Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (6): 130-144.DOI: 10.13745/j.esf.sf.2024.7.14
Previous Articles Next Articles
XU Jiading1,4(), ZHANG Chongyuan1,2,3,*(
), ZHANG Hao1,2, BAI Jinpeng5, ZHANG Shi’an1,2, ZHANG Shengsheng6, QIN Xianghui1,2, SUN Dongsheng1,2, HE Manchao3, WU Manlu1,2
Received:
2024-02-28
Revised:
2024-07-14
Online:
2024-11-25
Published:
2024-11-25
CLC Number:
XU Jiading, ZHANG Chongyuan, ZHANG Hao, BAI Jinpeng, ZHANG Shi’an, ZHANG Shengsheng, QIN Xianghui, SUN Dongsheng, HE Manchao, WU Manlu. In-situ stress measurements in hot dry rock, Qinghai Gonghe Basin and simulation analysis of reservoir fracture modification[J]. Earth Science Frontiers, 2024, 31(6): 130-144.
Fig.1 Geological map of the hot dry rock research area and location of the Gonghe HDR pilot project (yellow star) in Gonghe, Qinghai. Adapted from [22].
[1] |
王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9.
DOI |
[2] | 王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660. |
[3] | LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259. |
[4] | 许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45. |
[5] | WANG G L, GAN H N, LIN W J, et al. Hydrothermal systems characterized by crustal thermally-dominated structures of southeastern China[J]. Acta Geologica Sinica (English Edition), 2023, 97(4): 1003-1013. |
[6] | 蔺文静, 王贵玲, 邵景力, 等. 我国干热岩资源分布及勘探: 进展与启示[J]. 地质学报, 2021, 95(5): 1366-1381. |
[7] | 付亚荣, 李明磊, 王树义, 等. 干热岩勘探开发现状及前景[J]. 石油钻采工艺, 2018, 40(4): 526-540. |
[8] | 陈作, 许国庆, 蒋漫旗. 国内外干热岩压裂技术现状及发展建议[J]. 石油钻探技术, 2019, 47(6): 1-8. |
[9] | KIM K H, REE J H, KIM Y, et al. Assessing whether the 2017 Mw5.4 Pohang earthquake in South Korea was an induced event[J]. Science, 2018, 360(6392): 1007-1009. |
[10] |
SEITHEL R, GAUCHER E, MUELLER B, et al. Probability of fault reactivation in the Bavarian Molasse Basin[J]. Geothermics. 2019, 82: 81-90.
DOI |
[11] | 许家鼎, 张重远, 缑艳红, 等. 干热岩地应力测量评价方法与前沿挑战[J]. 地球学报, 2023, 44(1): 200-210. |
[12] | BARIA R, BAUMGÄRTNER J, RUMMEL F, et al. HDR/HWR reservoirs: concepts, understanding andcreation[J]. Geothermics, 1999, 28(4/5): 533-552. |
[13] | BROWN D W, DUCHANE D V, HEIKEN G, et al. Mining the earth’s heat: hot dry rock geothermal energy[M]. Berlin, Heidelberg: Springer, 2012. |
[14] | OLASOLO P, JUÁREZ M C, MORALES M P, et al. Enhanced geothermal systems (EGS): a review[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 133-144. |
[15] | 赵金洲, 任岚, 胡永全. 页岩储层压裂缝成网延伸的受控因素分析[J]. 西南石油大学学报(自然科学版), 2013, 35(1): 1-9. |
[16] | MAO R B, FENG Z J, LIU Z H, et al. Laboratory hydraulic fracturing test on large-scale pre-cracked granitespecimens[J]. Journal of Natural Gas Science and Engineering, 2017, 44: 278-286. |
[17] | 沈骋, 赵金洲, 谢军, 等. 海相页岩缝网可压性靶窗空间分布预测: 以川南长宁区块为例[J]. 地质力学学报, 2020, 26(6): 881-891. |
[18] | JUNG R. EGS: goodbye or back to the future 95[M]//BUNGER A, JEFFRE R. Effective and sustainable hydraulic fracturing. Brisbane, Australia: InTech, 2013: 458-477. |
[19] | MORRIS A P, FERRILL D A, WALTER G R, et al. Lessons learned from the Youngstown, Ohio induced earthquake sequence from January 2011 to January 2012[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(5): 783-796. |
[20] | 宋博文, 徐亚东, 梁银平, 等. 中国西部新生代沉积盆地演化[J]. 地球科学: 中国地质大学学报, 2014, 39(8): 1035-1051. |
[21] | 施炜, 马寅生, 吴满路, 等. 青藏高原东北缘共和盆地第四纪磁性地层学研究[J]. 地质力学学报, 2006, 12(3): 317-323. |
[22] | YUAN D Y, GE W P, CHEN Z W, et al. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: a review of recent studies[J]. Tectonics, 2013, 32(5): 1358-1370. |
[23] | 唐显春, 王贵玲, 马岩, 等. 青海共和盆地地热资源热源机制与聚热模式[J]. 地质学报, 2020, 94(7): 2052-2065. |
[24] | 雷治红. 青海共和盆地干热岩储层特征及压裂试验模型研究[D]. 长春: 吉林大学, 2020. |
[25] | 蔺文静, 甘浩男, 赵振, 等. 青海共和盆地岩石圈热—流变结构及地热意义[J]. 地球学报, 2023, 44(1): 45-56. |
[26] | GAO J, ZHANG H J, ZHANG S Q, et al. Three-dimensional magnetotelluric imaging of the geothermal system beneath the Gonghe Basin, Northeast Tibetan Plateau[J]. Geothermics, 2018, 76: 15-25. |
[27] | 张森琦, 严维德, 黎敦朋, 等. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质, 2018, 45(6): 1087-1102. |
[28] | HAIMSON B. The effect of lithology, inhomogeneity, topography, and faults, on in situ stress measurements by hydraulic fracturing, and the importance of correct data interpretation and independent evidence in support of results[M]//XIE F R. Rock stress and earthquakes. Boca Raton: CRC Press, 2010: 11-14. |
[29] | MATSUKI K. Three-dimensional in-situ stress measurement with anelastic strain recovery of a rock core[C]// Society of geomechanics. 7th ISRM Congress. Aachen, Germany, 1991: 405-414. |
[30] | LIN W R, KWAŚNIEWSKI M, IMAMURA T, et al. Three-dimensional in-situ stress measurement with anelastic strain recovery of a rock core[C]// Society of geomechanics. 7th ISRM Congress. Aachen, Germany, 1991: 405-414. |
[31] | TEUFEL L. Determination of in situ stress from paretial anelastic strain recovery measurements of oriented cores from deep boreholes[C]// Society of geomechanics. U.S. Symposium on Rock Mechanics. Madison: University of Wisconsin, 1993: 176-188. |
[32] | ZHANG C Y, LIN W R, HE M C, et al. Determining in-situ stress state by anelastic strain recovery method beneath Xiamen: implications for the coastal region of Southeastern China[J]. Rock Mechanics and Rock Engineering, 2022, 55(9): 5687-5703. |
[33] | FUNATO A, ITO T. A new method of diametrical core deformation analysis for in situ stress measurements[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 91: 112-118. |
[34] | 杨跃辉, 孙东生, 郑秀华, 等. 岩芯直径变形分析法及其在松科2井深部地应力调查中的应用[J]. 中南大学学报(自然科学版), 2019, 50(12): 3106-3113. |
[35] | 李彦恒, 谭可可, 冯利. 基于岩饼几何形态测量的原地应力测定方法[J]. 岩土力学, 2012, 33(增刊2): 224-228. |
[36] | LIM S S, MARTIN C D. Core disking and its relationship with stress magnitude for Lac du Bonnet granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 254-264. |
[37] | 张丰收, 李猛利, 张重远, 等. 高地应力下深部岩芯饼化裂缝发展规律及机制研究[J]. 岩石力学与工程学报, 2022, 41(3): 533-542. |
[38] | SUN D S, SONE H, LIN W R, et al. Stress state measured at -7 km depth in the Tarim Basin, NW China[J]. Scientific Reports, 2017, 7: 4503. |
[39] | BELL J S, GOUGH D I. Northeast-southwest compressive stress in Alberta evidence from oil wells[J]. Earth and Planetary Science Letters, 1979, 45(2): 475-482. |
[40] | PLUMB R A, HICKMAN S H. Stress-induced borehole elongation: a comparison between the four-arm dipmeter and the borehole televiewer in the Auburn Geothermal Well[J]. Journal of Geophysical Research: Solid Earth, 1985, 90(B7): 5513-5521. |
[41] | 都昌庭. 共和地震震源机制解特征[J]. 高原地震, 2001, 13(4): 1-5. |
[42] | 郝明, 沈正康, 王庆良. 1990年青海共和7.0级地震震后垂直形变研究[J]. 地震学报, 2010, 32(5): 557-569, 633. |
[43] | ZHANG C Y, LI B, LI H L, et al. Stress estimation in a 3 km-deep geothermal borehole: a snapshot of stress state in southern Cathaysia Block, China[J]. Tectonophysics, 2023, 864: 230031. |
[44] | 孟文, 郭祥云, 李永华, 等. 青藏高原东北缘构造应力场及动力学特征[J]. 地球物理学报, 2022, 65(9): 3229-3251. |
[45] | ZIMMERMANN G, MOECK I, BLÖCHER G. Cyclic waterfrac stimulation to develop an Enhanced Geothermal System (EGS): conceptual design and experimental results[J]. Geothermics, 2010, 39(1): 59-69. |
[46] | LISLE R J, SRIVASTAVA D C. Test of the frictional reactivation theory for faults and validity of fault-slip analysis[J]. Geology, 2004, 32(7): 569-572. |
[47] | MOECK I, KWIATEK G, ZIMMERMANN G. Slip tendency analysis, fault reactivation potential and induced seismicity in a deep geothermal reservoir[J]. Journal of Structural Geology, 2009, 31(10): 1174-1182. |
[48] | SCHWAB D R, BIDGOLI T S, TAYLOR M H. Characterizing the potential for injection-induced fault reactivation through subsurface structural mapping and stress field analysis, Wellington field, sumner county, Kansas[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 10132-10154. |
[49] | MORRIS A, FERRILL D A, BRENT HENDERSON D B. Slip-tendency analysis and fault reactivation[J]. Geology, 1996, 24(3): 275-278. |
[50] | WORUM G, VAN WEES J D, BADA G, et al. Slip tendency analysis as a tool to constrain fault reactivation: a numerical approach applied to three-dimensional fault models in the Roer Valley Rift system (Southeast Netherlands)[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B2): 1-16. |
[51] | MASSIRONI M, BISTACCHI A, MENEGON L. Misoriented faults in exhumed metamorphic complexes: rule or exception?[J]. Earth and Planetary Science Letters, 2011, 307(1/2): 233-239. |
[52] | FERRILL D A, MORRIS A P, MCGINNIS R N, et al. Mechanical stratigraphy and normal faulting[J]. Journal of Structural Geology, 2017, 94: 275-302. |
[53] | HANTUSH M S. Drawdown around Wells of variable discharge[J]. Journal of Geophysical Research, 1964, 69(20): 4221-4235. |
[54] | BYERLEE J. Friction of rocks[J]. Pure and Applied Geophysics, 1978, 116(4): 615-626. |
[55] | ZHANG C Y, FAN D J, ELSWORTH D, et al. Mechanisms of stress- and fluid-pressure-driven fault reactivation in Gonghe granite: implications for injection-induced earthquakes[J]. International Journal of Rock Mechanics and Mining Sciences, 2024, 174: 105642. |
[56] | ZHANG C Y, HU Z J, ELSWORTH D, et al. Frictional stability of laumontite under hydrothermal conditions and implications for injection-induced seismicity in the Gonghe geothermal reservoir, Northwest China[J]. Geophysical Research Letters, 2024, 51(10): e2023GL108103. |
[1] | QI Xiaofei, XIAO Yong, SHANGGUAN Shuantong, SU Ye, WANG Hongke, LI Yingying, HU Zhixing. Fracture propagation mechanism in artificial reservoir of deep hot dry rock, Matouying and its applications [J]. Earth Science Frontiers, 2024, 31(6): 224-234. |
[2] | JIANG Zheng, SHU Biao, TAN Jingqiang. Heat transfer in geothermal reservoir of CO2-based enhanced geothermal systems—current research status and prospects [J]. Earth Science Frontiers, 2024, 31(6): 235-251. |
[3] | SHANGGUAN Shuantong, TIAN Lanlan, PAN Miaomiao, YANG Fengliang, YUE Gaofan, SU Ye, QI Xiaofei. Fault slip tendency and induced-earthquake risks in hot dry rock development: A case study in the Tangshan Matouying HDR site [J]. Earth Science Frontiers, 2024, 31(6): 252-260. |
[4] | ZHANG Baojian, LEI Yude, ZHAO Zhen, TANG Xianchun, LUO Yinfei, WANG Guiling, GAO Jun, ZHANG Dailei. Geodynamic processes and mechanisms of the formation of hot dry rock in the Gonghe Basin [J]. Earth Science Frontiers, 2023, 30(5): 384-401. |
[5] | HE Bizhu, ZHENG Menglin, YUN Xiaorui, CAI Zhihui, JIAO Cunli, CHEN Xijie, ZHENG Yong, MA Xuxuan, LIU Ruohan, CHEN Huiming, ZHANG Shengsheng, LEI Min, FU Guoqiang, LI Zhenyu. Structural architecture and energy resource potential of Gonghe Basin, NE Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2023, 30(1): 81-105. |
[6] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
[7] | HAN Shuangbiao, TANG Zhiyuan, BAI Songtao, WAN Lei, RUI Yurun, GAO Yuan, HUANG Yongjian, WANG Chengshan. Application of elemental capture spectroscopy in deep tight reservoir evaluation: A case study of well SK-2 [J]. Earth Science Frontiers, 2022, 29(1): 449-458. |
[8] | PANG Zhonghe, LUO Ji, CHENG Yuanzhi, DUAN Zhongfeng, TIAN Jiao, KONG Yanlong, LI Yiman, HU Shengbiao, WANG Jiyang. Evaluation of geological conditions for the development of deep geothermal energy in China [J]. Earth Science Frontiers, 2020, 27(1): 134-151. |
[9] | TIAN Jiao, PANG Zhonghe, ZHANG Rui. The application of FixAl and isotopic methods in the study of flowback fluids from Enhanced Geothermal Systems (EGS) [J]. Earth Science Frontiers, 2020, 27(1): 112-122. |
[10] | QI Xiaofei, SHANGGUAN Shuantong, ZHANG Guobin, PAN Miaomiao, SU Ye, TIAN Lanlan, LI Xiang, QIAO Yongchao, ZHANG Jianyong. Site selection and developmental prospect of a hot dry rock resource project in the Matouying Uplift, Hebei Province [J]. Earth Science Frontiers, 2020, 27(1): 94-102. |
[11] | HE Zhiliang, ZHANG Ying, FENG Jianyun, LUO Jun, LI Pengwei. Classification of geothermal resources based on engineering considerations and HDR EGS site screening in China [J]. Earth Science Frontiers, 2020, 27(1): 81-93. |
[12] | SUN Minghang, LIU Demin, KANG Zhiqiang, GUAN Yanwu, LIANG Guoke, HUANG Xiqiang, YE Jiahui, GUO Shangyu, SUN Xingting, TANG Wei, FENG Minhao. Analysis of hot-dry geothermal resource potential in southeastern Guangxi [J]. Earth Science Frontiers, 2020, 27(1): 72-80. |
[13] | KANG Zhiqiang, ZHANG Qizuan, GUAN Yanwu, LIU Demin, YUAN Jinfu, YANG Zhiqiang, LU Jipu, WANG Xinyu, ZHANG Qinjun, ZHANG Meiling, FENG Minhao. Analysis on the occurrence condition of geothermal resources of hot dry rock in Guangxi [J]. Earth Science Frontiers, 2020, 27(1): 55-62. |
[14] | LIU Demin, ZHANG Genyuan, GUAN Junpeng, ZHANG Shuo, ZHANG Jingqi, KONG Linghao, SHAO Junqi. Analysis of geothermal resources potential for hot dry rock in the Subei Basin [J]. Earth Science Frontiers, 2020, 27(1): 48-54. |
[15] | ZHANG Ying, FENG Jianyun, LUO Jun, HE Zhiliang, WU Xiaoling. Screening of hot dry rock in the south-central part of the Bohai Bay Basin [J]. Earth Science Frontiers, 2020, 27(1): 35-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||