Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (5): 469-490.DOI: 10.13745/j.esf.sf.2023.2.51
Previous Articles Next Articles
CHEN Yu1(), XU Fei1, CHENG Hongfei1,2,*(
), CHEN Xianzhe1, WEN Hanjie1,2,3,*(
)
Received:
2022-07-12
Revised:
2022-10-07
Online:
2023-09-25
Published:
2023-10-20
CLC Number:
CHEN Yu, XU Fei, CHENG Hongfei, CHEN Xianzhe, WEN Hanjie. Lithium isotope geochemistry—a review[J]. Earth Science Frontiers, 2023, 30(5): 469-490.
样品 | 温度/℃ | β | D7Li/D6Li | 来源文献 |
---|---|---|---|---|
水 | 0.015 | 0.997 72±0.000 26 | [ | |
玄武岩/流纹岩 | 0.215 | 0.967 4 | [ | |
辉石 | 900 | 0.27 | 0.959 2 | [ |
橄榄石 | 800~1 000 | 0.3 | 0.95±0.05 | [ |
金红石 | 450 | 0.5 | 0.93±0.03 | [ |
硅 | 800 | 0.5 | 0.93±0.02 | [ |
Table 1 Experimental β values for Li isotopes in different diffusion media
样品 | 温度/℃ | β | D7Li/D6Li | 来源文献 |
---|---|---|---|---|
水 | 0.015 | 0.997 72±0.000 26 | [ | |
玄武岩/流纹岩 | 0.215 | 0.967 4 | [ | |
辉石 | 900 | 0.27 | 0.959 2 | [ |
橄榄石 | 800~1 000 | 0.3 | 0.95±0.05 | [ |
金红石 | 450 | 0.5 | 0.93±0.03 | [ |
硅 | 800 | 0.5 | 0.93±0.02 | [ |
[108] |
WUNDER B, MEIXNER A, ROMER R L, et al. Li-isotope fractionation between silicates and fluids:pressure dependence and influence of the bonding environment[J]. European Journal of Mineralogy, 2011, 23(3): 333-342.
DOI URL |
[109] |
LI W S, LIU X M, CHADWICK O A. Lithium isotope behavior in Hawaiian regoliths: soil-atmosphere-biosphere exchanges[J]. Geochimica et Cosmochimica Acta, 2020, 285: 175-192.
DOI URL |
[110] |
PISTINER J S, HENDERSON G M. Lithium-isotope fractionation during continental weathering processes[J]. Earth and Planetary Science Letters, 2003, 214(1/2): 327-339.
DOI URL |
[111] | HUH Y, CHAN L H, CHADWICK O A. Behavior of lithium and its isotopes during weathering of Hawaiian basalt[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(9): Q09002. |
[112] |
TONG F T, XIAO Y L, SUN H, et al. Lithium isotopic features of Quaternary basaltic saprolite, Zhanjiang, China: atmospheric input and clay-mineral adsorption[J]. Science of the Total Environment, 2021, 785: 147235.
DOI URL |
[113] |
VERNEY-CARRON A, VIGIER N, MILLOT R. Experimental determination of the role of diffusion on Li isotope fractionation during basaltic glass weathering[J]. Geochimica et Cosmochimica Acta, 2011, 75(12): 3452-3468.
DOI URL |
[114] |
HUH Y, CHAN L H, EDMOND J M. Lithium isotopes as a probe of weathering processes: Orinoco River[J]. Earth and Planetary Science Letters, 2001, 194(1/2): 189-199.
DOI URL |
[115] |
WIMPENNY J, GÍSLASON S R, JAMES R H, et al. The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt[J]. Geochimica et Cosmochimica Acta, 2010, 74(18): 5259-5279.
DOI URL |
[116] | 蒋佳俊, 梁光明, 靳佳冀, 等. Li同位素在斜顽辉石、镁铝榴石及镁铝尖晶石晶格内扩散与分馏的理论计算研究[J]. 岩石学报, 2018, 34(9): 2811-2818. |
[117] | CHAPELA LARA M, BUSS H L, HENEHAN M J, et al. Secondary minerals drive extreme lithium isotope fractionation during tropical weathering[J]. Journal of Geophysical Research: Earth Surface, 2022, 127(2): e2021JF006366. |
[118] |
LIU X M, WANNER C, RUDNICK R L, et al. Processes controlling δ7Li in rivers illuminated by study of streams and groundwaters draining basalts[J]. Earth and Planetary Science Letters, 2015, 409: 212-224.
DOI URL |
[119] |
WIMPENNY J, COLLA C A, YU P, et al. Lithium isotope fractionation during uptake by gibbsite[J]. Geochimica et Cosmochimica Acta, 2015, 168: 133-150.
DOI URL |
[120] |
RICHTER F, WATSON B, CHAUSSIDON M, et al. Lithium isotope fractionation by diffusion in minerals. Part 1: pyroxenes[J]. Geochimica et Cosmochimica Acta, 2014, 126: 352-370.
DOI URL |
[121] |
RICHTER F M, WATSON E B, MENDYBAEV R, et al. Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion[J]. Geochimica et Cosmochimica Acta, 2009, 73(14): 4250-4263.
DOI URL |
[122] |
CHOPRA R, RICHTER F M, BRUCE WATSON E, et al. Magnesium isotope fractionation by chemical diffusion in natural settings and in laboratory analogues[J]. Geochimica et Cosmochimica Acta, 2012, 88: 1-18.
DOI URL |
[123] |
RICHTER F M, MENDYBAEV R A, CHRISTENSEN J N, et al. Kinetic isotopic fractionation during diffusion of ionic species in water[J]. Geochimica et Cosmochimica Acta, 2006, 70(2): 277-289.
DOI URL |
[124] |
RICHTER F M, DAVIS A M, DEPAOLO D J, et al. Isotope fractionation by chemical diffusion between molten basalt and rhyolite[J]. Geochimica et Cosmochimica Acta, 2003, 67(20): 3905-3923.
DOI URL |
[125] |
DOHMEN R, KASEMANN S A, COOGAN L, et al. Diffusion of Li in olivine. Part I: experimental observations and a multi species diffusion model[J]. Geochimica et Cosmochimica Acta, 2010, 74(1): 274-292.
DOI URL |
[1] | 王秋舒, 元春华. 全球锂矿供应形势及我国资源安全保障建议[J]. 中国矿业, 2019, 28(5): 1-6. |
[2] | 温汉捷, 罗重光, 杜胜江, 等. 碳酸盐黏土型锂资源的发现及意义[J]. 科学通报, 2020, 65(1): 53-59. |
[3] | 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189-1209. |
[4] |
WANG Q L, CHETELAT B, ZHAO Z Q, et al. Behavior of lithium isotopes in the Changjiang River system:sources effects and response to weathering and erosion[J]. Geochimica et Cosmochimica Acta, 2015, 151: 117-132.
DOI URL |
[5] | 汪齐连, 赵志琦, 刘丛强. 锂同位素在环境地球化学研究中的新进展[J]. 矿物学报, 2006, 26(2): 196-202. |
[6] | 陆一敢, 肖益林, 王洋洋, 等. Li同位素在矿床学中的应用:现状与展望[J]. 地球科学, 2021, 46(12): 4346-4365. |
[7] | 刘飞翔, 尹新雅, 刘琪. 锂同位素与大陆风化[J]. 矿物学报, 2021, 41(2): 127-138. |
[8] | 汪齐连, 赵志琦, 刘丛强, 等. 大陆风化过程的锂同位素地球化学研究进展[J]. 地学前缘, 2008, 15(6): 332-337. |
[9] |
VON STRANDMANN P A E P, KASEMANN S A, WIMPENNY J B. Lithium and lithium isotopes in earth’s surface cycles[J]. Elements, 2020, 16(4): 253-258.
DOI URL |
[10] |
DEMPSTER A J. Positiveray analysis of lithium and magnesium[J]. Physical Review, 1921, 18(6): 415-422.
DOI URL |
[126] |
JOHNSON O W, KROUSE H R. Isotopic mass dependence of Li diffusion in rutile[J]. Journal of Applied Physics, 1966, 37(2): 668-670.
DOI URL |
[127] |
PELL E M. Diffusion of Li in Si at high T and the isotope effect[J]. Physical Review, 1960, 119(3): 1014-1021.
DOI URL |
[128] |
COSTA F, DOHMEN R, CHAKRABORTY S. Timescales of magmatic processes from modeling the zoning patterns of crystals[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 545-594.
DOI URL |
[129] |
CHARLIER B L A, MORGAN D J, WILSON C J N, et al. Lithium concentration gradients in feldspar and quartz record the final minutes of magma ascent in an explosive supereruption[J]. Earth and Planetary Science Letters, 2012, 319/320: 218-227.
DOI URL |
[130] |
COOGAN L A. Preliminary experimental determination of the partitioning of lithium between plagioclase crystals of different anorthite contents[J]. Lithos, 2011, 125(1/2): 711-715.
DOI URL |
[131] |
BECK P, CHAUSSIDON M, BARRAT J A, et al. Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts from nakhlite meteorites[J]. Geochimica et Cosmochimica Acta, 2006, 70(18):4813-4825.
DOI URL |
[132] |
JOHN T, GUSSONE N, PODLADCHIKOV Y Y, et al. Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs[J]. Nature Geoscience, 2012, 5(7): 489-492.
DOI |
[133] | JOHNSON O W. One-dimensional diffusion of Li in rutile[J]. Physical Review, 1964, 136(1A): A284-A290. |
[134] |
JEFFCOATE A B, ELLIOTT T, KASEMANN S A, et al. Li isotope fractionation in peridotites and mafic melts[J]. Geochimica et Cosmochimica Acta, 2007, 71(1): 202-218.
DOI URL |
[11] | 苟龙飞, 金章东, 贺茂勇. 锂同位素示踪大陆风化: 进展与挑战[J]. 地球环境学报, 2017, 8(2): 89-102. |
[12] | 李雪, 周伦, 蔺洁, 等. 锂同位素在水环境领域的研究进展[J]. 安全与环境工程, 2016, 23(3): 1-9, 16. |
[13] | 汤艳杰, 张宏福, 英基丰. 锂同位素分馏机制讨论[J]. 地球科学: 中国地质大学学报, 2009, 34(1): 43-55. |
[14] | 杨承帆, 杨守业, 苟龙飞, 等. 锂同位素示踪表生风化与环境演变: 回顾与展望[J]. 矿物岩石地球化学通报, 2018, 37(5): 841-851. |
[15] |
HENCHIRI S, GAILLARDET J, DELLINGER M, et al. Riverine dissolved lithium isotopic signatures in low-relief central Africa and their link to weathering regimes[J]. Geophysical Research Letters, 2016, 43(9): 4391-4399.
DOI URL |
[16] |
JIANG W J, SHENG Y Z, WANG G C, et al. Cl, Br, B, Li, and noble gases isotopes to study the origin and evolution of deep groundwater in sedimentary basins: a review[J]. Environmental Chemistry Letters, 2022, 20(2): 1497-1528.
DOI |
[17] | 苏本勋. 锂同位素在地幔地球化学中的应用[J]. 矿物岩石地球化学通报, 2017, 36(1): 6-13, 1. |
[18] |
SU B X, ZHANG H F, DELOULE E, et al. Distinguishing silicate and carbonatite mantle metasomatism by using lithium and its isotopes[J]. Chemical Geology, 2014, 381: 67-77.
DOI URL |
[19] |
SEITZ H M, BREY G P, LAHAYE Y, et al. Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes[J]. Chemical Geology, 2004, 212(1/2): 163-177.
DOI URL |
[20] | Mineral commodity summaries 2022[R]. Reston: National Minerals Information Center, 2022:202. |
[135] |
LI J, HUANG X L, WEI G J, et al. Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare-metal granites[J]. Geochimica et Cosmochimica Acta, 2018, 240: 64-79.
DOI URL |
[136] |
TIAN Y, XIAO Y, CHEN Y X, et al. Serpentinite-derived low δ7Li fluids in continental subduction zones: constraints from the fluid metasomatic rocks (whiteschist) from the Dora-Maira Massif, Western Alps[J]. Lithos, 2019, 348/349: 105177.
DOI URL |
[137] |
WANG X, XIAO Y, SUN H, et al. Initiation of the North China Craton destruction: constraints from the diamond-bearing alkaline basalts from Lan’gan, China[J]. Gondwana Research, 2020, 80: 228-243.
DOI URL |
[138] | 肖益林, 陈仁旭, 陈伊翔, 等. 自然界岩石样品中的超临界流体记录[J]. 矿物岩石地球化学通报, 2020, 39(3): 448-462, 440. |
[139] |
MORIGUTI T, SHIBATA T, NAKAMURA E. Lithium, boron and lead isotope and trace element systematics of Quaternary basaltic volcanic rocks in northeastern Japan: mineralogical controls on slab-derived fluid composition[J]. Chemical Geology, 2004, 212(1/2): 81-100.
DOI URL |
[140] |
TOMASCAK P B, WIDOM E, BENTON L D, et al. The control of lithium budgets in island arcs[J]. Earth and Planetary Science Letters, 2002, 196(3/4): 227-238.
DOI URL |
[141] |
XU Y G, ZHANG H H, QIU H N, et al. Oceanic crust components in continental basalts from Shuangliao, Northeast China:derived from the mantle transition zone?[J]. Chemical Geology, 2012, 328: 168-184.
DOI URL |
[142] | 朱日祥, 徐义刚, 朱光, 等. 华北克拉通破坏[J]. 中国科学: 地球科学, 2012, 42(8): 1135-1159. |
[143] |
ZHANG H F, YANG Y H, SANTOSH M, et al. Evolution of the Archean and Paleoproterozoic lower crust beneath the Trans-North China Orogen and the Western Block of the North China Craton[J]. Gondwana Research, 2012, 22(1): 73-85.
DOI URL |
[21] |
KESLER S E, GRUBER P W, MEDINA P A, et al. Global lithium resources:relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 2012, 48: 55-69.
DOI URL |
[22] |
CHOUBEY P K, CHUNG K S, KIM M S, et al. Advance review on the exploitation of the prominent energy-storage element Lithium. Part II:from sea water and spent lithium ion batteries (LIBs)[J]. Minerals Engineering, 2017, 110: 104-121.
DOI URL |
[23] | 李慧芳, 马云麒, 李丽娟, 等. 热电离质谱法测定锂同位素的研究进展[J]. 盐湖研究, 2014, 22(4): 50-56. |
[24] |
BALSIGER H, GEISS J, GROEGLER N, et al. Distribution and isotopic abundance of lithium in stone meteorites[J]. Earth and Planetary Science Letters, 1968, 5: 17-22.
DOI URL |
[25] |
SVEC H J, ANDERSON A R Jr. The absolute abundance of the lithium isotopes in natural sources[J]. Geochimica et Cosmochimica Acta, 1965, 29(6): 633-641.
DOI URL |
[26] |
CHAN L H. Lithium isotope analysis by thermal ionization mass spectrometry of lithium tetraborate[J]. Analytical Chemistry, 1987, 59(22): 2662-2665.
DOI URL |
[27] | 周涛, 李金英, 赵墨田, 等. 校准质谱法准确测定锂同位素丰度[J]. 质谱学报, 2000, 21(增刊1): 185-186. |
[28] |
EBERHARDT A, DELWICHE R, GEISS J. Isotopic effects in single filament thermal ion sources[J]. Zeitschrift Für Naturforschung A, 1964, 19(6): 736-740.
DOI URL |
[29] | 肖应凯, 王蕴慧, 祁海平, 等. 质谱测定锂同位素组成的分馏效应研究[J]. 科学通报, 1988, 33(17): 1336-1338. |
[144] |
SU B X, ZHANG H F, DELOULE E, et al. Lithium elemental and isotopic variations in rock-melt interaction[J]. Geochemistry, 2014, 74(4):705-713.
DOI URL |
[145] |
ZHANG H F, DELOULE E, TANG Y J, et al. Melt/rock interaction in remains of refertilized Archean lithospheric mantle in Jiaodong Peninsula, North China Craton: Li isotopic evidence[J]. Contributions to Mineralogy and Petrology, 2010, 160(2): 261-277.
DOI URL |
[146] |
TANG Y J, ZHANG H F, DELOULE E, et al. Slab-derived lithium isotopic signatures in mantle xenoliths from northeastern North China Craton[J]. Lithos, 2012, 149: 79-90.
DOI URL |
[147] |
TANG Y J, ZHANG H F, YING J F. A brief review of isotopically light Li: a feature of the enriched mantle?[J]. International Geology Review, 2009, 52(9):964-976.
DOI URL |
[148] |
XIAO Y, TENG F Z, SU B X, et al. Iron and magnesium isotopic constraints on the origin of chemical heterogeneity in podiform chromitite from the Luobusa ophiolite, Tibet[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(3): 940-953.
DOI URL |
[149] |
TANG Y J, ZHANG H F, DELOULE E, et al. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton[J]. Scientific Reports, 2014, 4: 4274.
DOI |
[150] | 李佩, 夏群科, DELOULE E. 山东蓬莱新生代岩石圈地幔的异常锂同位素组成: 橄榄岩包体的离子探针分析[J]. 高校地质学报, 2012, 18(1): 62-73. |
[151] | 汤艳杰, 张宏福. 华北克拉通岩石圈地幔的锂同位素特征与熔体改造作用[J]. 矿物岩石地球化学通报, 2019, 38(2): 217-223, 444. |
[152] | 李东永, 肖益林, 王洋洋, 等. 板块俯冲过程中的Mg-Li-Fe-Cr同位素分馏[J]. 地球科学, 2019, 44(12): 4081-4085. |
[30] | 刘雪梅, 龙开明, 贾宝亭, 等. 热表面电离质谱法对锂同位素的测定[J]. 核化学与放射化学, 2006, 28(3): 188-191. |
[31] |
MORIGUTI T, NAKAMURA E. High-yield lithium separation and the precise isotopic analysis for natural rock and aqueous samples[J]. Chemical Geology, 1998, 145(1/2): 91-104.
DOI URL |
[32] |
SAHOO S K, MASUDA A. Precise determination of lithium isotopic composition by thermal ionization mass spectrometry in natural samples such as seawater[J]. Analytica Chimica Acta, 1998, 370(2/3): 215-220.
DOI URL |
[33] | 肖应凯, 祁海平, 王蕴慧, 等. 热电离质谱法测定锂同位素中各种涂样形式的比较[J]. 科学通报, 1991, 36(18): 1386-1388. |
[34] |
YOU C F, CHAN L H. Precise determination of lithium isotopic composition in low concentration natural samples[J]. Geochimica et Cosmochimica Acta, 1996, 60(5): 909-915.
DOI URL |
[35] |
JAMES R H, PALMER M R. The lithium isotope composition of international rock standards[J]. Chemical Geology, 2000, 166(3):319-326.
DOI URL |
[36] |
HOUK R S, FASSEL V A, FLESCH G D, et al. Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements[J]. Analytical Chemistry, 1980, 52(14): 2283-2289.
DOI URL |
[37] | 蔺洁. 地质样品中Li同位素高精度准确分析方法研究[D]. 武汉: 中国地质大学(武汉), 2017. |
[38] |
VANHOE H, VANDECASTEELE C, VERSIECK J, et al. Determination of lithium in biological samples by inductively coupled plasma mass spectrometry[J]. Analytica Chimica Acta, 1991, 244: 259-267.
DOI URL |
[39] |
GRÉGOIRE D C, ACHESON B M, TAYLOR R P. Measurement of lithium isotope ratios by inductively coupled plasma mass spectrometry: application to geological materials[J]. Journal of Analytical Atomic Spectrometry, 1996, 11(9): 765-772.
DOI URL |
[40] |
MISRA S, FROELICH P N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering[J]. Science, 2012, 335(6070): 818-823.
DOI PMID |
[41] |
KOŠLER J, KUČERA M, SYLVESTER P. Precise measurement of Li isotopes in planktonic foraminiferal tests by quadrupole ICPMS[J]. Chemical Geology, 2001, 181(1/2/3/4): 169-179.
DOI URL |
[42] |
MISRA S, FROELICH P N. Measurement of lithium isotope ratios by quadrupole-ICP-MS: application to seawater and natural carbonates[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(11): 1524-1533.
DOI URL |
[43] |
JANOUŠEK V, ERBAN V, HOLUB F, et al. Geochemistry and genesis of behind-arc basaltic lavas from eastern Nicaragua[J]. Journal of Volcanology and Geothermal Research, 2010, 192(3): 232-256.
DOI URL |
[44] |
MAGNA T, JANOUŠEK V, KOHÚT M, et al. Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction-related origin of some A-type granites[J]. Chemical Geology, 2010, 274(1/2): 94-107.
DOI URL |
[45] |
CHOI M S, SHIN H S, KIL Y W. Precise determination of lithium isotopes in seawater using MC-ICP-MS[J]. Microchemical Journal, 2010, 95(2): 274-278.
DOI URL |
[46] |
LIN J, LIU Y S, HU Z C, et al. Accurate determination of lithium isotope ratios by MC-ICP-MS without strict matrix-matching by using a novel washing method[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(2): 390-397.
DOI URL |
[47] |
WALDER A J, FREEDMAN P A. Communication. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source[J]. Journal of Analytical Atomic Spectrometry, 1992, 7(3): 571-575.
DOI URL |
[48] |
TOMASCAK P B, CARLSON R W, SHIREY S B. Accurate and precise determination of Li isotopic compositions by multi-collector sector ICP-MS[J]. Chemical Geology, 1999, 158(1/2): 145-154.
DOI URL |
[49] |
TOMASCAK P B, TERA F, HELZ R T, et al. The absence of lithium isotope fractionation during basalt differentiation:new measurements by multicollector sector ICP-MS[J]. Geochimica et Cosmochimica Acta, 1999, 63(6): 907-910.
DOI URL |
[50] |
HUANG K F, YOU C F, LIU Y H, et al. Low-memory, small sample size, accurate and high-precision determinations of lithium isotopic ratios in natural materials by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(7): 1019-1024.
DOI URL |
[51] |
CHOI M S, RYU J S, PARK H Y, et al. Precise determination of the lithium isotope ratio in geological samples using MC-ICP-MS with cool plasma[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(4): 505-509.
DOI URL |
[52] | 田世洪, 路娜, 侯增谦, 等. MC-ICP-MS锂同位素溶液分析技术与应用[J]. 地质论评, 2021, 67(5): 1441-1464. |
[53] |
BRYANT C J, MCCULLOCH M T, BENNETT V C. Impact of matrix effects on the accurate measurement of Li isotope ratios by inductively coupled plasma mass spectrometry (MC-ICP-MS) under “cold” plasma conditions[J]. Journal of Analytical Atomic Spectrometry, 2003, 18(7): 734-737.
DOI URL |
[54] | 贺茂勇, 金章东, 邓丽. 高精度MC-ICP-MS测定锂同位素[J]. 地质学报, 2015, 89(增刊1): 77. |
[55] |
MACPHERSON G L, PHAN T T, STEWART B W. Direct determination (without chromatographic separation) of lithium isotopes in saline fluids using MC-ICP-MS: establishing limits on water chemistry[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(7): 1673-1678.
DOI URL |
[56] |
JEFFCOATE A B, ELLIOTT T, THOMAS A, et al. Precise/small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2004, 28(1): 161-172.
DOI URL |
[57] |
LE ROUX P J. Lithium isotope analysis of natural and synthetic glass by laser ablation MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(7): 1033-1038.
DOI URL |
[58] |
XU R, LIU Y S, TONG X R, et al. In-situ trace elements and Li and Sr isotopes in peridotite xenoliths from Kuandian, North China Craton: insights into Pacific slab subduction-related mantle modification[J]. Chemical Geology, 2013, 354: 107-123.
DOI URL |
[59] |
MARTIN C, PONZEVERA E, HARLOW G. In situ lithium and boron isotope determinations in mica, pyroxene, and serpentine by LA-MC-ICP-MS[J]. Chemical Geology, 2015, 412: 107-116.
DOI URL |
[60] |
LIN J, LIU Y S, TONG X R, et al. Improved in situ Li isotopic ratio analysis of silicates by optimizing signal intensity, isotopic ratio stability and intensity matching using ns-LA-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(4): 834-842.
DOI URL |
[61] |
LIN J, LIU Y S, YANG Y H, et al. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios[J]. Solid Earth Sciences, 2016, 1(1): 5-27.
DOI URL |
[62] |
KIMURA J I, CHANG Q, ISHIKAWA T, et al. Influence of laser parameters on isotope fractionation and optimisation of lithium and boron isotope ratio measurements using laser ablation-multiple Faraday collector-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(11): 2305-2320.
DOI URL |
[63] |
CHAUSSIDON M, ROBERT F. 7Li/6Li and 11B/10B variations in chondrules from these markona unequilibrated chondrite[J]. Earth and Planetary Science Letters, 1998, 164(3/4): 577-589.
DOI URL |
[64] |
李献华, 刘宇, 汤艳杰, 等. 离子探针Li同位素微区原位分析技术与应用[J]. 地学前缘, 2015, 22(5): 160-170.
DOI |
[65] |
BELL D R, HERVIG R L, BUSECK P R, et al. Lithium isotope analysis of olivine by SIMS: calibration of a matrix effect and application to magmatic phenocrysts[J]. Chemical Geology, 2009, 258(1/2): 5-16.
DOI URL |
[66] |
MARKS M A W, RUDNICK R L, LUDWIG T, et al. Sodic pyroxene and sodic amphibole as potential reference materials for in situ lithium isotope determinations by SIMS[J]. Geostandards and Geoanalytical Research, 2008, 32(3): 295-310.
DOI URL |
[67] |
KASEMANN S A, JEFFCOATE A B, ELLIOTT T. Lithium isotope composition of basalt glass reference material[J]. Analytical Chemistry, 2005, 77(16): 5251-5257.
PMID |
[68] | SU B X, GU X Y, DELOULE E, et al. Potential orthopyroxene,clinopyroxene and olivine reference materials for in situ lithium isotope determination[G]//中国科学院地质与地球物理研究所2015年度(第15届)学术论文汇编(特提斯研究中心). 北京: 中国科学院地质与地球物理研究所, 2016: 380-392. |
[69] |
LI X H, LI Q L, LIU Y, et al. Further characterization of M257 zircon standard:a working reference for SIMS analysis of Li isotopes[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(2): 352-358.
DOI URL |
[70] | TOMASCAK P, MAGNA T, DOHMEN R. Advances inlithium isotope geochemistry[M]. Switzerland: Springer International Publishing, 2016. |
[71] |
POGGE VON STRANDMANN P A E, ELLIOTT T, MARSCHALL H R, et al. Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths[J]. Geochimica et Cosmochimica Acta, 2011, 75(18): 5247-5268.
DOI URL |
[72] | MAGNA T, NEAL C R. Lithium isotope composition of lunar crust: rapid crystallization and post-solidification quiescence?[J]. Mineralogical Magazine, 2011, 75:A1385. |
[73] |
MAGNA T, DAY J M D, MEZGER K, et al. Lithium isotope constraints on crust-mantle interactions and surface processes on Mars[J]. Geochimica et Cosmochimica Acta, 2015, 162: 46-65.
DOI URL |
[74] | FILIBERTO J, CHIN E, DAY J M D, et al. Geochemistry of intermediate olivine-phyric shergottite Northwest Africa 6234, with similarities to basaltic shergottite Northwest Africa 480 and olivine-phyric shergottite Northwest Africa 2990[J]. Meteoritics & Planetary Science, 2012, 47(8): 1256-1273. |
[75] |
MAGNA T, ŠIMČÍKOVÁ M, MOYNIER F. Lithium systematics in howardite-eucrite-diogenite meteorites: implications for crust-mantle evolution of planetary embryos[J]. Geochimica et Cosmochimica Acta, 2014, 125: 131-145.
DOI URL |
[76] |
TENG F Z, MCDONOUGH W F, RUDNICK R L, et al. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite[J]. Earth and Planetary Science Letters, 2006, 243(3/4): 701-710.
DOI URL |
[77] |
SAUZÉAT L, RUDNICK R L, CHAUVEL C, et al. New perspectives on the Li isotopic composition of the upper continental crust and its weathering signature[J]. Earth and Planetary Science Letters, 2015, 428: 181-192.
DOI URL |
[78] |
TENG F Z, RUDNICK R L, MCDONOUGH W F, et al. Lithium isotopic systematics of A-type granites and their mafic enclaves: further constraints on the Li isotopic composition of the continental crust[J]. Chemical Geology, 2009, 262(3/4):370-379.
DOI URL |
[79] |
ROMER R L, MEIXNER A. Lithium and boron isotopic fractionation in sedimentary rocks during metamorphism-the role of rock composition and protolith mineralogy[J]. Geochimica et Cosmochimica Acta, 2014, 128: 158-177.
DOI URL |
[80] |
NISHIO Y, NAKAI S, ISHII T, et al. Isotope systematics of Li, Sr, Nd, and volatiles in Indian Ocean MORBs of the Rodrigues Triple Junction:constraints on the origin of the DUPAL anomaly[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 745-759.
DOI URL |
[81] |
BRANT C, COOGAN L A, GILLIS K M, et al. Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacific Rise[J]. Geochimica et Cosmochimica Acta, 2012, 96: 272-293.
DOI URL |
[82] |
CHAN L H, ALT J C, TEAGLE D A H. Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A[J]. Earth and Planetary Science Letters, 2002, 201(1): 187-201.
DOI URL |
[83] |
LAI Y J, POGGE VON STRANDMANN P A E, DOHMEN R, et al. The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman Peridotite Massif[J]. Geochimica et Cosmochimica Acta, 2015, 164: 318-332.
DOI URL |
[84] |
MAGNA T, IONOV D A, OBERLI F, et al. Links between mantle metasomatism and lithium isotopes:evidence from glass-bearing and cryptically metasomatized xenoliths from Mongolia[J]. Earth and Planetary Science Letters, 2008, 276(1/2): 214-222.
DOI URL |
[85] |
KRIENITZ M S, GARBE-SCHÖNBERG C D, ROMER R L, et al. Lithium isotope variations in ocean island basalts: implications for the development of mantle heterogeneity[J]. Journal of Petrology, 2012, 53(11): 2333-2347.
DOI URL |
[86] |
KOBAYASHI K, TANAKA R, MORIGUTI T, et al. Lithium, boron, and lead isotope systematics of glass inclusions in olivines from Hawaiian lavas: evidence for recycled components in the Hawaiian plume[J]. Chemical Geology, 2004, 212(1/2): 143-161.
DOI URL |
[87] | CHAN L H, LEEMAN W P, PLANK T. Correction to “Lithium isotopic composition of marine sediments”[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8): Q08004. |
[88] |
MILLOT R, PETELET-GIRAUD E, GUERROT C, et al. Multi-isotopic composition (δ7Li-δ11B-δD-δ18O) of rainwaters in France: origin and spatio-temporal characterization[J]. Applied Geochemistry, 2010, 25(10): 1510-1524.
DOI URL |
[89] |
GODFREY L V, CHAN L H, ALONSO R N, et al. The role of climate in the accumulation of lithium-rich brine in the Central Andes[J]. Applied Geochemistry, 2013, 38: 92-102.
DOI URL |
[90] |
RAD S, RIVÉ K, VITTECOQ B, et al. Chemical weathering and erosion rates in the Lesser Antilles: an overview in Guadeloupe, Martinique and Dominica[J]. Journal of South American Earth Sciences, 2013, 45: 331-344.
DOI URL |
[91] |
MILLOT R, GUERROT C, INNOCENT C, et al. Chemical, multi-isotopic (Li-B-Sr-U-H-O) and thermal characterization of Triassic formation waters from the Paris Basin[J]. Chemical Geology, 2011, 283(3/4): 226-241.
DOI URL |
[92] |
BOTTOMLEY D J, CHAN L H, KATZ A, et al. Lithium isotope geochemistry and origin of Canadian shield brines[J]. Ground Water, 2003, 41(6): 847-856.
PMID |
[93] |
SCHOLZ F, HENSEN C, DE LANGE G J, et al. Lithium isotope geochemistry of marine pore waters-Insights from cold seep fluids[J]. Geochimica et Cosmochimica Acta, 2010, 74(12): 3459-3475.
DOI URL |
[94] |
HENCHIRI S, CLERGUE C, DELLINGER M, et al. The influence of hydrothermal activity on the Li isotopic signature of rivers draining volcanic areas[J]. Procedia Earth and Planetary Science, 2014, 10: 223-230.
DOI URL |
[95] |
RYU J S, VIGIER N, LEE S W, et al. Variation of lithium isotope geochemistry during basalt weathering and secondary mineral transformations in Hawaii[J]. Geochimica et Cosmochimica Acta, 2014, 145: 103-115.
DOI URL |
[96] |
TEICHERT Z, BOSE M, WILLIAMS L B. Lithium isotope compositions of U.S. coals and source rocks:potential tracer of hydrocarbons[J]. Chemical Geology, 2020, 549: 119694.
DOI URL |
[97] |
LEMARCHAND E, CHABAUX F, VIGIER N, et al. Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France)[J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4612-4628.
DOI URL |
[98] |
SCHAUBLE E A. Applying stable isotope fractionation theory to new systems[J]. Reviews in Mineralogy and Geochemistry, 2014, 55(1): 65-111.
DOI URL |
[99] |
COOGAN L, KASEMANN S, CHAKRABORTY S. Rates of hydrothermal cooling of new oceanic upper crust derived from lithium-geospeedometry[J]. Earth and Planetary Science Letters, 2005, 240(2): 415-424.
DOI URL |
[100] | 郑永飞, 徐宝龙, 周根陶. 矿物稳定同位素地球化学研究[J]. 地学前缘, 2000, 7(2): 299-320. |
[101] |
PENNISTON-DORLAND S, LIU X M, RUDNICK R L. Lithium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 165-217.
DOI URL |
[102] |
LYNTON S J, WALKER R J, CANDELA P A. Lithium isotopes in the system Qz-Ms-fluid:an experimental study[J]. Geochimica et Cosmochimica Acta, 2005, 69(13): 3337-3347.
DOI URL |
[103] |
WUNDER B, DESCHAMPS F, WATENPHUL A, et al. The effect of chrysotile nanotubes on the serpentine-fluid Li-isotopic fractionation[J]. Contributions to Mineralogy and Petrology, 2010, 159(6): 781-790.
DOI URL |
[104] |
WUNDER B, MEIXNER A, ROMER R L, et al. Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids[J]. Contributions to Mineralogy and Petrology, 2006, 151(1): 112-120.
DOI URL |
[105] | 卿德林, 马海州, 李斌凯. 锂同位素地球化学研究进展[J]. 盐湖研究, 2011, 19(4): 64-72. |
[106] |
OI T, NOMURA M, MUSASHI M, et al. Boron isotopic compositions of some boron minerals[J]. Geochimica et Cosmochimica Acta, 1989, 53(12): 3189-3195.
DOI URL |
[107] |
JAHN S, WUNDER B. Lithium speciation in aqueous fluids at high P and T studied by ab initio molecular dynamics and consequences for Li-isotope fractionation between minerals and fluids[J]. Geochimica et Cosmochimica Acta, 2009, 73(18): 5428-5434.
DOI URL |
[153] | COFFEY D M, MUNK L A, IBARRA D E, et al. Lithiumstorage and release from lacustrine sediments: implications for lithium enrichment and sustainability in continental brines[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(12): e2021GC009916. |
[154] |
HE M Y, LUO C G, YANG H J, et al. Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau, China: evidence from Li isotopes[J]. Ore Geology Reviews, 2020, 117:103277.
DOI URL |
[155] |
YU X C, LIU C L, WANG C L, et al. Origin of Li brine-type deposits in the Cretaceous gypsum-bearing formation of the Jitai Basin, South China: constraints from geochemistry and H, O, Li, B, and Sr isotopes[J]. Applied Geochemistry, 2022, 139: 105257.
DOI URL |
[156] |
刘丽君, 王登红, 侯可军, 等. 锂同位素在四川甲基卡新三号矿脉研究中的应用[J]. 地学前缘, 2017, 24(5): 167-171.
DOI |
[157] | 苏嫒娜, 田世洪, 侯增谦, 等. 锂同位素及其在四川甲基卡伟晶岩型锂多金属矿床研究中的应用[J]. 现代地质, 2011, 25(2): 236-242. |
[158] |
HALAMA R, MCDONOUGH W F, RUDNICK R L, et al. Tracking the lithium isotopic evolution of the mantle using carbonatites[J]. Earth and Planetary Science Letters, 2008, 265(3/4): 726-742.
DOI URL |
[159] |
ZHANG H J, TIAN S H, WANG D H, et al. Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite-pegmatite deposit, Sichuan, China[J]. Ore Geology Reviews, 2021, 134: 104139.
DOI URL |
[160] |
BARNES E M, WEIS D, GROAT L A. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada[J]. Lithos, 2012, 132/133: 21-36.
DOI URL |
[161] |
ZHANG H J, TIAN S H, WANG D H, et al. Lithium isotopic constraints on the petrogenesis of the Jiajika two-mica granites and associated Li mineralization[J]. Ore Geology Reviews, 2022, 150: 105174.
DOI URL |
[162] |
TANG B, FU Y, YAN S, et al. The source, host minerals, and enrichment mechanism of lithium in the Xinmin bauxite deposit, northern Guizhou, China: constraints from lithium isotopes[J]. Ore Geology Reviews, 2022, 141: 104653.
DOI URL |
[163] |
XIAO Y, ZHANG H F, SU B X, et al. Partial melting control of lithium concentrations and isotopes in the Cenozoic lithospheric mantle beneath Jiande area, the Cathaysia block of SE China[J]. Chemical Geology, 2017, 466: 750-761.
DOI URL |
[164] |
TANG D M, QIN K Z, SU B X, et al. Addition of H2O at the Baishiquan and Tianyu magmatic Ni-Cu sulfide deposits, southern Central Asian Orogenic Belt, China: evidence from isotopic geochemistry of olivine and zircon[J]. Mineralium Deposita, 2022, 57(2): 235-254.
DOI |
[165] |
SU B X, ZHOU X H, SUN Y, et al. Carbonatite-metasomatism signatures hidden in silicate-metasomatized mantle xenoliths from NE China[J]. Geological Journal, 2018, 53(2): 682-691.
DOI URL |
[166] |
SU B X, CHEN C, PANG K N, et al. Melt penetration in oceanic lithosphere: Li isotope records from the pozantı-karsantı ophiolite in southern Turkey[J]. Journal of Petrology, 2018, 59(1): 191-205.
DOI URL |
[167] |
SU B X, BAI Y, CUI M M, et al. Petrogenesis of the Ultramafic Zone of the Stillwater Complex in North America: constraints from mineral chemistry and stable isotopes of Li and O[J]. Contributions to Mineralogy and Petrology, 2020, 175(7): 1-20.
DOI |
[168] |
SU B X, CHEN C, BAI Y, et al. Lithium isotopic composition of Alaskan-type intrusion and its implication[J]. Lithos, 2017, 286/287: 363-368.
DOI URL |
[169] | 肖燕, 潘旗旗, 唐冬梅, 等. 镁铁-超镁铁质岩成岩成矿过程中的锂同位素地球化学:回顾与展望[J]. 地球科学, 2021, 46(12): 4334-4345. |
[170] |
CHAN L H, HEIN J R. Lithium contents and isotopic compositions of ferromanganese deposits from the global ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11/12/13): 1147-1162.
DOI URL |
[171] | 朱艺婷, 李晓峰, 王果, 等. 新疆白杨河铀铍矿床成矿流体深部来源的锂同位素证据[J]. 矿床地质, 2021, 40(2): 262-272. |
[172] |
XIANG L, ROMER R L, GLODNY J, et al. Li and B isotopic fractionation at the magmatic-hydrothermal transition of highly evolved granites[J]. Lithos, 2020, 376/377: 105753.
DOI URL |
[173] |
WILLIAMS L B, ŚRODOŃ J, HUFF W D, et al. Light element distributions (N, B, Li) in Baltic Basin bentonites record organic sources[J]. Geochimica et Cosmochimica Acta, 2013, 120: 582-599.
DOI URL |
[174] |
WILLIAMS L B, CRAWFORD ELLIOTT W, HERVIG R L. Tracing hydrocarbons in gas shale using lithium and boron isotopes: Denver Basin USA, Wattenberg Gas Field[J]. Chemical Geology, 2015, 417: 404-413.
DOI URL |
[175] | 孙蓓蕾, 孔艳磊, 王国权, 等. 高锂无烟煤中不同赋存态锂同位素组成趋同特征及其机理[J]. 煤炭学报, 2022, 47(5): 1773-1781. |
[176] |
DESSERT C, DUPRÉ B, GAILLARDET J, et al. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle[J]. Chemical Geology, 2003, 202(3/4): 257-273.
DOI URL |
[177] |
HALL J M, CHAN L H, MCDONOUGH W F, et al. Determination of the lithium isotopic composition of planktic foraminifera and its application as a paleo-seawater proxy[J]. Marine Geology, 2005, 217(3/4): 255-265.
DOI URL |
[178] |
MARRIOTT C S, HENDERSON G M, CROMPTON R, et al. Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate[J]. Chemical Geology, 2004, 212(1/2): 5-15.
DOI URL |
[179] |
EDMOND J M. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones[J]. Science, 1992, 258(5088): 1594-1597.
PMID |
[180] |
PEUCKER-EHRENBRINK B, RAVIZZA G. The marine osmium isotope record[J]. Terra Nova, 2000, 12(5): 205-219.
DOI URL |
[181] |
LI G, WEST A J. Evolution of Cenozoic seawater lithium isotopes: coupling of global denudation regime and shifting seawater sinks[J]. Earth and Planetary Science Letters, 2014, 401: 284-293.
DOI URL |
[182] |
ZHANG X, SALDI G D, SCHOTT J, et al. Experimental constraints on Li isotope fractionation during the interaction between kaolinite and seawater[J]. Geochimica et Cosmochimica Acta, 2021, 292: 333-347.
DOI URL |
[183] |
ISSON T T, PLANAVSKY N J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate[J]. Nature, 2018, 560(7719): 471-475.
DOI |
[184] |
KRISSANSEN-TOTTON J, CATLING D C. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model[J]. Nature Communications, 2017, 8: 15423.
DOI URL |
[185] |
KRISSANSEN-TOTTON J, CATLING D. A coupled carbon-silicon cycle model over Earth history: reverse weathering as a possible explanation of a warm mid-Proterozoic climate[J]. Earth and Planetary Science Letters, 2020, 537:116181.
DOI URL |
[186] |
KALDERON-ASAEL B, KATCHINOFF J A R, PLANAVSKY N J, et al. A lithium-isotope perspective on the evolution of carbon and silicon cycles[J]. Nature, 2021, 595(7867): 394-398.
DOI |
[187] |
NÉGREL P, MILLOT R, PETELET-GIRAUD E, et al. Li and δ7Li as proxies for weathering and anthropogenic activities: application to the Dommel River (Meuse Basin)[J]. Applied Geochemistry, 2020, 120: 104674.
DOI URL |
[1] | SHI Honglei, WANG Wanli, WANG Guiling, XING Linxiao, LU Chuan, ZHAO Jiayi, LIU Lu, SONG Jiajia. Numerical simulation of hydrothermal cycling process and lithium isotope fractionation in a typical high-temperature geothermal system [J]. Earth Science Frontiers, 2024, 31(6): 104-119. |
[2] | LI Xi, ZHU Guangyou, LI Tingting, CHEN Zhiyong, AI Yifei, ZHANG Yan, TIAN Lianjie. Uranium isotope fractionation and application of uranium isotopes in environmental geosciences—a review [J]. Earth Science Frontiers, 2024, 31(2): 447-471. |
[3] | YANG Shuang, WANG Rui. Research progress on the mechanism for the formation of Nb-Ta deposits by fractionation and enrichment and method development for columbite-tantalite analysis—a review [J]. Earth Science Frontiers, 2023, 30(5): 151-170. |
[4] | YANG Yubo, SU Shangguo, HUO Yan’an, NING Yage, GU Dapeng. Formation mechanism of Hanxing type iron deposit: Evidence from the iron-bearing melt-fluid assemblage in porphyritic monzonite from Wu’an, Hebei Province [J]. Earth Science Frontiers, 2022, 29(3): 304-318. |
[5] | CHEN Xuefeng, FAN Yu, ZHOU Taofa, YU Jianghua, QIAN Shilong, LU Zhongqiu, YANG Zhangyi, HONG Jianmin. The Xiwukou Rb deposit in the Jiangnan uplift belt, Ningguo City, Anhui Province: Rb occurrence and ore-forming mechanisms [J]. Earth Science Frontiers, 2022, 29(1): 65-80. |
[6] | KONG Zhigang, ZHANG Binchen, WU Yue, ZHANG Changqing, LIU Yi, ZHANG Feng, LI Yanglin. Structural control and metallogenic mechanism of the Daliangzi Ge-rich Pb-Zn deposit in Sichuan Province, China [J]. Earth Science Frontiers, 2022, 29(1): 143-159. |
[7] | LONG Zhengyu, YU Xiaoyan, ZHENG Yuyu, GUO Bijun. Geochemical characteristics of tourmalines from the Dayakou emerald deposit in Yunnan Province: implications for emerald mineralization [J]. Earth Science Frontiers, 2021, 28(2): 333-347. |
[8] | ZHANG Zhuoying, MA Jinlong, ZHANG Le, ZENG Ti, LIU Ying, WEI Gangjian. Advances in rubidium isotope analysis method and applications in geological studies [J]. Earth Science Frontiers, 2020, 27(3): 123-132. |
[9] | ZHOU Qiushi, WANG Rui. Advances in chlorine isotope geochemistry [J]. Earth Science Frontiers, 2020, 27(3): 42-67. |
[10] | . Highprecision measurement of lithium isotopes using MCICPMS. [J]. Earth Science Frontiers, 2011, 18(2): 304-314. |
[11] | . C, O, S and Pb isotopes characteristics and sources of the ore metals of the Lengshuikeng AgPbZn ore field, Jiangxi. [J]. Earth Science Frontiers, 2011, 18(1): 179-193. |
[12] | HONG Ji-Lian DIAO Zhi-Qi LIU Cong-Jiang ZHANG Wei. Progress in geochemical research of lithium isotope during continental weathering. [J]. Earth Science Frontiers, 2008, 15(6): 332-337. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||