君, 等. 鄂尔多斯盆地苏台庙-巴音淖尔地区铀成矿控制因素及找矿标志[J]. 东华理工大学学报(自然科学版), 2019, 42(2): 142-147, 155. |
[9] | LIU B, SHI Z Q, PENG Y B, et al. Sequence stratigraphy of the lower cretaceous uraniferous measures and mineralization of the sandstone-hosted Tamusu large uranium deposit, North China[J]. Acta Geologica Sinica (English Edition), 2022, 96(1): 167-192. |
[10] | 王龙辉, 剡鹏兵, 焦养泉, 等. 鄂尔多斯盆地北部下白垩统铀成矿模式[J]. 地质科技通报, 2023, 42(3): 222-233. |
[11] | 张字龙, 贺锋, 于阿朋, 等. 鄂尔多斯盆地砂岩型铀矿床中铀矿物赋存空间微观分析[J]. 矿物学报, 2022, 42(6): 815-824. |
[12] | 韩美芝, 李子颖, 张字龙, 等. 鄂尔多斯盆地西北部华池-环河组绿色砂岩成因探讨[J]. 铀矿地质, 2022(3): 394-408. |
[13] | 刘鑫扬, 贺锋, 剡鹏兵, 等. 鄂尔多斯盆地下白垩统砂岩型铀矿找矿方向[J]. 铀矿地质, 2022, 38(2): 168-180. |
[14] | 贺锋, 李子颖, 刘鑫扬, 等. 鄂尔多斯盆地西北部特拉敖包矿产地铀成矿机理研究[J]. 铀矿地质, 2023, 39(6): 859-874. |
[15] |
孔志岗, 张斌臣, 吴越, 等. 四川大梁子富锗铅锌矿床的控矿构造样式及成矿机制研究[J]. 地学前缘, 2022, 29(1): 143-159.
DOI |
[16] | 顾雪祥, 章永梅, 李葆华, 等. 沉积盆地中金属成矿与油气成藏的耦合关系[J]. 地学前缘, 2010, 17(2): 83-105. |
[17] | QIU L F, WU Y, WANG Q, et al. Metallogenic mechanism of typical carbonate-hosted uranium deposits in Guizhou (China)[J]. Minerals, 2022, 12(5): 585. |
[18] | QIU L F, LI X D, LIU W S, et al. Uranium deposits of erlian basin (China): role of carbonaceous debris organic matter and hydrocarbon fluids on uranium mineralization[J]. Minerals, 2021, 11(5): 532. |
[19] | 吴柏林, 刘池洋, 杨松林, 等. 沉积盆地有机矿产(油-气-煤)对铀成矿的作用机理及进展[J]. 西北大学学报(自然科学版), 2022, 52(6): 1044-1065. |
[20] |
任战利, 于强, 崔军平, 等. 鄂尔多斯盆地热演化史及其对油气的控制作用[J]. 地学前缘, 2017, 24(3): 137-148.
DOI |
[21] | 徐兴雨. 鄂尔多斯盆地断裂构造及其控藏作用研究[D]. 东营: 中国石油大学(华东), 2020. |
[22] | 魏斌, 张忠义, 杨友运. 鄂尔多斯盆地白垩系洛河组至环河华池组沉积相特征研究[J]. 地层学杂志, 2006, 30(4): 367-372. |
[23] | 赵国玺. 泊尔江海子断裂带岩性特征及封闭性演化史研究[D]. 西安: 西北大学, 2007. |
[24] | POTGIETER-VERMAAK S, MALEDI N, WAGNER N, et al. Raman spectroscopy for the analysis of coal: a review[J]. Journal of Raman Spectroscopy, 2011, 42(2): 123-129. |
[25] | CRANWELL P A, EGLINTON G, ROBINSON N. Lipids of aquatic organisms as potential contributors to lacustrine sediments-II[J]. Organic Geochemistry, 1987, 11(6): 513-527. |
[26] | MEYERS P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5/6): 213-250. |
[27] | 苏现波, 司青, 宋金星. 煤的拉曼光谱特征[J]. 煤炭学报, 2016, 41(5): 1197-1202. |
[28] | 张鼐, 王招明, 鞠凤萍, 等. 塔北地区奥陶系碳酸盐岩中的储层沥青[J]. 石油学报, 2013, 34(2): 225-231. |
[29] | 王茂林, 肖贤明, 魏强, 等. 页岩中固体沥青拉曼光谱参数作为成熟度指标的意义[J]. 天然气地球科学, 2015, 26(9): 1712-1718. |
[30] | CUESTA A, DHAMELINCOURT P, LAUREYNS J, et al. Raman microprobe studies on carbon materials[J]. Carbon, 1994, 32(8): 1523-1532. |
[31] | 段菁春, 庄新国, 何谋春. 不同变质程度煤的激光拉曼光谱特征[J]. 地质科技情报, 2002, 21(2): 65-68. |
[32] | 王飞飞. 油气煤铀同盆共存全球特征与中国典型盆地剖析[D]. 西安: 西北大学, 2018. |
[33] | 任战利, 张盛, 高胜利, 等. 鄂尔多斯盆地构造热演化史及其成藏成矿意义[J]. 中国科学D辑: 地球科学, 2007, 37(增刊1): 23-32. |
[34] | 夏毓亮, 林锦荣, 刘汉彬, 等. 中国北方主要产铀盆地砂岩型铀矿成矿年代学研究[J]. 铀矿地质, 2003, 19(3): 129-136, 160. |
[35] | 刘汉彬, 夏毓亮, 田时丰. 东胜地区砂岩型铀矿成矿年代学及成矿铀源研究[J]. 铀矿地质, 2007, 23(1): 23-29. |
[36] | 韩美芝. 鄂尔多斯盆地西北部华池-环河组岩石颜色成因及意义[D]. 北京: 核工业北京地质研究院, 2022. |
[37] | CHARLES S, SPIRAKIS. The roles of organic matter in the formation of uranium deposits in sedimentary rocks[J]. Ore Geology Reviews, 1996, 11: 53-69. |
[38] | 李子颖, 刘武生, 李伟涛, 等. 内蒙古二连盆地哈达图砂岩铀矿渗出铀成矿作用[J]. 中国地质, 2022, 49(4): 1009-1047. |
[39] | 韩美芝, 李子颖, 邱林飞, 等. 鄂尔多斯盆地早白垩世构造-热事件与铀成矿的关系: 来自玄武岩锆石U-Pb年代学的约束[J]. 铀矿地质, 2022, 38(1): 13-24. |
[40] | WOOD S A. The role of humic substances in the transport and fixation of metals of economic interest (Au, Pt, Pd, U, V)[J]. Ore Geology Reviews, 1996, 11(1/2/3): 1-31. |
[41] | 刘志娇. 鄂尔多斯盆地深部石油和流体在铀成矿过程中的实验模拟[D]. 西安: 西北大学, 2017. |
[42] | 王苗, 吴柏林, 李艳青, 等. 鄂尔多斯盆地深部富铀烃源岩提供铀源可能性的实验研究[J]. 地球科学, 2022(1): 224-239. |
[43] | MIGDISOV A A, GUO X, XU H, et al. Hydrocarbons as ore fluids[J]. Geochemical Perspective Letters, 2017, 5: 47-52. |
[44] | FUCHS S, SCHUMANN D, WILLIAMS A E, et al. Gold and uranium concentration by interaction of immiscible fluids (hydrothermal and hydrocarbon) in the Carbon Leader Reef, Witwatersrand Supergroup, South Africa[J]. Precambrian Research, 2017, 293: 39-55. |
[45] | FUCHS S, SCHUMANN D, MARTIN R F, et al. The extensive hydrocarbon-mediated fixation of hydrothermal gold in the Witwatersrand Basin, South Africa[J]. Ore Geology Reviews, 2021, 138: 104313. |
[46] | VINNICHENKO G, HOPE J M, JARRETT A J M, et al. Reassessment of thermal preservation of organic matter in the Paleoproterozoic McArthur River (HYC) Zn-Pb ore deposit, Australia[J]. Ore Geology Reviews, 2021, 133: 104129. |
[1] | LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin [J]. Earth Science Frontiers, 2024, 31(5): 103-116. |
[2] | CHEN Rubiao, WANG Yuman, HUANG Zhengliang, LI Weiling, YAN Wei, LIANG Feng, GUO Wei. Fracture pore characteristics and gas accumulation model of marine shales in the northwestern Ordos Basin: A case study of the Ordovician Wulalike Formation [J]. Earth Science Frontiers, 2024, 31(5): 46-60. |
[3] | HUANG Siyu, PU Junbing, PAN Moucheng, LI Jianhong, ZHANG Tao. Effects of algae-derived organic matter source on sediment mineralization in the karst reservoir [J]. Earth Science Frontiers, 2024, 31(5): 387-396. |
[4] | DOU Lirong, HUANG Wensong, KONG Xiangwen, WANG Ping, ZHAO Zibin. Hydrocarbon enrichment mechanism of Duvernay marine shale in the Western Canada Basin [J]. Earth Science Frontiers, 2024, 31(4): 191-205. |
[5] | ZHANG Jiazhi, JIANG Zaixing, XU Jie, WEI Siyuan, SONG Lizhou, LIU Tong, SHEN Zhihan, JIANG Xiaolong, LI Yongfei, ZHANG Xi. Volcanic sedimentation of Cretaceous Jiufotang Formation in the Chaoyang Basin and its impact on organic matter enrichment [J]. Earth Science Frontiers, 2024, 31(3): 284-297. |
[6] | SU Kaiming, XU Yaohui, XU Wanglin, ZHANG Yueqiao, BAI Bin, LI Yang, YAN Gang. Contribution ratio and distribution patterns of multiple oil sources in the Yanchang Formation of the Ordos Basin: A study utilizing machine learning and interpretability techniques [J]. Earth Science Frontiers, 2024, 31(3): 530-540. |
[7] | LIU Chiheng, LI Ziying, HE Feng, ZHANG Zilong, LI Zhencheng, LING Mingxing, LIU Ruiping. Quantitative analysis of provenance in the Lower Cretaceous of the northwestern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(3): 80-99. |
[8] | LIU Chiyang, ZHANG Long, HUANG Lei, WU Bailin, WANG Jianqiang, ZHANG Dongdong, TAN Chengqian, MA Yanping, ZHAO Jianshe. Novel metallogenic model of sandstone-type uranium deposits: Mineralization by deep organic fluid [J]. Earth Science Frontiers, 2024, 31(1): 368-383. |
[9] | ZHANG Liyu, CHEN Qianglu, LI Maowen, YUAN Kun, MA Xiaoxiao, XI Binbin, YUE Yong, HUANG Taiyu. Comparative study on the organic enrichment mechanisms between western Hubei and northeastern Guizhou during the Early Cambrian [J]. Earth Science Frontiers, 2023, 30(6): 181-198. |
[10] | WU Chenjun, LIU Xinshe, WEN Zhigang, TUO Jincai. Mechanism of organic matter enrichment and organic pore development in the Lower Cambrian Niutitang shales in northern Guizhou [J]. Earth Science Frontiers, 2023, 30(3): 101-109. |
[11] | MA Zijie, TANG Xuan, ZHANG Jinchuan, ZHAI Gangyi, WANG Yufang, LIANG Guodong, LUO Huan. Organic matter-hosted pores in the Cambrian Niutitang shales of the Upper Yangtze region: Pore development characteristics and main controlling factors [J]. Earth Science Frontiers, 2023, 30(3): 124-137. |
[12] | CHEN Zongming, TANG Xuan, LIANG Guodong, GUAN Ziheng. Identification and comparison of organic matter-hosted pores in shale by SEM image analysis—a deep learning-based approach [J]. Earth Science Frontiers, 2023, 30(3): 208-220. |
[13] | GAO Hang, WANG Pujun, GAO Youfeng, WAN Xiaoqiao, YANG Guang, HU Jingsong, WU Huaichun. The Upper-Lower Cretaceous boundary in the southern Songliao Basin: A case study of ICDP borehole SK-3 [J]. Earth Science Frontiers, 2023, 30(3): 425-440. |
[14] | ZHAI Yonghe, HE Dengfa, KAI Baize. Tectono-depositional environment and prototype basin evolution in the Ordos Basin during the Early Permian [J]. Earth Science Frontiers, 2023, 30(2): 139-153. |
[15] | LIU Zhen, ZHU Maolin, PAN Gaofeng, XIA Lu, LU Chaojin, LIU Mingjie, LIU Jingjing, HOU Yingjie. A dissolution porosity increase model for sandstone reservoir in the Yanchang Formation in central and southern Ordos Basin—model building and model applications [J]. Earth Science Frontiers, 2023, 30(2): 96-108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||