Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (6): 104-119.DOI: 10.13745/j.esf.sf.2024.7.12
Previous Articles Next Articles
SHI Honglei1,2,3(), WANG Wanli1,2, WANG Guiling1,2,*(
), XING Linxiao1,2, LU Chuan1,2, ZHAO Jiayi1,2, LIU Lu1,2,4, SONG Jiajia1,2,5
Received:
2024-02-12
Revised:
2024-04-23
Online:
2024-11-25
Published:
2024-11-25
CLC Number:
SHI Honglei, WANG Wanli, WANG Guiling, XING Linxiao, LU Chuan, ZHAO Jiayi, LIU Lu, SONG Jiajia. Numerical simulation of hydrothermal cycling process and lithium isotope fractionation in a typical high-temperature geothermal system[J]. Earth Science Frontiers, 2024, 31(6): 104-119.
测点位置 | 井号 | 线性增温段深度/m | K/(W·m-1·K-1) | Q/(mW·m-2) | 热流类型 |
---|---|---|---|---|---|
拉萨北郊 | Geoth-1 | 240~600 | 2.711 | 66 | 传导型 |
马区 | Geoth-2 | 460~530 | 2.972 | 106 | 传导型 |
羊八井 | ZK308 | 1 030~1 410 | 2.320 | 108 | 传导型 |
羊应乡 | ZK201 | 140~190 | 1.578 | 364 | 对流传导型 |
拉多岗 | ZK203 | 70~140 | 2.712 | 338 | 对流传导型 |
Table 1 Geodetic heat flow data for the study area and adjacent area
测点位置 | 井号 | 线性增温段深度/m | K/(W·m-1·K-1) | Q/(mW·m-2) | 热流类型 |
---|---|---|---|---|---|
拉萨北郊 | Geoth-1 | 240~600 | 2.711 | 66 | 传导型 |
马区 | Geoth-2 | 460~530 | 2.972 | 106 | 传导型 |
羊八井 | ZK308 | 1 030~1 410 | 2.320 | 108 | 传导型 |
羊应乡 | ZK201 | 140~190 | 1.578 | 364 | 对流传导型 |
拉多岗 | ZK203 | 70~140 | 2.712 | 338 | 对流传导型 |
参数 | 基底孔隙率/% | 断裂带孔隙率/% | 流体密度/ (kg·m-3) | 岩石密度/ (kg·m-3) | 流体黏度/(Pa·s) |
---|---|---|---|---|---|
取值范围及计算函数 | 1 | 10~30 | ρ(T,TDS) | 2 600 | μ(T,TDS) |
参数 | 基底渗透率/m2 | 断裂带渗透率/m2 | 岩石热导率/ (W·m-1·K-1) | 水的热导率/ (W·m-1·K-1) | 水的比热容/ (J·kg-1·K-1) |
取值范围及计算函数 | k(z) | 10-15~10-13 | 2.5 | 0.56 | 4 200 |
参数 | 岩石比热容/ (J·kg-1·K-1) | 放射性生热率/ (μW·m-3) | 熔融体温度/℃ | 熔融体埋深/km | 底部边界热流/ (mW·m-2) |
取值范围 | 750 | 1.6 | 600 | 6~10 | 66 |
参数 | 反应活化能/ (kJ·mol-1) | 化学反应常数/s-1 | 摩尔气体常数/ (kJ·mol-1·K-1) | 岩石锂元素质量分数/ (mg·kg-1) | 岩石锂同位素组成 δ7Li/‰ |
取值范围 | 80 | 0.01 | 8.314 56 | 20~35 | -3.5~0.5 |
Table 2 Model parameters
参数 | 基底孔隙率/% | 断裂带孔隙率/% | 流体密度/ (kg·m-3) | 岩石密度/ (kg·m-3) | 流体黏度/(Pa·s) |
---|---|---|---|---|---|
取值范围及计算函数 | 1 | 10~30 | ρ(T,TDS) | 2 600 | μ(T,TDS) |
参数 | 基底渗透率/m2 | 断裂带渗透率/m2 | 岩石热导率/ (W·m-1·K-1) | 水的热导率/ (W·m-1·K-1) | 水的比热容/ (J·kg-1·K-1) |
取值范围及计算函数 | k(z) | 10-15~10-13 | 2.5 | 0.56 | 4 200 |
参数 | 岩石比热容/ (J·kg-1·K-1) | 放射性生热率/ (μW·m-3) | 熔融体温度/℃ | 熔融体埋深/km | 底部边界热流/ (mW·m-2) |
取值范围 | 750 | 1.6 | 600 | 6~10 | 66 |
参数 | 反应活化能/ (kJ·mol-1) | 化学反应常数/s-1 | 摩尔气体常数/ (kJ·mol-1·K-1) | 岩石锂元素质量分数/ (mg·kg-1) | 岩石锂同位素组成 δ7Li/‰ |
取值范围 | 80 | 0.01 | 8.314 56 | 20~35 | -3.5~0.5 |
[1] | 多吉, 王贵玲. 加大深部热能探采技术攻关持续推进地热资源规模化开发[J]. 科技导报, 2022, 40(20): 1. |
[2] | 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937. |
[3] | WANG G L, GAN H N, LIN W J, et al. Hydrothermal systems characterized by crustal thermally-dominated structures of southeastern China[J]. Acta Geologica Sinica (English Edition), 2023, 97(4): 1003-1013. |
[4] | TÓTH J. A theoretical analysis of groundwater flow in small drainage basins[J]. Journal of Geophysical Research, 1963, 68(16): 4795-4812. |
[5] | 肖巍, 孙蓉琳, 陈明霞, 等. 不同地下水流系统模式渗流场和温度场的互相影响[J]. 地质科技通报, 2022(1): 251-259. |
[6] | BAHLALI M L, SALINAS P, JACKSON M D. Efficient numerical simulation of density-driven flows: application to the 2- and 3-D elder problem[J]. Water Resources Research, 2022, 58(8): e2022W-e32307W. |
[7] | 郝奇琛, 崔伟哲, 黄林显. 盆地地下水密度变化对水流驱动力的影响[J]. 济南大学学报(自然科学版), 2020, 34(6): 595-602. |
[8] | ABARCA E, CARRERA J, SÁNCHEZ-VILA X, et al. Anisotropic dispersive Henry problem[J]. Advances in Water Resources, 2007, 30(4): 913-926. |
[9] | MILLOT R, SCAILLET B, SANJUAN B. Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach[J]. Geochimica et Cosmochimica Acta, 2010, 74(6): 1852-1871. |
[10] |
余小灿, 刘成林, 王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
DOI |
[11] | 魏帅超, 张薇, 付勇, 等. 我国地热水中锂元素分布特征及资源开发利用[J]. 中国地质, 2024, 51(5): 1527-1553. |
[12] | 田世洪, 路娜, 侯增谦, 等. MC-ICP-MS锂同位素溶液分析技术与应用[J]. 地质论评, 2021, 67(5): 1441-1464. |
[13] | 于沨, 于扬, 王登红, 等. 锂同位素地球化学在地热流体水岩反应中的应用: 以川西现代富锂热泉研究为例[J]. 岩石学报, 2022, 38(2): 472-482. |
[14] | 陈卫营, 薛国强, 赵平, 等. 西藏羊八井地热田SOTEM探测及热储结构分析[J]. 地球物理学报, 2023, 66(11): 4805-4816. |
[15] | 多吉. 典型高温地热系统: 羊八井热田基本特征[J]. 中国工程科学, 2003, 5(1): 42-47. |
[16] | UNSWORTH M J, TEAM T I M, JONES A G, et al. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data[J]. Nature, 2005, 438(7064): 78-81. |
[17] |
王刚, 魏文博, 金胜, 等. 冈底斯成矿带东段的电性结构特征研究[J]. 地球物理学报, 2017, 60(8): 2993-3003.
DOI |
[18] | 薛国强, 陈卫营, 赵平, 等. 西藏羊八井地热田三维电性结构模型: 来自大地电磁的证据[J]. 中国科学: 地球科学, 2023, 53(8): 1859-1871. |
[19] | 吴珍汉. 青藏高原腹地的地壳变形与构造地貌形成演化过程[M]. 北京: 地质出版社, 2003. |
[20] | 郑绵平, 刘文高. 西藏发现富锂镁硼酸盐矿床[J]. 地质论评, 1982, 28(3): 263-266. |
[21] | WANG X, WANG G L, LU C, et al. Evolution of deep parent fluids of geothermal fields in the Nimu-Nagchu geothermal belt, Tibet, China[J]. Geothermics, 2018, 71: 118-131. |
[22] | XU H R, LIU G H, ZHAO Z H, et al. Coupled THMC modeling on chemical stimulation in fractured geothermal reservoirs[J]. Geothermics, 2023, 116: 102854. |
[23] | SHI H L, WANG G L, LU C. Numerical investigation on delaying thermal breakthrough by regulating reinjection fluid path in multi-aquifer geothermal system[J]. Applied Thermal Engineering, 2023, 221: 119692. |
[24] | SAEED M, MRITYUNJAY S, AYSEGUL T, et al. Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir[J]. Energy, 2022, 247: 123511. |
[25] | WANG G L, LIU G H, ZHAO Z H, et al. A robust numerical method for modeling multiple wells in city-scale geothermal field based on simplified one-dimensional well model[J]. Renewable Energy, 2019, 139: 873-894. |
[26] | MA F, LIU G H, ZHAO Z H, et al. Coupled thermo-hydro-mechanical modeling on the Rongcheng geothermal field, China[J]. Rock Mechanics and Rock Engineering, 2022, 55(8): 5209-5233. |
[27] | ZHANG D X, KANG Q J. Pore scale simulation of solute transport in fractured porousmedia[J]. Geophysical Research Letters, 2004, 31(12): 289-302. |
[28] | RANJRAM M, GLEESON T, LUIJENDIJK E. Is the permeability of crystalline rock in the shallow crust related to depth, lithology, or tectonic setting?[J]. Geofluids, 2005, 15: 106-119. |
[29] | KUDER J. Methoden zur berechnung von fluidparametern[R]. Hannover: Methoden zur Berechnung von Fluidparametern, 2011. |
[30] | BATZLE M, WANG Z J. Seismic properties of pore fluids[J]. Geophysics, 1992, 57(11): 1396-1408. |
[31] | 徐浩然, 程镜如, 赵志宏. 华北地区碳酸盐岩热储层酸化压裂模拟方法与应用[J]. 地质学报, 2020, 94(7): 2157-2165. |
[32] | LUI-HEUNG C, GIESKES J M, YOU C F, et al. Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California[J]. Geochimica et Cosmochimica Acta, 1994, 58(20): 4443-4454. |
[33] | JAMES R H, RUDNICKI M D, PALMER M R. The alkali element and boron geochemistry of the Escanaba Trough sediment-hosted hydrothermal system[J]. Earth and Planetary Science Letters, 1999, 171(1): 157-169. |
[34] | LUI-HEUNG C, EDMOND J M. Variation of lithium isotope composition in the marine environment: a preliminary report[J]. Geochimica et Cosmochimica Acta, 1988, 52(6): 1711-1717. |
[35] | WUNDER B, MEIXNER A, ROMER R L, et al. Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids[J]. Contributions to Mineralogy and Petrology, 2006, 151(1): 112-120. |
[36] | WUNDER B, MEIXNER A, ROMER R L, et al. Li-isotope fractionation between silicates and fluids: pressure dependence and influence of the bonding environment[J]. European Journal of Mineralogy, 2011, 23(3): 333-342. |
[37] | JENKIN G R T, LINKLATER C, FALLICK A E. Modeling of mineral δ18O values in an igneous aureole: closed-system model predicts apparent open-system δ18O values[J]. Geology, 1991, 19(12): 1185-1188. |
[38] | 王潇. 西藏羊易地热田泉华地球化学特征及其指示意义[D]. 北京: 中国地质科学院, 2018. |
[39] | 李振清. 青藏高原碰撞造山过程中的现代热水活动[D]. 北京: 中国地质科学院, 2002. |
[40] | 李家振, 孙善平, 张有瑜, 等. 西藏羊应乡地热田形成特点及评价探讨[J]. 现代地质, 1994, 8(1): 49-56. |
[41] | 宋嘉佳, 王贵玲, 邢林啸, 等. 岩石热导率校正对大地热流计算值的影响: 以渤海湾盆地冀中坳陷为例[J]. 地质论评, 2023, 69(4): 1349-1364. |
[42] | FURLONG K P, CHAPMAN D S. Heat flow, heat generation, and the thermal state of the lithosphere[J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 385-410. |
[43] | 王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660. |
[44] | 王贵玲, 马峰, 侯贺晟, 等. 松辽盆地坳陷层控地热系统研究[J]. 地球学报, 2023, 44(1): 21-32. |
[45] | LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259. |
[46] | 蔺文静, 王贵玲, 甘浩男. 华南陆缘火成岩区差异性地壳热结构及地热意义[J]. 地质学报, 2024, 98(2): 544-557. |
[47] | 王贵玲, 刘峰, 蔺文静, 等. 我国陆区地壳生热率分布与壳幔热流特征研究[J]. 地球物理学报, 2023, 66(12): 5041-5056. |
[48] | 王强, 苟国宁, 张修政, 等. 青藏高原中北部地壳流动与高原扩展: 来自火山岩的证据[J]. 中国科学基金, 2017, 31(2): 121-127. |
[49] | WANG Q, CHUNG S L, LI X H, et al. Crustal melting and flow beneath northern Tibet: evidence from mid-Miocene to quaternary strongly peraluminous rhyolites in the southern Kunlun range[J]. Journal of Petrology, 2012, 53(12): 2523-2566. |
[50] | 龙登红, 周小龙, 杨坤光, 等. 青藏高原东北缘深部地质构造与地热资源分布关系研究[J]. 中国地质, 2021, 48(3): 721-731. |
[51] | 邱楠生, 胡圣标, 何丽娟. 沉积盆地地热学[M]. 青岛: 中国石油大学出版社, 2019. |
[52] | 沈显杰, 张文仁, 杨淑贞, 等. 青藏高原南北地体壳幔热结构差异的大地热流证据[J]. 中国地质科学院院报, 1990, 11(2): 203-214. |
[53] | 沈显杰, 张文仁, 杨淑贞, 等. 西藏中部地热区的钻孔热流测量[J]. 地质科学, 1989, 24(4): 376-384. |
[54] | JAUPART C, MARESCHAL J C, IAROTSKY L. Radiogenic heat production in the continental crust[J]. Lithos, 2016, 262: 398-427. |
[55] | 何丽娟, 胡圣标, 汪集旸. 中国东部大陆地区岩石圈热结构特征[J]. 自然科学进展, 2001, 11(9): 72-75. |
[56] | WANG G, WEI W B, YE G F, et al. 3-D electrical structure across theYadong-Gulu Rift revealed by magnetotelluric data: new insights on the extension of the upper crust and the geometry of the underthrusting Indian lithospheric slab in southern Tibet[J]. Earth and Planetary Science Letters, 2017, 474: 172-179. |
[57] |
CHEN L S, BOOKER J R, JONES A G, et al. Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying[J]. Science, 1996, 274(5293): 1694-1696.
PMID |
[58] | SU J B, TAN H B. The genesis of rare-alkali metal enrichment in the geothermal anomalies controlled by faults and magma along the northernYadong-Gulu Rift[J]. Ore Geology Reviews, 2022, 147: 104987. |
[59] | STOBER I, BUCHER K. Hydraulic conductivity of fractured upper crust: insights from hydraulic tests in boreholes and fluid-rock interaction in crystalline basement rocks[J]. Geofluids, 2015, 15(1/2): 161-178. |
[60] | 姚足金, 张钖根, 安可士, 等. 西藏羊八井地热资源评价[R]. 石家庄: 水文地质工程地质研究所, 1984. |
[61] | 许增光, 曹成, 柴军瑞, 等. 断层带破碎岩体非达西渗流特性及模型研究[J]. 岩石力学与工程学报, 2023, 42(增刊2): 4099-4108. |
[62] | MENZIES C D, TEAGLE D A H, CRAW D, et al. Incursion of meteoric waters into the ductile regime in an activeorogen[J]. Earth and Planetary Science Letters, 2014, 399: 1-13. |
[63] | DIAMOND L W, WANNER C, WABER H N. Penetration depth of meteoric water inorogenic geothermal systems[J]. Geology, 2018, 46(12): 1063-1066. |
[1] | LI Jiexiang, XU Yadong, LIN Wenjing. The applicability of traditional chemical geothermometers [J]. Earth Science Frontiers, 2024, 31(6): 145-157. |
[2] | CHEN Yu, XU Fei, CHENG Hongfei, CHEN Xianzhe, WEN Hanjie. Lithium isotope geochemistry—a review [J]. Earth Science Frontiers, 2023, 30(5): 469-490. |
[3] | . Highprecision measurement of lithium isotopes using MCICPMS. [J]. Earth Science Frontiers, 2011, 18(2): 304-314. |
[4] | HONG Ji-Lian DIAO Zhi-Qi LIU Cong-Jiang ZHANG Wei. Progress in geochemical research of lithium isotope during continental weathering. [J]. Earth Science Frontiers, 2008, 15(6): 332-337. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||