Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (3): 80-99.DOI: 10.13745/j.esf.sf.2023.6.22
Previous Articles Next Articles
LIU Chiheng1(), LI Ziying1, HE Feng1, ZHANG Zilong1, LI Zhencheng4, LING Mingxing3, LIU Ruiping2
Received:
2023-02-11
Revised:
2023-05-28
Online:
2024-05-25
Published:
2024-05-25
CLC Number:
LIU Chiheng, LI Ziying, HE Feng, ZHANG Zilong, LI Zhencheng, LING Mingxing, LIU Ruiping. Quantitative analysis of provenance in the Lower Cretaceous of the northwestern Ordos Basin[J]. Earth Science Frontiers, 2024, 31(3): 80-99.
序 号 | 样品 编号 | 地层 | 岩性 | 位置/钻孔号 | 纬度 (N) | 经度 (E) |
---|---|---|---|---|---|---|
1 | Od21-2 | K1lh | 褐红色中砂岩 | ZKY0-31 | ||
2 | Od21-6 | K1hc | 褐红色粗砂岩 | |||
3 | Od21-11 | K1l | 褐色含砾中砂岩 | |||
4 | Od21-14 | K1hc | 深灰色中砂岩 | ZKW2021-5 | ||
5 | Od21-22 | K1l | 浅红色细砂岩 | |||
6 | Od21-37 | K1lh | 红杂色砂岩 | 巴音文都尔 | 39°15'34″ | 108°00'45″ |
7 | Od21-39 | K1d | 黄绿色中砂岩 | 杭锦旗盐场 | 40°08'24″ | 108°25'35″ |
8 | Od21-40 | K1j | 薄板状粉砂岩 | 乌兰阿布德尔 | 40°11'57″ | 107°23'35″ |
9 | Ey21-34 | K1l | 灰绿色粗砂岩 | ZKW2019-5 |
Table 1 Sampling information table
序 号 | 样品 编号 | 地层 | 岩性 | 位置/钻孔号 | 纬度 (N) | 经度 (E) |
---|---|---|---|---|---|---|
1 | Od21-2 | K1lh | 褐红色中砂岩 | ZKY0-31 | ||
2 | Od21-6 | K1hc | 褐红色粗砂岩 | |||
3 | Od21-11 | K1l | 褐色含砾中砂岩 | |||
4 | Od21-14 | K1hc | 深灰色中砂岩 | ZKW2021-5 | ||
5 | Od21-22 | K1l | 浅红色细砂岩 | |||
6 | Od21-37 | K1lh | 红杂色砂岩 | 巴音文都尔 | 39°15'34″ | 108°00'45″ |
7 | Od21-39 | K1d | 黄绿色中砂岩 | 杭锦旗盐场 | 40°08'24″ | 108°25'35″ |
8 | Od21-40 | K1j | 薄板状粉砂岩 | 乌兰阿布德尔 | 40°11'57″ | 107°23'35″ |
9 | Ey21-34 | K1l | 灰绿色粗砂岩 | ZKW2019-5 |
点号 | 地层 | 位置 | 测试类型 | 测点数 | 平均古流向 |
---|---|---|---|---|---|
1 | 华池-环河组 | 老楞豁子(39°54'21″N,108'7'47″E) | 板状交错层理 | 10 | 204° |
2 | 罗汉洞组 | 帐房湾(39°44'59″N,107'59'37″E) | 板状交错层理 | 16 | 165° |
3 | 华池-环河组 | 萨扎梁(39°33'17″N,108'30'9″E) | 槽状交错层理 | 12 | 207° |
4 | 华池-环河组 | 东公卡汉(39°22'41″N,108'17'59″E) | 板状交错层理 | 12 | 187° |
5 | 华池-环河组 | 赛罕塔拉(39°18'33″N,108'6'38″E) | 板状交错层理 | 9 | 141° |
6 | 罗汉洞组 | 巴音文都尔(39°15'34″N,108'0'45″E) | 槽状交错层理 | 12 | 168° |
7 | 华池-环河组 | 框框井(39°15'30″N,107'56'0″E) | 槽状交错层理 | 12 | 162° |
Table 2 Paleocurrent directions of the Lower Cretaceous in the northwestern Ordos Basin
点号 | 地层 | 位置 | 测试类型 | 测点数 | 平均古流向 |
---|---|---|---|---|---|
1 | 华池-环河组 | 老楞豁子(39°54'21″N,108'7'47″E) | 板状交错层理 | 10 | 204° |
2 | 罗汉洞组 | 帐房湾(39°44'59″N,107'59'37″E) | 板状交错层理 | 16 | 165° |
3 | 华池-环河组 | 萨扎梁(39°33'17″N,108'30'9″E) | 槽状交错层理 | 12 | 207° |
4 | 华池-环河组 | 东公卡汉(39°22'41″N,108'17'59″E) | 板状交错层理 | 12 | 187° |
5 | 华池-环河组 | 赛罕塔拉(39°18'33″N,108'6'38″E) | 板状交错层理 | 9 | 141° |
6 | 罗汉洞组 | 巴音文都尔(39°15'34″N,108'0'45″E) | 槽状交错层理 | 12 | 168° |
7 | 华池-环河组 | 框框井(39°15'30″N,107'56'0″E) | 槽状交错层理 | 12 | 162° |
Fig.5 Cathode Luminescence (CL) image of typical detrital zircons in the Lower Cretaceous of the northwestern Ordos Basin. Red numbers represent zircon ages, and blue numbers represent Th/U ratios.
层位 | 样品号 | 主峰值年龄分布与占比 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
显生宙 | 前寒武纪 | ||||||||||
149~125 Ma | 226~220 Ma | 336~257 Ma | 476~425 Ma | 1 176~1 021 Ma | 1 491 Ma | 1 790~1 635 Ma | 2 022~1 815 Ma | 2 262~2 204 Ma | 2 582~2 445 Ma | ||
东胜组 | Od21-39 | 14%(261 Ma) 10%(336 Ma) | 1%(476 Ma) | 1%(1 675 Ma) | 28%(1 899 Ma) 24%(2 019 Ma) | 22%(2 493 Ma) | |||||
泾川组 | Od21-40 | 1%(125 Ma) | 62%(277 Ma) | 1%(425 Ma) | 1%(1 021 Ma) | 7%(1 704 Ma) | 16%(1 905 Ma) | 1%(2 258 Ma) | 11%(2 490 Ma) | ||
罗汉洞组 | Od21-2 | 1%(149 Ma) | 17%(275 Ma) | 5%(445 Ma) | 7%(1 668 Ma) | 29%(1 950 Ma) | 40%(2 514 Ma) | ||||
Od21-37 | 31%(278 Ma) | 4%(437 Ma) | 6%(1 698 Ma) 5%(1 790 Ma) | 24%(1 909 Ma) | 26%(2 470 Ma) 4%(2 582 Ma) | ||||||
华池-环河组 | Od21-6 | 2%(220 Ma) | 29%(278 Ma) | 2%(445 Ma) | 3% (1 491 Ma) | 5%(1 635 Ma) 11%(1 746 Ma) | 7%(1 938 Ma) 5%(2 022 Ma) | 7%(2 262 Ma) | 17%(2 463 Ma) 12%(2 526 Ma) | ||
Od21-14 | 1%(134 Ma) | 13%(257 Ma) 21%(272 Ma) 4%(324 Ma) | 4%(425 Ma) | 1%(1 176 Ma) | 4%(1 701 Ma) | 23%(1 983 Ma) | 29%(2 517 Ma) | ||||
洛河组 | Ey21-34 | 2%(144 Ma) | 32%(275 Ma) | 5%(440 Ma) | 7%(1 680 Ma) | 14%(1 899 Ma) | 1%(2 204 Ma) | 22%(2 445 Ma) 17%(2 551 Ma) | |||
Od21-11 | 7%(279 Ma) 13%(322 Ma) | 13%(1 815 Ma) 28%(1 917 Ma) | 1%(2 189 Ma) | 23%(2 466 Ma) 15%(2 538 Ma) | |||||||
Od21-22 | 1%(149 Ma) | 1%(226 Ma) | 18%(283 Ma) 8%(318 Ma) | 10%(1 824 Ma) 11%(1 923 Ma) 19%(1 980 Ma) | 31%(2 481 Ma) |
Table 3 Peak distribution and percentage of U-Pb ages of detrital zircons in the Lower Cretaceous of the northwestern Ordos Basin
层位 | 样品号 | 主峰值年龄分布与占比 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
显生宙 | 前寒武纪 | ||||||||||
149~125 Ma | 226~220 Ma | 336~257 Ma | 476~425 Ma | 1 176~1 021 Ma | 1 491 Ma | 1 790~1 635 Ma | 2 022~1 815 Ma | 2 262~2 204 Ma | 2 582~2 445 Ma | ||
东胜组 | Od21-39 | 14%(261 Ma) 10%(336 Ma) | 1%(476 Ma) | 1%(1 675 Ma) | 28%(1 899 Ma) 24%(2 019 Ma) | 22%(2 493 Ma) | |||||
泾川组 | Od21-40 | 1%(125 Ma) | 62%(277 Ma) | 1%(425 Ma) | 1%(1 021 Ma) | 7%(1 704 Ma) | 16%(1 905 Ma) | 1%(2 258 Ma) | 11%(2 490 Ma) | ||
罗汉洞组 | Od21-2 | 1%(149 Ma) | 17%(275 Ma) | 5%(445 Ma) | 7%(1 668 Ma) | 29%(1 950 Ma) | 40%(2 514 Ma) | ||||
Od21-37 | 31%(278 Ma) | 4%(437 Ma) | 6%(1 698 Ma) 5%(1 790 Ma) | 24%(1 909 Ma) | 26%(2 470 Ma) 4%(2 582 Ma) | ||||||
华池-环河组 | Od21-6 | 2%(220 Ma) | 29%(278 Ma) | 2%(445 Ma) | 3% (1 491 Ma) | 5%(1 635 Ma) 11%(1 746 Ma) | 7%(1 938 Ma) 5%(2 022 Ma) | 7%(2 262 Ma) | 17%(2 463 Ma) 12%(2 526 Ma) | ||
Od21-14 | 1%(134 Ma) | 13%(257 Ma) 21%(272 Ma) 4%(324 Ma) | 4%(425 Ma) | 1%(1 176 Ma) | 4%(1 701 Ma) | 23%(1 983 Ma) | 29%(2 517 Ma) | ||||
洛河组 | Ey21-34 | 2%(144 Ma) | 32%(275 Ma) | 5%(440 Ma) | 7%(1 680 Ma) | 14%(1 899 Ma) | 1%(2 204 Ma) | 22%(2 445 Ma) 17%(2 551 Ma) | |||
Od21-11 | 7%(279 Ma) 13%(322 Ma) | 13%(1 815 Ma) 28%(1 917 Ma) | 1%(2 189 Ma) | 23%(2 466 Ma) 15%(2 538 Ma) | |||||||
Od21-22 | 1%(149 Ma) | 1%(226 Ma) | 18%(283 Ma) 8%(318 Ma) | 10%(1 824 Ma) 11%(1 923 Ma) 19%(1 980 Ma) | 31%(2 481 Ma) |
Fig.9 Zircon U-Pb age spectra of the Lower Cretaceous in the northwestern Ordos Basin and surrounding potential source areas. Adapted from [48⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓-96].
地层 | 样品号 | 阴山 | 狼山 | 阿拉善 | 桌子山-贺兰山 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D值 | V值 | R2值 | D值 | V值 | R2值 | D值 | V值 | R2值 | D值 | V值 | R2值 | ||
东胜组 | Od21-39 | 0.329 | 0.394 2 | 0.344 4 | 0.548 6 | 0.570 7 | 0.191 8 | 0.473 9 | 0.482 6 | 0.168 6 | 0.226 6 | 0.420 8 | 0.481 9 |
泾川组 | Od21-40 | 0.475 6 | 0.486 2 | 0.377 2 | 0.429 7 | 0.532 1 | 0.111 3 | 0.144 9 | 0.239 | 0.655 5 | 0.639 2 | 0.725 8 | 0.002 9 |
罗汉洞组 | Od21-2 | 0.151 5 | 0.202 2 | 0.710 6 | 0.531 2 | 0.546 2 | 0.061 5 | 0.469 9 | 0.479 9 | 0.214 9 | 0.382 6 | 0.603 4 | 0.102 9 |
Od21-37 | 0.254 5 | 0.288 5 | 0.610 7 | 0.436 3 | 0.539 9 | 0.106 8 | 0.358 8 | 0.360 4 | 0.441 | 0.321 5 | 0.591 8 | 0.055 9 | |
华池-环河组 | Od21-6 | 0.279 1 | 0.291 8 | 0.533 5 | 0.393 2 | 0.527 5 | 0.095 | 0.345 | 0.363 5 | 0.408 3 | 0.425 1 | 0.735 5 | 0.005 6 |
Od21-14 | 0.283 3 | 0.316 | 0.510 9 | 0.323 3 | 0.512 9 | 0.149 1 | 0.313 6 | 0.323 6 | 0.648 9 | 0.430 7 | 0.669 5 | 0.023 3 | |
洛河组 | Ey21-34 | 0.217 8 | 0.235 8 | 0.601 1 | 0.354 2 | 0.525 | 0.081 7 | 0.357 7 | 0.378 1 | 0.539 6 | 0.394 8 | 0.756 8 | 0.001 1 |
Od21-11 | 0.181 6 | 0.272 2 | 0.562 3 | 0.589 3 | 0.597 4 | 0.251 7 | 0.511 | 0.511 | 0.095 1 | 0.346 1 | 0.537 1 | 0.221 | |
Od21-22 | 0.240 6 | 0.293 2 | 0.570 4 | 0.513 2 | 0.543 8 | 0.153 5 | 0.425 7 | 0.443 8 | 0.32 | 0.282 7 | 0.547 7 | 0.181 3 |
Table 4 Comparison table of U-Pb age component similarities between samples in the study area and potential source areas
地层 | 样品号 | 阴山 | 狼山 | 阿拉善 | 桌子山-贺兰山 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D值 | V值 | R2值 | D值 | V值 | R2值 | D值 | V值 | R2值 | D值 | V值 | R2值 | ||
东胜组 | Od21-39 | 0.329 | 0.394 2 | 0.344 4 | 0.548 6 | 0.570 7 | 0.191 8 | 0.473 9 | 0.482 6 | 0.168 6 | 0.226 6 | 0.420 8 | 0.481 9 |
泾川组 | Od21-40 | 0.475 6 | 0.486 2 | 0.377 2 | 0.429 7 | 0.532 1 | 0.111 3 | 0.144 9 | 0.239 | 0.655 5 | 0.639 2 | 0.725 8 | 0.002 9 |
罗汉洞组 | Od21-2 | 0.151 5 | 0.202 2 | 0.710 6 | 0.531 2 | 0.546 2 | 0.061 5 | 0.469 9 | 0.479 9 | 0.214 9 | 0.382 6 | 0.603 4 | 0.102 9 |
Od21-37 | 0.254 5 | 0.288 5 | 0.610 7 | 0.436 3 | 0.539 9 | 0.106 8 | 0.358 8 | 0.360 4 | 0.441 | 0.321 5 | 0.591 8 | 0.055 9 | |
华池-环河组 | Od21-6 | 0.279 1 | 0.291 8 | 0.533 5 | 0.393 2 | 0.527 5 | 0.095 | 0.345 | 0.363 5 | 0.408 3 | 0.425 1 | 0.735 5 | 0.005 6 |
Od21-14 | 0.283 3 | 0.316 | 0.510 9 | 0.323 3 | 0.512 9 | 0.149 1 | 0.313 6 | 0.323 6 | 0.648 9 | 0.430 7 | 0.669 5 | 0.023 3 | |
洛河组 | Ey21-34 | 0.217 8 | 0.235 8 | 0.601 1 | 0.354 2 | 0.525 | 0.081 7 | 0.357 7 | 0.378 1 | 0.539 6 | 0.394 8 | 0.756 8 | 0.001 1 |
Od21-11 | 0.181 6 | 0.272 2 | 0.562 3 | 0.589 3 | 0.597 4 | 0.251 7 | 0.511 | 0.511 | 0.095 1 | 0.346 1 | 0.537 1 | 0.221 | |
Od21-22 | 0.240 6 | 0.293 2 | 0.570 4 | 0.513 2 | 0.543 8 | 0.153 5 | 0.425 7 | 0.443 8 | 0.32 | 0.282 7 | 0.547 7 | 0.181 3 |
地层 | 样品号 | 阴山 | 狼山 | 阿拉善 | 桌子山-贺兰山 | 混合物源相似性参数 | ||
---|---|---|---|---|---|---|---|---|
最佳物源混合比例/% | D值 | V值 | R2值 | |||||
东胜组 | Od21-39 | 30 | 16 | 5 | 49 | 0.059 2 | 0.111 8 | 0.825 6 |
泾川组 | Od21-40 | 43 | 0 | 57 | 0 | 0.126 9 | 0.239 | 0.716 4 |
罗汉洞组 | Od21-2 | 78 | 0 | 4 | 18 | 0.079 2 | 0.136 2 | 0.758 7 |
Od21-37 | 64 | 0 | 23 | 13 | 0.066 8 | 0.112 1 | 0.732 3 | |
华池-环河组 | Od21-6 | 57 | 20 | 20 | 3 | 0.082 | 0.158 | 0.636 2 |
Od21-14 | 54 | 10 | 36 | 0 | 0.075 4 | 0.139 7 | 0.787 | |
洛河组 | Ey21-34 | 67 | 2 | 31 | 0 | 0.069 7 | 0.137 | 0.764 9 |
Od21-11 | 50 | 7 | 13 | 30 | 0.077 3 | 0.127 3 | 0.766 6 | |
Od21-22 | 55 | 11 | 10 | 24 | 0.056 8 | 0.098 8 | 0.74 |
Table 5 Optimal mixing ratios of different sources for samples in the study area
地层 | 样品号 | 阴山 | 狼山 | 阿拉善 | 桌子山-贺兰山 | 混合物源相似性参数 | ||
---|---|---|---|---|---|---|---|---|
最佳物源混合比例/% | D值 | V值 | R2值 | |||||
东胜组 | Od21-39 | 30 | 16 | 5 | 49 | 0.059 2 | 0.111 8 | 0.825 6 |
泾川组 | Od21-40 | 43 | 0 | 57 | 0 | 0.126 9 | 0.239 | 0.716 4 |
罗汉洞组 | Od21-2 | 78 | 0 | 4 | 18 | 0.079 2 | 0.136 2 | 0.758 7 |
Od21-37 | 64 | 0 | 23 | 13 | 0.066 8 | 0.112 1 | 0.732 3 | |
华池-环河组 | Od21-6 | 57 | 20 | 20 | 3 | 0.082 | 0.158 | 0.636 2 |
Od21-14 | 54 | 10 | 36 | 0 | 0.075 4 | 0.139 7 | 0.787 | |
洛河组 | Ey21-34 | 67 | 2 | 31 | 0 | 0.069 7 | 0.137 | 0.764 9 |
Od21-11 | 50 | 7 | 13 | 30 | 0.077 3 | 0.127 3 | 0.766 6 | |
Od21-22 | 55 | 11 | 10 | 24 | 0.056 8 | 0.098 8 | 0.74 |
[1] | SÒMME T O, HELLAND-HANSEN W, MARTINSEN O J, et al. Relationships between morphological and sedimentological parameters in source-to-sink systems: a basis for predicting semi-quantitative characteristics in subsurface systems[J]. Basin Research, 2009, 21(4): 361-387. |
[2] | 邓军, 王庆飞, 高帮飞, 等. 鄂尔多斯盆地多种能源矿产分布及其构造背景[J]. 地球科学: 中国地质大学学报, 2006, 31(3): 330-336. |
[3] | 刘池洋, 赵红格, 谭成仟, 等. 多种能源矿产赋存与盆地成藏(矿)系统[J]. 石油与天然气地质, 2006, 27(2): 131-142. |
[4] | 杨明慧, 刘池洋. 鄂尔多斯中生代陆相盆地层序地层格架及多种能源矿产聚集[J]. 石油与天然气地质, 2006, 27(4): 563-570. |
[5] | 王毅, 杨伟利, 邓军, 等. 多种能源矿产同盆共存富集成矿(藏)体系与协同勘探: 以鄂尔多斯盆地为例[J]. 地质学报, 2014, 88(5): 815-824. |
[6] | ZHANG Y Q, SHI W, DONG S W. Changes of late Mesozoic tectonic regimes around the Ordos Basin (North China) and their geodynamic implications[J]. Acta Geologica Sinica(English Edition), 2011, 85(6): 1254-1276. |
[7] |
何登发, 包洪平, 开百泽, 等. 鄂尔多斯盆地及其邻区关键构造变革期次及其特征[J]. 石油学报, 2021, 42(10): 1255-1269.
DOI |
[8] | 刘池洋, 王建强, 张东东, 等. 鄂尔多斯盆地油气资源丰富的成因与赋存-成藏特点[J]. 石油与天然气地质, 2021, 42(5): 1011-1029. |
[9] | WU C H, RODRÍGUEZ-LÓPEZ J P, SANTOSH M. Plateau archives of lithosphere dynamics, cryosphere and paleoclimate: the formation of Cretaceous desert basins in East Asia[J]. Geoscience Frontiers, 2022, 13(6): 101454. |
[10] | 张天福, 苗培森, 程先钰, 等. 鄂尔多斯盆地早白垩世含铀岩系的新发现及其层序地层[J]. 大地构造与成矿学, 2020, 44(4): 633-647. |
[11] | REN Y S, YANG X Y, MIAO P S, et al. Mineralogical and geochemical research on Pengyang deposit: a peculiar eolian sandstone-hosted uranium deposit in the southwest of Ordos Basin[J]. Ore Geology Reviews, 2022, 141: 104571. |
[12] | 刘鑫扬, 贺锋, 剡鹏兵, 等. 鄂尔多斯盆地下白垩统砂岩型铀矿找矿方向[J]. 铀矿地质, 2022, 38(2): 168-180. |
[13] | 王龙辉, 剡鹏兵, 焦养泉, 等. 鄂尔多斯盆地北部下白垩统铀成矿模式[J]. 地质科技通报, 2023, 42(3): 222-233. |
[14] | CHEN Y, LI J G, MIAO P S, et al. U-Pb ages and Hf isotopes of detrital zircons from the Cretaceous succession in the southwestern Ordos Basin, northern China: implications for provenance and tectonic evolution[J]. Journal of Asian Earth Sciences, 2021, 219: 104896. |
[15] | 李姣莉, 王建强, 彭恒, 等. 鄂尔多斯盆地南部下白垩统宜君组碎屑锆石U-Pb年龄及物源意义[J]. 沉积学报, 2023, 41(5): 1609-1623. |
[16] | 雷开宇, 刘池洋, 张龙, 等. 鄂尔多斯盆地北部中生代中晚期地层碎屑锆石U-Pb定年与物源示踪[J]. 地质学报, 2017, 91(7): 1522-1541. |
[17] | MOECHER D, SAMSON S. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: implications for sedimentary provenance analysis[J]. Earth and Planetary Science Letters, 2006, 247(3/4): 252-266. |
[18] | MALUSÀ M G, CARTER A, LIMONCELLI M, et al. Bias in detrital zircon geochronology and thermochronometry[J]. Chemical Geology, 2013, 359: 90-107. |
[19] | 郭佩, 刘池洋, 王建强, 等. 碎屑锆石年代学在沉积物源研究中的应用及存在问题[J]. 沉积学报, 2017, 35(1): 46-56. |
[20] | VERMEESCH P. Multi-sample comparison of detrital age distributions[J]. Chemical Geology, 2013, 341: 140-146. |
[21] | SUNDELL K E, SAYLOR J E. Unmixing detrital geochronology age distributions[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(8): 2872-2886. |
[22] | 刘池洋, 赵红格, 桂小军, 等. 鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应[J]. 地质学报, 2006, 80(5): 617-638. |
[23] | RITTS B D, WEISLOGEL A, GRAHAM S A, et al. Mesozoic tectonics and sedimentation of the giant poly-phase nonmarine intraplate Ordos Basin, western North China Block[J]. International Geology Review, 2009, 51: 95-115. |
[24] | 翟明国. 鄂尔多斯地块是破解华北早期大陆形成演化和构造体制谜团的钥匙[J]. 科学通报, 2021, 66(26): 3441-3461. |
[25] | ZHANG Y Q. Jurassic tectonics of North China: a synthetic view[J]. Acta Geologica Sinica (English Edition), 2008, 82(2): 310-326. |
[26] | ZHANG Y Q, QIU E K, DONG S W, et al. Late Mesozoic intracontinental deformation and magmatism in North and NE China in response to multi-plate convergence in NE Asia: an overview and new view[J]. Tectonophysics, 2022, 835: 229377. |
[27] | 赵红格, 刘池洋, 王锋, 等. 贺兰山隆升时限及其演化[J]. 中国科学(D辑: 地球科学), 2007, 37(增刊1): 185-192. |
[28] | 马静辉, 何登发. 贺兰山构造带及邻区中—新生代构造事件: 来自不整合面和裂变径迹的约束[J]. 岩石学报, 2019, 35(4): 1121-1142. |
[29] | YU Q, REN Z L, LI R X, et al. Cooling history of the southwestern Ordos Basin (northern China) since Late Jurassic: insights from thermochronology and geothermometry[J]. Journal of Asian Earth Sciences, 2021, 219: 104895. |
[30] | 王建强, 刘池洋, 闫建萍, 等. 鄂尔多斯盆地南部渭北隆起发育时限及其演化[J]. 兰州大学学报(自然科学版), 2010, 46(4): 22-29. |
[31] | 任战利, 崔军平, 郭科, 等. 鄂尔多斯盆地渭北隆起抬升期次及过程的裂变径迹分析[J]. 科学通报, 2015, 60(14): 1298-1309. |
[32] | 赵俊峰, 刘池洋, 王晓梅, 等. 吕梁山地区中—新生代隆升演化探讨[J]. 地质论评, 2009, 55(5): 663-672. |
[33] | 赵俊峰, 刘池洋, MOUNTNEY N, 等. 吕梁山隆升时限与演化过程研究[J]. 中国科学: 地球科学, 2015, 45(10): 1427-1438. |
[34] | 熊保贤, 陈文学, 陈文礼, 等. 巴彦浩特原型盆地形成与演化[J]. 石油实验地质, 2001, 23(1): 19-22, 31. |
[35] | 黄兴富, 施炜, 李恒强, 等. 银川盆地新生代构造演化: 来自银川盆地主边界断裂运动学的约束[J]. 地学前缘, 2013, 20(4): 199-210. |
[36] |
付锁堂, 付金华, 喻建, 等. 河套盆地临河坳陷石油地质特征及勘探前景[J]. 石油勘探与开发, 2018, 45(5): 749-762.
DOI |
[37] | 侯光才, 张茂省, 刘方, 等. 鄂尔多斯盆地地下水勘查研究[M]. 北京: 地质出版社, 2008: 1-555. |
[38] | WU L Q, JIAO Y Q, ZHU P M, et al. Architectural units and groundwater resource quantity evaluation of Cretaceous sandstones in the Ordos Basin, China[J]. Acta Geologica Sinica(English Edition), 2017, 91(1): 249-262. |
[39] | 朱强, 司庆红, 李建国, 等. 鄂尔多斯盆地西南部下白垩统洛河组灰色砂岩的两种成因及其含铀性[J]. 地球科学, 2023, 48(11): 3995-4016. |
[40] | 谢渊, 邓国仕, 刘建清, 等. 鄂尔多斯盆地白垩系主要含水岩组沉积岩相古地理对地下水水化学场形成和水质分布的影响[J]. 沉积与特提斯地质, 2012, 32(3): 64-74. |
[41] | 刘瑞萍, 李黎, 谢胜凯, 等. LA-HR-ICP-MS小束斑锆石U-Pb年龄和微量元素的同时测定[J]. 世界核地质科学, 2023, 40(2): 435-443. |
[42] | GEHRELS G E. Introduction to detrital zircon studies of Paleozoic and Triassic strata in western Nevada and northern California[M]//Geological Society of America special paper 347. Boulder: Geological Society of America, 2000: 1-18. |
[43] | HOSKIN P W O, SCHALTEGGER U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62. |
[44] | VERMEESCH P. IsoplotR: a free and open toolbox for geochronology[J]. Geoscience Frontiers, 2018, 9(5): 1479-1493. |
[45] | GEHRELS G E, VALENCIA V A, RUIZ J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03017. |
[46] | GEHRELS G E, BLAKEY R, KARLSTROM K E, et al. Detrital zircon U-Pb geochronology of Paleozoic strata in the Grand Canyon, Arizona[J]. Lithosphere, 2011, 3(3): 183-200. |
[47] | DICKINSON W R. Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis[J]. Earth and Planetary Science Letters, 2008, 275(1/2): 80-92. |
[48] | 罗红玲, 吴泰然, 李毅. 乌拉特中旗克布岩体的地球化学特征及SHRIMP定年: 早二叠世华北克拉通底侵作用的证据[J]. 岩石学报, 2007, 23(4): 755-766. |
[49] | 罗红玲, 吴泰然, 赵磊. 华北板块北缘乌梁斯太A型花岗岩体锆石SHRIMP U-Pb定年及构造意义[J]. 岩石学报, 2009, 25(3): 515-526. |
[50] | 罗红玲, 吴泰然, 赵磊, 等. 白云鄂博中二叠世巴音珠日和岩体地球化学特征及构造意义[J]. 高校地质学报, 2013, 19(1): 123-132. |
[51] | LUO H L, WU T R, ZHAO L, et al. Permian high Ba-Sr granitoids: geochemistry, age and tectonic implications of Erlangshan pluton, Urad Zhongqi, Inner Mongolia[J]. Acta Geologica Sinica(English Edition), 2009, 83(3): 603-614. |
[52] | ZHANG X H, MAO Q, ZHANG H F, et al. Mafic and felsic magma interaction during the construction of high-K calc-alkaline plutons within a metacratonic passive margin: the Early Permian Guyang batholith from the northern North China Craton[J]. Lithos, 2011, 125(1/2): 569-591. |
[53] | 张青伟, 刘正宏, 柴社立, 等. 内蒙古乌拉特中旗乌兰地区含石榴石花岗岩锆石U-Pb年龄及地质意义[J]. 吉林大学学报(地球科学版), 2011, 41(3): 745-752. |
[54] | 董春艳, 万渝生, 徐仲元, 等. 华北克拉通大青山地区古元古代晚期孔兹岩系: 锆石SHRIMP U-Pb定年[J]. 中国科学: 地球科学, 2012, 42(12): 1851-1862. |
[55] | MA X D, GUO J H, LIU F, et al. Zircon U-Pb ages, trace elements and Nd-Hf isotopic geochemistry of Guyang sanukitoids and related rocks: implications for the Archean crustal evolution of the Yinshan Block, North China Craton[J]. Precambrian Research, 2013, 230: 61-78. |
[56] | DONG C Y, WAN Y S, WILDE S A, et al. Earliest Paleoproterozoic supracrustal rocks in the North China Craton recognized from the Daqingshan area of the khondalite belt: constraints on craton evolution[J]. Gondwana Research, 2014, 25(4): 1535-1553. |
[57] | LING M X, ZHANG H, LI H, et al. The Permian-Triassic granitoids in Bayan Obo, North China Craton: a geochemical and geochronological study[J]. Lithos, 2014, 190/191: 430-439. |
[58] | ZHANG S H, ZHAO Y, YE H, et al. Origin and evolution of the Bainaimiao arc belt: implications for crustal growth in the southern Central Asian orogenic belt[J]. Geological Society of America Bulletin, 2014, 126(9/10): 1275-1300. |
[59] | 王梁, 王根厚, 雷时斌, 等. 内蒙古乌拉山大桦背岩体成因: 地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素制约[J]. 岩石学报, 2015, 31(7): 1977-1994. |
[60] | 刘平华, 刘福来, 蔡佳, 等. 阴山陆块武川石榴基性麻粒岩P-T条件及其变质时代: 来自相平衡模拟与锆石U-Pb定年的约束[J]. 岩石学报, 2016, 32(7): 1949-1979. |
[61] | 张琳, 董春艳, 刘守偈, 等. 华北克拉通乌拉山地区早前寒武纪岩浆作用和变质作用: 锆石SHRIMP U-Pb定年及岩石地球化学研究[J]. 地质论评, 2016, 62(6): 1419-1438. |
[62] | 陈佩嘉, 戴朝成, 黄成, 等. 乌拉山地区古元古代S型花岗岩岩石地球化学、锆石U-Pb年代学及其地质意义[J]. 中国地质, 2017, 44(5): 959-973. |
[63] | 李长海, 刘正宏, 赵庆英, 等. 内蒙古商都地区白云鄂博群尖山组碎屑锆石U-Pb年代学和Hf同位素研究: 对华北克拉通西部陆块北缘前寒武纪地壳演化的制约[J]. 岩石学报, 2020, 36(9): 2815-2833. |
[64] | 彭润民, 翟裕生, 王建平, 等. 内蒙狼山新元古代酸性火山岩的发现及其地质意义[J]. 科学通报, 2010, 55(26): 2611-2620. |
[65] | 孙立新, 赵凤清, 王惠初, 等. 内蒙古狼山地区宝音图地块变质基底的锆石U-Pb年龄及构造意义[J]. 地质学报, 2013, 87(2): 197-207. |
[66] | 吴亚飞, 曾键年, 曹建劲, 等. 内蒙古东升庙海西期岩体锆石U-Pb年龄及Hf同位素特征[J]. 地质科技情报, 2013, 32(6): 22-30. |
[67] | LIN L, XIAO W, WAN B, et al. Geochronologic and geochemical evidence for persistence of south-dipping subduction to Late Permian time, Langshan area, Inner Mongolia (China): significance for termination of accretionary orogenesis in the southern Altaids[J]. American Journal of Science, 2014, 314(2): 679-703. |
[68] | HU C S, LI W B, XU C, et al. Geochemistry and petrogenesis of Permian granitoids in the northwestern margin of the North China Craton: insights from the Dongshengmiao pluton, Inner Mongolia[J]. International Geology Review, 2015, 57(14): 1843-1860. |
[69] |
WAN B, WINDLEY B F, XIAO W J, et al. Paleoproterozoic high-pressure metamorphism in the northern North China Craton and implications for the Nuna supercontinent[J]. Nature Communications, 2015, 6: 8344.
DOI PMID |
[70] | WANG Z Z, HAN B F, FENG L X, et al. Geochronology, geochemistry and origins of the Paleozoic-Triassic plutons in the Langshan area, western Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 2015, 97: 337-351. |
[71] | WANG Z Z, HAN B F, FENG L X, et al. Tectonic attribution of the Langshan area in western Inner Mongolia and implications for the Neoarchean-Paleoproterozoic evolution of the Western North China Craton: evidence from LA-ICP-MS zircon U-Pb dating of the Langshan basement[J]. Lithos, 2016, 261: 278-295. |
[72] | DAN W, LI X H, WANG Q, et al. Phanerozoic amalgamation of the Alxa Block and North China Craton: evidence from Paleozoic granitoids, U-Pb geochronology and Sr-Nd-Pb-Hf-O isotope geochemistry[J]. Gondwana Research, 2016, 32: 105-121. |
[73] | LIU C H, ZHAO G C, LIU F L, et al. Late Precambrian tectonic affinity of the Alxa Block and the North China Craton: evidence from zircon U-Pb dating and Lu-Hf isotopes of the Langshan Group[J]. Precambrian Research, 2019, 326: 312-332. |
[74] | DONG C Y, LIU D Y, LI J J, et al. Palaeoproterozoic khondalite belt in the western North China Craton: new evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helan Mountains Area[J]. Chinese Science Bulletin, 2007, 52(21): 2984-2994. |
[75] | 耿元生, 周喜文. 阿拉善地区新元古代岩浆事件及其地质意义[J]. 岩石矿物学杂志, 2010, 29(6): 779-795. |
[76] | 耿元生, 周喜文. 阿拉善地区新元古代早期花岗岩的地球化学和锆石Hf同位素特征[J]. 岩石学报, 2011, 27(4): 897-908. |
[77] | 耿元生, 周喜文. 阿拉善变质基底中的早二叠世岩浆热事件: 来自同位素年代学的证据[J]. 岩石学报, 2012, 28(9): 2667-2685. |
[78] | DAN W, LI X H, GUO J H, et al. Integrated in situ zircon U-Pb age and Hf-O isotopes for the Helanshan khondalites in North China Craton: juvenile crustal materials deposited in active or passive continental margin?[J]. Precambrian Research, 2012, 222/223: 143-158. |
[79] | DAN W, LI X H, GUO J H, et al. Paleoproterozoic evolution of the eastern Alxa Block, westernmost North China: evidence from in situ zircon U-Pb dating and Hf-O isotopes[J]. Gondwana Research, 2012, 21(4): 838-864. |
[80] | DAN W, LI X H, WANG Q, et al. An Early Permian (ca. 280 Ma) silicic igneous province in the Alxa Block, NW China: a magmatic flare-up triggered by a mantle-plume?[J]. Lithos, 2014, 204: 144-158. |
[81] | DAN W, LI X H, WANG Q, et al. Neoproterozoic S-type granites in the Alxa Block, westernmost North China and tectonic implications: in situ zircon U-Pb-Hf-O isotopic and geochemical constraints[J]. American Journal of Science, 2014, 314(1): 110-153. |
[82] | DAN W, WANG Q, WANG X C, et al. Overlapping Sr-Nd-Hf-O isotopic compositions in Permian mafic enclaves and host granitoids in Alxa Block, NW China: evidence for crust-mantle interaction and implications for the generation of silicic igneous provinces[J]. Lithos, 2015, 230: 133-145. |
[83] | 史兴俊, 童英, 王涛, 等. 内蒙古西部阿拉善地区哈里努登花岗岩LA-ICP-MS锆石U-Pb年龄和地球化学特征[J]. 地质通报, 2012, 31(5): 662-670. |
[84] | ZHANG J, LI J Y, XIAO W X, et al. Kinematics and geochronology of multistage ductile deformation along the eastern Alxa Block, NW China: new constraints on the relationship between the North China Plate and the Alxa Block[J]. Journal of Structural Geology, 2013, 57: 38-57. |
[85] | SHI X J, WANG T, ZHANG L, et al. Timing, petrogenesis and tectonic setting of the Late Paleozoic gabbro-granodiorite-granite intrusions in the Shalazhashan of northern Alxa: constraints on the southernmost boundary of the Central Asian Orogenic Belt[J]. Lithos, 2014, 208/209: 158-177. |
[86] | WU S J, HU J M, REN M H, et al. Petrography and zircon U-Pb isotopic study of the Bayanwulashan Complex: constraints on the Paleoproterozoic evolution of the Alxa Block, westernmost North China Craton[J]. Journal of Asian Earth Sciences, 2014, 94: 226-239. |
[87] | LIU Q, ZHAO G C, SUN M, et al. Early Paleozoic subduction processes of the Paleo-Asian Ocean: insights from geochronology and geochemistry of Paleozoic plutons in the Alxa Terrane[J]. Lithos, 2016, 262: 546-560. |
[88] | DARBY B J, GEHRELS G. Detrital zircon reference for the North China Block[J]. Journal of Asian Earth Sciences, 2006, 26(6): 637-648. |
[89] | YIN C Q, ZHAO G C, SUN M, et al. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex: constraints on the evolution of the khondalite belt in the western block of the North China Craton[J]. Precambrian Research, 2009, 174(1/2): 78-94. |
[90] | 张进, 李锦轶, 刘建峰, 等. 早古生代阿拉善地块与华北地块之间的关系: 来自阿拉善东缘中奥陶统碎屑锆石的信息[J]. 岩石学报, 2012, 28(9): 2912-2934. |
[91] | 李黎明, 曾佐勋, 陆彦俊, 等. 孔兹岩系: 贺兰山中段赵池沟岩组碎屑锆石LA-ICP-MS锆石U-Pb年代学、Hf同位素组成及其地质意义[J]. 科学通报, 2014, 59(7): 593-608. |
[92] | SHI G Z, SOARES C J, SHEN C B, et al. Combined detrital zircon fission track and U-Pb dating of the Late Paleozoic to Early Mesozoic sandstones in the Helanshan, western Ordos fold-thrust belt: constraints for provenance and exhumation history[J]. Journal of Geodynamics, 2019, 130: 57-71. |
[93] | SUN J P, DONG Y P. Middle-Late Triassic sedimentation in the Helanshan tectonic belt: constraints on the tectono-sedimentary evolution of the Ordos Basin, North China[J]. Geoscience Frontiers, 2019, 10(1): 213-227. |
[94] | PANG L Y, ZHU X Y, HU B, et al. Detrital zircon U-Pb age and Hf isotopic composition and whole-rock geochemical characteristics of the Statherian Huangqikou Formation, western margin of the North China Craton: implications for provenance and tectonic evolution[J]. Precambrian Research, 2020, 347: 105840. |
[95] | ZHANG T R, MYROW P M, FIKE D A, et al. Sedimentology, stratigraphy, and detrital zircon geochronology of Mesoproterozoic strata in the northern Helan Mountains, western margin of the North China Block[J]. Precambrian Research, 2020, 343: 105730. |
[96] | 乔恒忠. 华北西部千里山地区长城系黄旗口组碎屑锆石U-Pb年龄及其地质意义[J]. 四川地质学报, 2021, 41(1): 33-39, 56. |
[97] | ZHAO G C, WILDE S A, GUO J H, et al. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton[J]. Precambrian Research, 2010, 177(3/4): 266-276. |
[98] | 蔡佳, 刘福来, 刘平华, 等. 内蒙古孔兹岩带乌拉山—大青山地区古元古代孔兹岩系年代学研究[J]. 岩石学报, 2015, 31(10): 3081-3106. |
[99] | 卓鱼周. 鄂尔多斯盆地西北部桌子山地区中—新生代隆升事件的确定及其构造意义[D]. 西安: 西北大学, 2015. |
[100] | 马静辉, 何登发, 开百泽, 等. 贺兰山构造带构造-地层层序及构造演化[J]. 地质科学, 2020, 55(3): 852-876. |
[101] | JOLIVET M, BRAUCHER R, DOVCHINTSEREN D, et al. Erosion around a large-scale topographic high in a semi-arid sedimentary basin: interactions between fluvial erosion, aeolian erosion and aeolian transport[J]. Geomorphology, 2021, 386: 107747. |
[102] | ZHAO H L, AO C, LI J G, et al. Occurrence and mechanism of uranium enrichment with a unique eolian sedimental environment in the Pengyang uranium deposit, Ordos Basin[J]. Ore Geology Reviews, 2022, 141: 104641. |
[1] | LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin [J]. Earth Science Frontiers, 2024, 31(5): 103-116. |
[2] | CHEN Rubiao, WANG Yuman, HUANG Zhengliang, LI Weiling, YAN Wei, LIANG Feng, GUO Wei. Fracture pore characteristics and gas accumulation model of marine shales in the northwestern Ordos Basin: A case study of the Ordovician Wulalike Formation [J]. Earth Science Frontiers, 2024, 31(5): 46-60. |
[3] | QIU Linfei, LI Ziying, ZHANG Zilong, WANG Longhui, LI Zhencheng, HAN Meizhi, WANG Tingting. Characteristics of organic matter in Lower Cretaceous ore-bearing sandstones and its relationship with uranium mineralization in the northern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(4): 281-296. |
[4] | SU Kaiming, XU Yaohui, XU Wanglin, ZHANG Yueqiao, BAI Bin, LI Yang, YAN Gang. Contribution ratio and distribution patterns of multiple oil sources in the Yanchang Formation of the Ordos Basin: A study utilizing machine learning and interpretability techniques [J]. Earth Science Frontiers, 2024, 31(3): 530-540. |
[5] | LIU Chiyang, ZHANG Long, HUANG Lei, WU Bailin, WANG Jianqiang, ZHANG Dongdong, TAN Chengqian, MA Yanping, ZHAO Jianshe. Novel metallogenic model of sandstone-type uranium deposits: Mineralization by deep organic fluid [J]. Earth Science Frontiers, 2024, 31(1): 368-383. |
[6] | ZHAI Yonghe, HE Dengfa, KAI Baize. Tectono-depositional environment and prototype basin evolution in the Ordos Basin during the Early Permian [J]. Earth Science Frontiers, 2023, 30(2): 139-153. |
[7] | LIU Zhen, ZHU Maolin, PAN Gaofeng, XIA Lu, LU Chaojin, LIU Mingjie, LIU Jingjing, HOU Yingjie. A dissolution porosity increase model for sandstone reservoir in the Yanchang Formation in central and southern Ordos Basin—model building and model applications [J]. Earth Science Frontiers, 2023, 30(2): 96-108. |
[8] | WANG Xiangzeng. Low permeability tight oil and gas in Yanchang area, Ordos Basin: Advances in accumulation theory and exploration practice [J]. Earth Science Frontiers, 2023, 30(1): 143-155. |
[9] | FU Jinhua. Accumulation characteristics and exploration potential of tight limestone gas in the Taiyuan Formation of the Ordos Basin [J]. Earth Science Frontiers, 2023, 30(1): 20-29. |
[10] | ZHENG Herong, HU Zongquan, YUN Lu, LIN Huixi, DENG Shang, JIA Huichong, PU Yong. Strike-slip faults in marine cratonic basins in China: Development characteristics and controls on hydrocarbon accumulation [J]. Earth Science Frontiers, 2022, 29(6): 224-238. |
[11] | XIONG Weidong, XIAO Ancheng, WEI Guoqi, WU Lei, ZHANG Chunlin, WANG Yiping, YANG Liuyun, WANG Qianqian. Characteristics of a Cambrian normal fault system in the Southern Ordos Basin and its formation mechanism [J]. Earth Science Frontiers, 2022, 29(6): 305-313. |
[12] | HE Zhiliang, LU Jianlin, Lin Juanhua, JIN Xiaohui, QI Lixin, XU Xuhui, HUANG Renchun, WANG Yi. Marine basins in China—a prototype-reconstruction analyses and ordered hydrocarbon accumulation patterns [J]. Earth Science Frontiers, 2022, 29(6): 60-72. |
[13] | GONG Chenglin, LIU Li, SHAO Dali, GUO Rongtao, ZHU Yijie, QI Kun. Depositional patterns of the Bengal-Nicobar Fan system since the Late Miocene: Seesaw-like stepwise changes and the source-sink model [J]. Earth Science Frontiers, 2022, 29(4): 25-41. |
[14] | RUAN Zhuang, LUO Zhong, YU Bingsong, LU Yuanzheng, XIE Haochen, YANG Zhihui. Middle-Late Triassic basin prototype and tectonic paleographic response in the Ordos Basin [J]. Earth Science Frontiers, 2021, 28(1): 12-21. |
[15] | DU Yifan, ZHU Xiaomin, GAO Yuan, LI Linglong, YE Lei, LI Xiaodong, LIU Qianghu, LI Chenghai, ZHAO Tiedong, CHEN Yaqing. Sedimentary provenance of the first member of the Shahejie Formation,Lixian Slope,Raoyang Sag [J]. Earth Science Frontiers, 2021, 28(1): 115-130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||