Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (6): 196-203.DOI: 10.13745/j.esf.sf.2024.7.18
Previous Articles Next Articles
ZHAO Kan1,2(), SHEN Jian1,2, CAI Yun1,2,*(
), ZHAO Sumin2
Received:
2024-05-31
Revised:
2024-08-29
Online:
2024-11-25
Published:
2024-11-25
CLC Number:
ZHAO Kan, SHEN Jian, CAI Yun, ZHAO Sumin. Insights into the root causes of difficulties in reinjection in sandstone geothermal reservoir and countermeasures[J]. Earth Science Frontiers, 2024, 31(6): 196-203.
Fig.4 Schematic diagram of pressure loss in the advancement of the recinjection plume. a: Cold shrinkage part of reservoir;b: Fluid temperature rising area; Arrows represent the direction of seepage.
![]() |
Table 1 Comparison of physical parameters for sandstone geothermal reservoirs between the Neoproterozoic Guantao and Minghuazhen Formations in Tianiin
![]() |
黏土矿物 | 所含离子 | 敏感程度 | 潜在敏感性 | 产生条件 | 抑制方法 |
---|---|---|---|---|---|
蒙 皂 石 | Na+,Mg2+,Ca2+, Al3+,Fe3+,OH-,Si4+ | 大 中 中 小 | 水敏性 速敏性 酸敏性 碱敏性 | 淡水系统,较高流速 酸化作业 化学驱(高温、 高碱度) | 高盐度流体、防膨剂 酸处理 酸敏抑制剂 抑制剂 |
伊 利 石 | K+,Al3+, OH-,Si4+ | 小 中 大 | 速敏性 堵塞 K2SIF6沉淀 | 高流速 淡水系统 氢氟酸酸化 | 低流速 高盐度流体、防膨剂 酸敏抑制剂 |
高 岭 石 | Mg2+,Al3+,Fe3+, OH-,Si4+ | 中 中 大 | 速敏性 AI(OH)3沉淀 碱敏性 | 高流速、PH、瞬变压力 酸化压裂 化学驱 | 低流速、低瞬变压力 酸敏抑制剂 抑制剂 |
绿 泥 石 | K+,Na+ ,Mg2+, Ca2+,Al3+,OH-,Si4+ | 大 中 小 | Fe(OH)3沉淀 MgF2沉淀 速敏性 | 富氧系统、高PH 氢氟酸酸化 高流速、高PH | 除氧剂 酸敏抑制剂 低流速 |
Table 2 Common hydrogeological sensitivity-producing conditions and inhibition methods
黏土矿物 | 所含离子 | 敏感程度 | 潜在敏感性 | 产生条件 | 抑制方法 |
---|---|---|---|---|---|
蒙 皂 石 | Na+,Mg2+,Ca2+, Al3+,Fe3+,OH-,Si4+ | 大 中 中 小 | 水敏性 速敏性 酸敏性 碱敏性 | 淡水系统,较高流速 酸化作业 化学驱(高温、 高碱度) | 高盐度流体、防膨剂 酸处理 酸敏抑制剂 抑制剂 |
伊 利 石 | K+,Al3+, OH-,Si4+ | 小 中 大 | 速敏性 堵塞 K2SIF6沉淀 | 高流速 淡水系统 氢氟酸酸化 | 低流速 高盐度流体、防膨剂 酸敏抑制剂 |
高 岭 石 | Mg2+,Al3+,Fe3+, OH-,Si4+ | 中 中 大 | 速敏性 AI(OH)3沉淀 碱敏性 | 高流速、PH、瞬变压力 酸化压裂 化学驱 | 低流速、低瞬变压力 酸敏抑制剂 抑制剂 |
绿 泥 石 | K+,Na+ ,Mg2+, Ca2+,Al3+,OH-,Si4+ | 大 中 小 | Fe(OH)3沉淀 MgF2沉淀 速敏性 | 富氧系统、高PH 氢氟酸酸化 高流速、高PH | 除氧剂 酸敏抑制剂 低流速 |
[1] | 白永辉, 刘普峰, 张丽. 浅议孔隙型热储的回灌能力[J]. 地热能, 2010(4):21-23. |
[2] |
黄艳艳, 那金, 雷宏武. 开封地区砂岩孔隙热储回灌化学堵塞数值模拟研究[J]. 太阳能学报, 2024, 45(2): 225-235.
DOI |
[3] | 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937. |
[4] | 王贵玲, 马峰, 侯贺晟, 等. 松辽盆地坳陷层控地热系统研究[J]. 地球学报, 2023, 44(1): 21-32. |
[5] | 殷肖肖, 赵苏民, 蔡芸, 等. 近三十年天津市地热大规模开发热储动态特征研究[J]. 地质学报, 2024, 98(1): 297-313. |
[6] | 陈莹, 王攀科, 吴烨, 等. 河南兰考地区地热回灌影响因素分析及对策[J]. 钻探工程, 2022 (6): 146-152. |
[7] | 刘道选, 孙启邦, 肖红, 译. 德国砂岩热储层地热水回灌实验[J]. 地热能, 2009(5):3-11. |
[8] | 马致远, 侯晨, 席临平, 等. 超深层孔隙型热储地热尾水回灌堵塞机理[J]. 水文地质工程地质, 2013, 40(5): 133-139. |
[9] | SU Y J, YANG F T, WANG B. Reinjection of cooled water into sandstone geothermal[J]. Geosciences Journal, 2018, 22(1):202-205. |
[10] | 黄修东, 束龙仓, 刘佩贵, 等. 注水井回灌过程中堵塞问题的试验研究[J]. 水利学报, 2009, 40(4): 430-434. |
[11] | 孙焕全, 王增林, 韩霞. 油田回注水水质稳定控制技术[M]. 北京: 中国石化出版社,2012:188-192. |
[12] | 王明珠, 万军伟, 白通, 等. 德州市德城区砂岩热储地热资源开采对地面沉降的影响[J]. 华东地质, 2021, 42(2): 202-209. |
[13] | 高新智. 天津市孔隙型砂岩热储回灌能力评价模型研究[D]. 北京: 中国地质大学(北京), 2018. |
[14] | 齐恭, 李杨, 高鹏举, 等. 影响砂岩型热储回灌因素的分析与认识[J]. 钻探工程, 2023, 50(6): 107-112. |
[15] | 贺淼, 张乐, 袁一鸣, 等. 东营市南展区砂岩热储地热回灌量与温度的关系探讨[J]. 山东国土资源, 2018, 34(1): 44-48. |
[16] | 冯守涛, 王成明, 杨亚宾, 等. 砂岩热储回灌对储层影响评价: 以鲁西北坳陷地热区为例[J]. 地质学报, 2019, 93(增刊1): 158-167. |
[17] | 林建旺, 赵苏民. 天津地区馆陶组热储回灌量衰减原因探讨[J]. 水文地质工程地质, 2010, 37(5): 133-136. |
[18] | 刘久荣. 地热回灌的发展现状[J]. 水文地质工程地质, 2003, 30(3): 100-104. |
[19] | 格兰特, 比克斯勒. 热储工程学[M]. 王贵玲, 蔺文静,译. 北京: 测绘出版社, 2013. |
[20] | 王剑, 谭富文, 付修根. 沉积岩工作方法[M]. 北京: 地质出版社, 2015: 38-39. |
[21] | NAKASHIMA Y, KAMIYA S. Mathematica programs for the analysis of three-dimensional pore connectivity and anisotropic tortuosity of porous rocks using X-ray computed tomography image data[J]. Journal of Nuclear Science and Technology, 2007, 44(9): 1233-1247. |
[22] | 王华军, 于萌, 赵苏民, 等. 新近系地热钻孔砂岩孔隙微观分析及渗透特性对比[J]. 太阳能学报, 2019, 40(6): 1790-1796. |
[23] | 康凤新, 周群道, 赵苏民. 砂岩热储地热尾水回灌技术规程[S]. 北京: 地质出版社, 2020. |
[24] | 王志强, 周北沈, 田公伟, 等. 第四纪松散层大口径水井成井工艺[J]. 吉林地质, 2009, 28(2): 74-75. |
[25] | 李成嵩, 王银生. 东营地区地热回灌井钻井完井技术研究与试验[J]. 石油钻探技术, 2021, 49(6): 50-54. |
[26] | 王德新. 完井与井下作业[M]. 东营: 石油大学出版社, 2004. |
[27] | 谢玉洪, 苏崇华. 疏松砂岩储层伤害机理及应用[M]. 北京: 石油工业出版社, 2008. |
[1] | WANG Guiling, LIN Wenjing. The thermal status of China’s land areas and heat-control factors [J]. Earth Science Frontiers, 2024, 31(6): 1-18. |
[2] | SHI Honglei, WANG Wanli, WANG Guiling, XING Linxiao, LU Chuan, ZHAO Jiayi, LIU Lu, SONG Jiajia. Numerical simulation of hydrothermal cycling process and lithium isotope fractionation in a typical high-temperature geothermal system [J]. Earth Science Frontiers, 2024, 31(6): 104-119. |
[3] | XU Jiading, ZHANG Chongyuan, ZHANG Hao, BAI Jinpeng, ZHANG Shi’an, ZHANG Shengsheng, QIN Xianghui, SUN Dongsheng, HE Manchao, WU Manlu. In-situ stress measurements in hot dry rock, Qinghai Gonghe Basin and simulation analysis of reservoir fracture modification [J]. Earth Science Frontiers, 2024, 31(6): 130-144. |
[4] | WANG Wanli, DUAN Yajuan, ZHANG Wei, ZHU Xi, MA Feng, WANG Guiling. Control factors and guidelines for urban-scale shallow geothermal energy development based on control units: An example from Xiong’an [J]. Earth Science Frontiers, 2024, 31(6): 158-172. |
[5] | LIU Lingxia, LU Rui, XIE Wenping, LIU Bo, WANG Yaru, YAO Haihui, LIN Wenjing. Distribution and hydrogeochemical characteristics of hot springs in northeastern Tibetan Plateau [J]. Earth Science Frontiers, 2024, 31(6): 173-195. |
[6] | LIU Feng, WANG Guiling, JIANG Guangzheng, HU Shengbiao, ZHANG Wei, LIN Wenjing, LIU Jinhui, ZHANG Xinyong, QU Zewei, LIAO Chuanzhi. Recent advances in heat flow measurement and new understanding of terrestrial heat flow distribution in terrestrial areas of China [J]. Earth Science Frontiers, 2024, 31(6): 19-30. |
[7] | DAI Chuanshan, LIU Dongxi, LI Jiashu, LEI Haiyan, CHEN Shuhuan, CHEN Qianhan, WANG Qilong. Single-well in-situ heat extraction technology—a review and perspectives [J]. Earth Science Frontiers, 2024, 31(6): 204-214. |
[8] | QI Xiaofei, XIAO Yong, SHANGGUAN Shuantong, SU Ye, WANG Hongke, LI Yingying, HU Zhixing. Fracture propagation mechanism in artificial reservoir of deep hot dry rock, Matouying and its applications [J]. Earth Science Frontiers, 2024, 31(6): 224-234. |
[9] | JIANG Zheng, SHU Biao, TAN Jingqiang. Heat transfer in geothermal reservoir of CO2-based enhanced geothermal systems—current research status and prospects [J]. Earth Science Frontiers, 2024, 31(6): 235-251. |
[10] | SHANGGUAN Shuantong, TIAN Lanlan, PAN Miaomiao, YANG Fengliang, YUE Gaofan, SU Ye, QI Xiaofei. Fault slip tendency and induced-earthquake risks in hot dry rock development: A case study in the Tangshan Matouying HDR site [J]. Earth Science Frontiers, 2024, 31(6): 252-260. |
[11] | KANG Fengxin, ZHANG Baojian, CUI Yang, YAO Song, SHI Meng, QIN Peng, SUI Haibo, ZHENG Tingting, LI Jialong, YANG Haitao, LI Chuanlei, LIU Chunwei. Formation of high-temperature geothermal reservoirs in central and eastern North China [J]. Earth Science Frontiers, 2024, 31(6): 31-51. |
[12] | WANG Guiling, MA Feng, ZHANG Wei, ZHU Xi, YU Mingxiao, ZHANG Hanxiong, LUO Cheng. Dominant heat transfer mechanism in buried-hill reservoirs in North China: A case study in Xiong’an new area [J]. Earth Science Frontiers, 2024, 31(6): 52-66. |
[13] | KANG Fengxin, ZHENG Tingting, SHI Meng, SUI Haibo, XU Meng, JIANG Haiyang, ZHONG Zhennan, QIN Peng, ZHANG Baojian, ZHAO Jichu, MA Zhemin, CUI Yang, LI Jialong, DUAN Xiaofei, BAI Tong, ZHANG Pingping, YAO Song, LIU Xiao, SHI Qipeng, WANG Xuepeng, YANG Haitao, CHEN Jingpeng, LIU Beibei. Occurrence rules and enrichment mechanism of geothermal resources in Shandong Province [J]. Earth Science Frontiers, 2024, 31(6): 67-94. |
[14] | ZHOU Wei, MA Xiao, CHEN Wenyi, GAO Rui, WANG Yan, HU Dawei. Carbonates of the Wumishan Formation, Jixian System in the North China Plain: Mechanical properties under in-situ geothermal conditions [J]. Earth Science Frontiers, 2024, 31(6): 95-103. |
[15] | ZHANG Jian, HE Yubei, FAN Yanxia. Geophysical analysis of heat source composition in the Fujian coastal geothermal anomaly area [J]. Earth Science Frontiers, 2024, 31(3): 392-401. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||