Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (2): 96-108.DOI: 10.13745/j.esf.sf.2022.2.73
Previous Articles Next Articles
LIU Zhen1(), ZHU Maolin1, PAN Gaofeng1, XIA Lu2, LU Chaojin1, LIU Mingjie3, LIU Jingjing4, HOU Yingjie5
Received:
2021-06-16
Revised:
2022-01-10
Online:
2023-03-25
Published:
2023-01-05
CLC Number:
LIU Zhen, ZHU Maolin, PAN Gaofeng, XIA Lu, LU Chaojin, LIU Mingjie, LIU Jingjing, HOU Yingjie. A dissolution porosity increase model for sandstone reservoir in the Yanchang Formation in central and southern Ordos Basin—model building and model applications[J]. Earth Science Frontiers, 2023, 30(2): 96-108.
[4] | 杨俊杰, 黄月明, 张文正, 等. 乙酸对长石砂岩溶蚀作用的实验模拟[J]. 石油勘探与开发, 1995(4): 82-86, 113. |
[5] | 魏千盛, 魏克颖, 李桢禄, 等. 苏里格西部致密砂岩气藏储层成岩作用特征及孔隙度定量演化[J]. 地质与勘探, 2021, 57(2): 439-449. |
[6] | 康昱, 陈刚, 张卫刚, 等. 鄂尔多斯盆地姬塬油区铁边城区块长8储层成岩致密化及其与油气成藏关系[J]. 地质科技通报, 2021, 40(2): 64-75. |
[7] | 白薷, 吴春燕, 杜炜, 等. 致密砂岩储层特征及控制因素: 以鄂尔多斯盆地陕北地区长7和长10储层为例[J]. 西北大学学报(自然科学版), 2021, 51(1): 95-108. |
[8] | 刘锐娥, 吴浩, 魏新善, 等. 砂岩储层中长石的异常分布及成因: 以鄂尔多斯盆地二叠系石盒子组8段为例[J]. 中国矿业大学学报, 2017, 46(1): 96-105. |
[9] | 魏新善, 肖红平, 刘锐娥, 等. 热异常酸洗作用与鄂尔多斯盆地上古生界长石消失事件[J]. 地质学报, 2017, 91(9): 2139-2149. |
[10] | 张哲豪, 魏新善, 弓虎军, 等. 鄂尔多斯盆地定边油田长7致密砂岩储层成岩作用及孔隙演化规律[J]. 油气地质与采收率, 2020, 27(2): 43-52. |
[11] | 刘长利, 刘欣, 张莉娜, 等. 碎屑岩成岩作用及其对储层的影响: 以鄂尔多斯盆地镇泾地区为例[J]. 石油实验地质, 2017, 39(3): 348-354. |
[12] | 张梦婷, 李文厚, 白金莉, 等. 镇泾地区延长组长9段储层成岩作用特征[J]. 西安科技大学学报, 2016, 36(6): 837-842. |
[13] | 马骞, 周思宾, 赵瑞鹏, 等. 鄂尔多斯盆地镇泾地区泾河2井区长81储层特征及成藏模式[J]. 地下水, 2016, 38(6): 161-164. |
[14] | 宋婷婷. 镇泾地区延长组长7致密砂岩储层成岩作用特征[J]. 科技创新与应用, 2016(23): 172. |
[15] | 贺育超, 赵俊兴, 关登彬, 等. 镇泾地区长8、 长6段储层特征及成岩作用对孔隙的改造[J]. 成都理工大学学报(自然科学版), 2021, 48(2): 217-225. |
[16] | 宋婷婷. 鄂尔多斯盆地镇泾地区长8油层组成岩作用与定量孔隙演化[D]. 青岛: 山东科技大学, 2017. |
[17] | ATHY L F. Density, porosity, and compaction of sedimentary rocks[J]. AAPG Bulletin, 1930, 14(1): 1-24. |
[18] | ATHY L F. Compaction and oil migration[J]. AAPG Bulletin, 1930, 14(1): 25-35. |
[19] | 刘震, 邵新军, 金博, 等. 压实过程中埋深和时间对碎屑岩孔隙度演化的共同影响[J]. 现代地质, 2007, 21(1): 125-132. |
[20] | 王英民. 海相残余盆地成藏动力学过程模拟理论与方法: 以广西十万大山盆地为例[M]. 北京: 地质出版社, 1998. |
[21] | 刘博. 鄂尔多斯盆地陇东地区长8段储层物性及演化研究[D]. 西安: 西北大学, 2008. |
[22] | 孟元林, 姜文亚, 刘德来, 等. 储层孔隙度预测与孔隙演化史模拟方法探讨: 以辽河拗陷双清地区为例[J]. 沉积学报, 2008, 26(5): 780-788. |
[23] | 孟元林, 修洪文, 孟凡晋, 等. 用泥岩热解资料预测储层次生孔隙发育带[J]. 天然气工业, 2008, 28(10): 41-43, 137. |
[1] |
MORAD S, KETZER J M, DE ROS L F. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins[J]. Sedimentology, 2000, 47: 95-120.
DOI URL |
[2] | 史基安, 晋慧娟, 薛莲花. 长石砂岩中长石溶解作用发育机理及其影响因素分析[J]. 沉积学报, 1984, 12(3): 67-75. |
[3] | 赵国泉, 李凯明, 赵海玲, 等. 鄂尔多斯盆地上古生界天然气储集层长石的溶蚀与次生孔隙的形成[J]. 石油勘探与开发, 2005, 32(1): 53-55, 75. |
[24] | 孟元林, 王又春, 姜文亚, 等. 辽河坳陷双清地区古近系沙河街组四段孔隙度演化模拟[J]. 古地理学报, 2009, 11(2): 225-232. |
[25] | MAXWELL J C. Influence of depth, temperature, and geologic age on porosity of quartzose sandstone[J]. AAPG Bulletin, 1964, 48(5): 697-709. |
[26] | 贝丰, 王允诚. 沉积物的压实作用与烃类的初次运移[M]. 北京: 石油工业出版社, 1985: 257-264. |
[27] |
CHESTER J S, LENZ S C, CHESTER F M, et al. Mechanisms of compaction of quartz sand at diagenetic conditions[J]. Earth and Planetary Science Letters, 2004, 220 (3/4): 435-451.
DOI URL |
[28] | 刘国勇, 金之钧, 张刘平. 碎屑岩成岩压实作用模拟实验研究[J]. 沉积学报, 2006, 24(3): 407-413. |
[29] |
HE W W, HAJASH A, SPARKS D. Evolution of fluid chemistry in quartz compaction systems: experimental investigations and numerical modeling[J]. Geochimica et Cosmochimica Acta, 2007, 71(20): 4846-4855.
DOI URL |
[30] |
FAWAD M, MONDOL N H, JAHREN J, et al. Microfabric and rock properties of experimentally compressed silt-clay mixtures[J]. Marine and Petroleum Geology, 2010, 27(8): 1698-1712.
DOI URL |
[31] | 操应长, 葸克来, 王健, 等. 砂岩机械压实与物性演化成岩模拟实验初探[J]. 现代地质, 2011, 25(6): 1152-1158. |
[32] | 姜亚南. 机械压实作用对低孔低渗储层的影响: 以渤海地区古近系致密储层为例[D]. 长春: 吉林大学, 2014: 57-61. |
[33] | 长庆油田石油地质志编写组. 中国石油地质志: 第12卷[M]. 北京: 石油工业出版社, 1992. |
[34] | 吴崇筠, 薛叔浩. 中国含油气盆地沉积学[M]. 北京: 石油工业出版社, 1992. |
[35] | 何自新. 鄂尔多斯盆地构造演化与油气[M]. 北京: 石油工业出版社, 2003. |
[36] | 李兆雨, 李文厚, 吴越, 等. 鄂尔多斯盆地姬塬地区延长组长8油层组储层特征及主控因素[J]. 西北大学学报(自然科学版), 2020, 50(2): 193-203. |
[37] | 刘翰林, 王凤琴, 杨友运, 等. 西峰油田DZ—ZY地区长8储集层长石溶蚀特征及溶蚀强度计算[J]. 新疆石油地质, 2017, 38(1): 27-33. |
[38] | 鞠玮, 尤源, 冯胜斌, 等. 鄂尔多斯盆地延长组长7油层组致密砂岩储层层理缝特征及成因[J]. 石油与天然气地质, 2020, 41(3): 596-605. |
[39] | 周晓娜. 姬塬地区长6段储层成岩作用及其孔隙演化[D]. 大庆: 东北石油大学, 2019. |
[40] | 斯扬. 姬塬地区长8、 长9低渗透砂岩油藏地层水与油藏的关系研究[D]. 西安: 西北大学, 2019. |
[41] | 付金华, 郭正权, 邓秀芹. 鄂尔多斯盆地西南地区上三叠统延长组沉积相及石油地质意义[J]. 古地理学报, 2005, 7(1): 34-44. |
[42] | 张哨楠, 丁晓琪. 鄂尔多斯盆地南部延长组致密砂岩储层特征及其成因[J]. 成都理工大学学报(自然科学版), 2010, 37(4): 386-394. |
[43] | 王新民, 郭彦如, 付金华, 等. 鄂尔多斯盆地延长组长8段相对高孔渗砂岩储集层的控制因素分析[J]. 石油勘探与开发, 2005, 32(2): 35-38. |
[44] | 赵俊兴, 黄德才, 罗媛, 等. 鄂尔多斯盆地南部长6段储层成岩作用特征[J]. 天然气工业, 2009, 29(3): 34-37, 133. |
[45] | 潘高峰, 刘震, 胡晓丹. 镇泾长8砂岩古孔隙度恢复方法与应用[J]. 科技导报, 2011, 29(3): 34-38. |
[46] | SURDAM R C, BOESE S W, CROSSEY L J. The chemistry of secondary porosity[J]. AAPG Memoir, 1984, 37: 127-149. |
[47] | SURDAM R C, CROSSEY L J, HAGEN E S, et al. Organic-inorganic and sandstone diagenesis[J]. AAPG Bulletin, 1989, 73(1): 1-23. |
[48] | STOESSELL R K, PITTMAN E D. Secondary porosity revisited: the chemistry of feldspar dissolution by carboxylic acids and anions[J]. AAPG Bulletin, 1990, 74(12): 1795-1805. |
[49] | 杨晓宁, 陈洪德, 寿建峰, 等. 碎屑岩次生孔隙形成机制[J]. 大庆石油学院学报, 2004, 28(1)4-6, 117. |
[50] | 陈丽华, 赵澄林, 纪友亮, 等. 碎屑岩天然气储集层次生孔隙的三种成因机理[J]. 石油勘探与开发, 1999, 26(5): 77-79, 10. |
[51] |
FEIN J B. Experimental study of aluminum-oxalate complexing at 80 ℃: implications for the formation of secondary porosity within sedimentary reservoirs[J]. Geology, 1991, 19(10): 1037-1040.
DOI URL |
[52] | CAROTHERS W W, KHARAKA Y K. Aliphatic acid anions in oil-field waters: implications for origin of natural gas[J]. AAPG Bulletin, 1978, 62(12): 2441-2453. |
[1] | ZHAO Kan, SHEN Jian, CAI Yun, ZHAO Sumin. Insights into the root causes of difficulties in reinjection in sandstone geothermal reservoir and countermeasures [J]. Earth Science Frontiers, 2024, 31(6): 196-203. |
[2] | DING Wenlong, WANG Yao, ZHANG Ziyou, LIU Tianshun, CHENG Xiaoyun, GOU Tong, WANG Shenghui, LIU Tingfeng. Tectonic fracturing and fracture initiation in shale reservoirs—research progress and outlooks [J]. Earth Science Frontiers, 2024, 31(5): 1-16. |
[3] | LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin [J]. Earth Science Frontiers, 2024, 31(5): 103-116. |
[4] | DONG Shaoqun, ZENG Lianbo, JI Chunqiu, ZHANG Yanbing, HAO Jingru, XU Xiaotong, HAN Gaosong, XU Hui, LI Haiming, LI Xinqi. A deep kernel method for fracture identification in ultra-deep tight sandstones using well logs [J]. Earth Science Frontiers, 2024, 31(5): 166-176. |
[5] | CHEN Rubiao, WANG Yuman, HUANG Zhengliang, LI Weiling, YAN Wei, LIANG Feng, GUO Wei. Fracture pore characteristics and gas accumulation model of marine shales in the northwestern Ordos Basin: A case study of the Ordovician Wulalike Formation [J]. Earth Science Frontiers, 2024, 31(5): 46-60. |
[6] | QIU Linfei, LI Ziying, ZHANG Zilong, WANG Longhui, LI Zhencheng, HAN Meizhi, WANG Tingting. Characteristics of organic matter in Lower Cretaceous ore-bearing sandstones and its relationship with uranium mineralization in the northern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(4): 281-296. |
[7] | SU Kaiming, XU Yaohui, XU Wanglin, ZHANG Yueqiao, BAI Bin, LI Yang, YAN Gang. Contribution ratio and distribution patterns of multiple oil sources in the Yanchang Formation of the Ordos Basin: A study utilizing machine learning and interpretability techniques [J]. Earth Science Frontiers, 2024, 31(3): 530-540. |
[8] | LIU Chiheng, LI Ziying, HE Feng, ZHANG Zilong, LI Zhencheng, LING Mingxing, LIU Ruiping. Quantitative analysis of provenance in the Lower Cretaceous of the northwestern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(3): 80-99. |
[9] | LIU Chao, FU Xiaofei, LI Yangcheng, WANG Haixue, SUN Bing, HAO Yan, HU Huiting, YANG Zicheng, LI Yilin, GU Shefeng, ZHOU Aihong, MA Chenglong. Can hydrocarbon source rock be uranium source rock?—a review and prospectives [J]. Earth Science Frontiers, 2024, 31(2): 284-298. |
[10] | ZHOU Jian, LIN Chengyan, LIU Huimin, ZHANG Kuihua, ZHANG Guanlong, WANG Qianjun, YU Hongzhou, NI Shengli, NIU Huapeng, JIAO Xiaoqin, LIU Shan. Mechanism of reservoir development in the Carboniferous-Permian volcanic rock reservoirs in Hala’alate Mountain area, Junggar Basin [J]. Earth Science Frontiers, 2024, 31(2): 327-342. |
[11] | LIU Chiyang, ZHANG Long, HUANG Lei, WU Bailin, WANG Jianqiang, ZHANG Dongdong, TAN Chengqian, MA Yanping, ZHAO Jianshe. Novel metallogenic model of sandstone-type uranium deposits: Mineralization by deep organic fluid [J]. Earth Science Frontiers, 2024, 31(1): 368-383. |
[12] | WANG Jincai, FAN Zifei, ZHAO Lun, CHEN Yefei, ZHANG Angang, ZHANG Xiangzhong, GUO Xuejing, LI Yi. A new method for identification of flow units of sandstone reservoir based on reservoir performance and its application in the Akshabulak oilfield, Kazakhstan [J]. Earth Science Frontiers, 2023, 30(4): 88-99. |
[13] | ZHAI Yonghe, HE Dengfa, KAI Baize. Tectono-depositional environment and prototype basin evolution in the Ordos Basin during the Early Permian [J]. Earth Science Frontiers, 2023, 30(2): 139-153. |
[14] | WANG Xiangzeng. Low permeability tight oil and gas in Yanchang area, Ordos Basin: Advances in accumulation theory and exploration practice [J]. Earth Science Frontiers, 2023, 30(1): 143-155. |
[15] | FU Jinhua. Accumulation characteristics and exploration potential of tight limestone gas in the Taiyuan Formation of the Ordos Basin [J]. Earth Science Frontiers, 2023, 30(1): 20-29. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||