Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (6): 235-251.DOI: 10.13745/j.esf.sf.2024.7.22
Previous Articles Next Articles
JIANG Zheng(), SHU Biao*(
), TAN Jingqiang
Received:
2024-02-15
Revised:
2024-04-28
Online:
2024-11-25
Published:
2024-11-25
CLC Number:
JIANG Zheng, SHU Biao, TAN Jingqiang. Heat transfer in geothermal reservoir of CO2-based enhanced geothermal systems—current research status and prospects[J]. Earth Science Frontiers, 2024, 31(6): 235-251.
作者 | 储层模型 | 研究内容 |
---|---|---|
Bongole等[ | 单一裂隙模型 | 热—水(TH)模型解析解的推导,H2O-EGS与CO2-EGS的传热性能的对比 |
Sun等[ | 单一裂隙模型 | 热—水(TH)模型解析解的推导,增加EGS中CO2封存量的方法研究 |
翟海珍等[ | 平行裂隙群模型 | 换热单元体的厚度和长度对产出温度的影响 |
Cao等[ | 等效多孔介质模型 | EGS的长期取热过程以及取热工质的非达西流动行为 |
Gao等[ | 等效多孔介质模型 | EGS中达西定律和非达西定律的对比 |
Wang等[ | 等效多孔介质模型 | 不同的储层渗透率和地温梯度下,H2O-EGS与CO2-EGS的性能对比 |
Chen和Jiang[ | 等效多孔介质模型 | 井布局对EGS取热性能的影响 |
Lu等[ | 等效多孔介质模型 | 井筒布局与流体流动注入方案对ScCO2-EGS取热性能的影响 |
陈必光等[ | 离散裂隙网络模型 | 基于二维裂隙性储层的离散裂隙网络模型计算方法 |
Shi等[ | 离散裂隙网络模型 | 各种离散裂隙网络模型的取热性能以及岩石力学行为与裂隙参数对EGS取热性能的影响 |
Liao等[ | 离散裂隙网络模型 | CO2-EGS的长期性能的模拟 |
Sun等[ | 裂隙性多孔介质模型 | EGS储层中的流体的流动、传热和力学行为的特征 |
Sun等[ | 裂隙性多孔介质模型 | EGS取热能力的评估 |
Table 1 Application of different reservoir fracture models in EGS
作者 | 储层模型 | 研究内容 |
---|---|---|
Bongole等[ | 单一裂隙模型 | 热—水(TH)模型解析解的推导,H2O-EGS与CO2-EGS的传热性能的对比 |
Sun等[ | 单一裂隙模型 | 热—水(TH)模型解析解的推导,增加EGS中CO2封存量的方法研究 |
翟海珍等[ | 平行裂隙群模型 | 换热单元体的厚度和长度对产出温度的影响 |
Cao等[ | 等效多孔介质模型 | EGS的长期取热过程以及取热工质的非达西流动行为 |
Gao等[ | 等效多孔介质模型 | EGS中达西定律和非达西定律的对比 |
Wang等[ | 等效多孔介质模型 | 不同的储层渗透率和地温梯度下,H2O-EGS与CO2-EGS的性能对比 |
Chen和Jiang[ | 等效多孔介质模型 | 井布局对EGS取热性能的影响 |
Lu等[ | 等效多孔介质模型 | 井筒布局与流体流动注入方案对ScCO2-EGS取热性能的影响 |
陈必光等[ | 离散裂隙网络模型 | 基于二维裂隙性储层的离散裂隙网络模型计算方法 |
Shi等[ | 离散裂隙网络模型 | 各种离散裂隙网络模型的取热性能以及岩石力学行为与裂隙参数对EGS取热性能的影响 |
Liao等[ | 离散裂隙网络模型 | CO2-EGS的长期性能的模拟 |
Sun等[ | 裂隙性多孔介质模型 | EGS储层中的流体的流动、传热和力学行为的特征 |
Sun等[ | 裂隙性多孔介质模型 | EGS取热能力的评估 |
作者 | 方法 | 研究内容 |
---|---|---|
朱家玲等[ | 圆柱岩体裂隙内流动换热模型 | 单裂隙流固换热系数解析解的推导以及流体流速和裂隙开度对换热系数的影响 |
Chen等[ | 统一管网方法 | 流体在粗糙壁面裂隙网络的流动传热过程 |
Wang等[ | 三维热—水—力(THM)全耦合数值模型 | 具有嵌入式复杂离散裂隙网络的ScCO2-EGS的热开采和碳封存性能评估 |
Wang[ | 与两相流体流动完全耦合的热—水—力(THM)模型 | 井筒流体与裂缝之间的热交换效率 |
Liao等[ | 3D热—水—力(THM)耦合嵌入式复杂裂隙网络模型 | CO2-EGS的长期性能的模拟 |
Table 2 EGS studies based on the local thermal non-equilibrium model
作者 | 方法 | 研究内容 |
---|---|---|
朱家玲等[ | 圆柱岩体裂隙内流动换热模型 | 单裂隙流固换热系数解析解的推导以及流体流速和裂隙开度对换热系数的影响 |
Chen等[ | 统一管网方法 | 流体在粗糙壁面裂隙网络的流动传热过程 |
Wang等[ | 三维热—水—力(THM)全耦合数值模型 | 具有嵌入式复杂离散裂隙网络的ScCO2-EGS的热开采和碳封存性能评估 |
Wang[ | 与两相流体流动完全耦合的热—水—力(THM)模型 | 井筒流体与裂缝之间的热交换效率 |
Liao等[ | 3D热—水—力(THM)耦合嵌入式复杂裂隙网络模型 | CO2-EGS的长期性能的模拟 |
Fig.9 Temporal change in heat extraction rates (a) and flow rates (b) of CO2 and H2O in production wells under different reservoir permeabilities. Modified after [106].
地热场地 | 热源机制 | 储层温度 | 地层岩性 |
---|---|---|---|
共和盆地 恰卜恰地区 | 壳内低速层和地壳增厚导致的放射性元素重分布为重要热源[ | 深度为2 927.26 m,温度为181.17 ℃,地温梯度为6.0 ℃/100 m[ | 盖层主要为泥岩、泥质粉砂岩;储层以花岗岩、闪长岩等为主[ |
松辽盆地 | 上地幔隆起为主要热源,花岗岩内放射性元素衰变为次要热源[ | 深度为7 080 m,温度为240 ℃,平均地温梯度为3.8 ℃/100 m[ | 盖层主要为泥岩,局部与粉砂岩互层[ |
福建漳州 | 软流圈的上升流和花岗岩内放射性元素的衰变为重要热源[ | 深度为3 997 m,温度约为109.58 ℃[ | 盖层上部覆盖薄第四纪沉积岩,下部85 %为凝灰岩,最大厚度超1 000 m[ |
Table 3 Geothermal characteristics of typical geothermal sites in China
地热场地 | 热源机制 | 储层温度 | 地层岩性 |
---|---|---|---|
共和盆地 恰卜恰地区 | 壳内低速层和地壳增厚导致的放射性元素重分布为重要热源[ | 深度为2 927.26 m,温度为181.17 ℃,地温梯度为6.0 ℃/100 m[ | 盖层主要为泥岩、泥质粉砂岩;储层以花岗岩、闪长岩等为主[ |
松辽盆地 | 上地幔隆起为主要热源,花岗岩内放射性元素衰变为次要热源[ | 深度为7 080 m,温度为240 ℃,平均地温梯度为3.8 ℃/100 m[ | 盖层主要为泥岩,局部与粉砂岩互层[ |
福建漳州 | 软流圈的上升流和花岗岩内放射性元素的衰变为重要热源[ | 深度为3 997 m,温度约为109.58 ℃[ | 盖层上部覆盖薄第四纪沉积岩,下部85 %为凝灰岩,最大厚度超1 000 m[ |
[1] | 许天福, 胡子旭, 李胜涛, 等. 增强型地热系统: 国际研究进展与我国研究现状[J]. 地质学报, 2018, 92(9): 1936-1947. |
[2] | MOYA D, ALDÁS C, KAPARAJU P. Geothermal energy: power plant technology and direct heat applications[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 889-901. |
[3] | 王贵玲, 陆川. 碳中和目标驱动下地热资源开采利用技术进展[J]. 地质与资源, 2022, 31(3): 412-425, 341. |
[4] | 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. |
[5] | 陆如意. 深度5 000米我国首口地热科学探井开钻[N]. 第一财经日报, 2023-09-07(A09). |
[6] | ZHONG C H, XU T F, GHERARDI F, et al. Comparison of CO2 and water as working fluids for an enhanced geothermal system in the Gonghe Basin, northwest China[J]. Gondwana Research, 2023, 122: 199-214. |
[7] | GUO T K, ZHANG S C, GE H K, et al. A new method for evaluation of fracture network formation capacity of rock[J]. Fuel, 2015, 140: 778-787. |
[8] | GARCIA J, HARTLINE C, WALTERS M, et al. The Northwest Geysers EGS demonstration project, California: Part 1: characterization and reservoir response to injection[J]. Geothermics, 2016, 63: 97-119. |
[9] | ESTEVES A F, SANTOS F M, MAGALHÃES PIRES J C. Carbon dioxide as geothermal working fluid: an overview[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109331. |
[10] | PRUESS K. Enhanced geothermal systems (EGS) using CO2 as working fluid: a novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35(4): 351-367. |
[11] | XU R N, ZHANG L, ZHANG F Z, et al. A review on heat transfer and energy conversion in the enhanced geothermal systems with water/CO2 as working fluid[J]. International Journal of Energy Research, 2015, 39(13): 1722-1741. |
[12] | NA J, XU T F, YUAN Y L, et al. An integrated study of fluid-rock interaction in a CO2-based enhanced geothermal system: a case study of Songliao Basin, China[J]. Applied Geochemistry, 2015, 59: 166-177. |
[13] |
尹欣欣, 蒋长胜, 翟鸿宇, 等. 全球干热岩资源开发诱发地震活动和灾害风险管控[J]. 地球物理学报, 2021, 64(11): 3817-3836.
DOI |
[14] | 谢和平, 熊伦, 谢凌志, 等. 中国CO2地质封存及增强地热开采一体化的初步探讨[J]. 岩石力学与工程学报, 2014, 33(增刊1): 3077-3086. |
[15] | BROWN D W. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water[C]//Proceedings of the twenty-fifth workshop on geothermal reservoir engineering. California: Stanford University, 2000: 233-238. |
[16] | LEI H W. Performance comparison of H2O and CO2 as the working fluid in coupled wellbore/reservoir systems for geothermal heat extraction[J]. Frontiers in Earth Science, 2022, 10: 819778. |
[17] | YARUSHINA V M, BERCOVICI D. Mineral carbon sequestration and induced seismicity[J]. Geophysical Research Letters, 2013, 40(5): 814-818. |
[18] | KNOBLAUCH T A K, TRUTNEVYTE E. Siting enhanced geothermal systems (EGS): heat benefits versus induced seismicity risks from an investor and societal perspective[J]. Energy, 2018, 164: 1311-1325. |
[19] | GUO T K, ZHANG Y L, ZHANG W, et al. Numerical simulation of geothermal energy productivity considering the evolution of permeability in various fractures[J]. Applied Thermal Engineering, 2022, 201: 117756. |
[20] | LIU S, ZHANG L M, ZHANG K, et al. A simplified and efficient method for water flooding production index calculations in low permeable fractured reservoir[J]. Journal of Energy Resources Technology, 2019, 141(11): 112905. |
[21] | JÄNICKE R, QUINTAL B, LARSSON F, et al. Identification of viscoelastic properties from numerical model reduction of pressure diffusion in fluid-saturated porous rock with fractures[J]. Computational Mechanics, 2019, 63(1): 49-67. |
[22] | TIAN L H, LU L, CHEN W K, et al. Organic open-cell porous structure modeling[C]//Proceedings of the 5th annual ACM symposium on computational fabrication. New York: Association for Computing Machinery, 2020: 1-12. |
[23] | HADGU T, KARRA S, KALININA E, et al. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock[J]. Journal of Hydrology, 2017, 553: 59-70. |
[24] | ZENG Y C, SU Z, WU N Y. Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field[J]. Energy, 2013, 56: 92-107. |
[25] | FOX D B, SUTTER D, BECKERS K F, et al. Sustainable heat farming: modeling extraction and recovery in discretely fractured geothermal reservoirs[J]. Geothermics, 2013, 46: 42-54. |
[26] | LAUWERIER H A. The transport of heat in an oil layer caused by the injection of hot fluid[J]. Applied Scientific Research, Section A, 1955, 5(2): 145-150. |
[27] | HEUER N, KÜPPER T, WINDELBERG D. Mathematical model of a Hot Dry Rock system[J]. Geophysical Journal International, 1991, 105(3): 659-664. |
[28] | SUN Z X, XIN Y, YAO J, et al. Numerical investigation on the heat extraction capacity of dual horizontal wells in enhanced geothermal systems based on the 3-D THM model[J]. Energies, 2018, 11(2): 280. |
[29] | SUN Z X, ZHANG X, XU Y, et al. Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model[J]. Energy, 2017, 120: 20-33. |
[30] | BONGOLE K, SUN Z X, YAO J, et al. Multifracture response to supercritical CO2-EGS and water-EGS based on thermo-hydro-mechanical coupling method[J]. International Journal of Energy Research, 2019, 43(13): 7173-7196. |
[31] | SUN Z X, BONGOLE K, YAO J, et al. Combination of double and single cyclic pressure alternation technique to increase CO2 sequestration with heat mining in enhanced geothermal reservoirs by thermo-hydro-mechanical coupling method[J]. International Journal of Energy Research, 2020, 44(5): 3478-3496. |
[32] | 翟海珍, 苏正, 凌璐璐, 等. 平行多裂隙模型中换热单元体对EGS釆热的影响[J]. 地球物理学进展, 2016, 31(3): 1399-1405. |
[33] |
CAO W J, HUANG W B, WEI G L, et al. A numerical study of non-Darcy flow in EGS heat reservoirs during heat extraction[J]. Frontiers in Energy, 2019, 13(3): 439-449.
DOI |
[34] | GAO X, LI T L, MENG N, et al. Supercritical flow and heat transfer of SCO2 in geothermal reservoir under non-Darcy’s law combined with power generation from hot dry rock[J]. Renewable Energy, 2023, 206: 428-440. |
[35] | WANG C L, CHENG W L, NIAN Y L, et al. Simulation of heat extraction from CO2-based enhanced geothermal systems considering CO2 sequestration[J]. Energy, 2018, 142: 157-167. |
[36] | CHEN J L, JIANG F M. Designing multi-well layout for enhanced geothermal system to better exploit hot dry rock geothermal energy[J]. Renewable Energy, 2015, 74: 37-48. |
[37] | LU X, TONG X L, DU X P, et al. Effect of wellbore layout and varying flow rate on fluid flow and heat transfer of deep geothermal mining system[J]. Thermal Science and Engineering Progress, 2023, 42: 101870. |
[38] | 陈必光, 宋二祥, 程晓辉. 二维裂隙岩体渗流传热的离散裂隙网络模型数值计算方法[J]. 岩石力学与工程学报, 2014, 33(1): 43-51. |
[39] | SHI Y, SONG X Z, LI J C, et al. Numerical investigation on heat extraction performance of a multilateral-well enhanced geothermal system with a discrete fracture network[J]. Fuel, 2019, 244: 207-226. |
[40] | LIAO J X, HU K, MEHMOOD F, et al. Embedded discrete fracture network method for numerical estimation of long-term performance of CO2-EGS under THM coupled framework[J]. Energy, 2023, 285: 128734. |
[41] | JARRAHI M, MOORE K R, HOLLÄNDER H M. Comparison of solute/heat transport in fractured formations using discrete fracture and equivalent porous media modeling at the reservoir scale[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2019, 113: 14-21. |
[42] | LUO F, XU R N, JIANG P X. Numerical investigation of fluid flow and heat transfer in a doublet enhanced geothermal system with CO2 as the working fluid (CO2-EGS)[J]. Energy, 2014, 64: 307-322. |
[43] | 丁志文, 董平川, 李世银, 等. 岩体分形离散裂隙网络系统中流体流动模拟研究进展[J]. 水利水电科技进展, 2016, 36(2): 87-94. |
[44] | LONG J C S, GILMOUR P, WITHERSPOON P A. A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures[J]. Water Resources Research, 1985, 21(8): 1105-1115. |
[45] | WANG G S, MA X D, SONG X Z, et al. Modeling flow and heat transfer of fractured reservoir: implications for a multi-fracture enhanced geothermal system[J]. Journal of Cleaner Production, 2022, 365: 132708. |
[46] | WITHERSPOON P A, WANG J S Y, IWAI K, et al. Validity of Cubic Law for fluid flow in a deformable rock fracture[J]. Water Resources Research, 1980, 16(6): 1016-1024. |
[47] | JIANG F M, LUO L, CHEN J L. A novel three-dimensional transient model for subsurface heat exchange in enhanced geothermal systems[J]. International Communications in Heat and Mass Transfer, 2013, 41: 57-62. |
[48] | WANG G S, SONG X Z, SHI Y, et al. Production performance of a novel open loop geothermal system in a horizontal well[J]. Energy Conversion and Management, 2020, 206: 112478. |
[49] | BROWNELL D H Jr, GARG S K, PRITCHETT J W. Governing equations for geothermal reservoirs[J]. Water Resources Research, 1977, 13(6): 929-934. |
[50] | MINKOWYCZ W J, HAJI-SHEIKH A, VAFAI K. On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number[J]. International Journal of Heat and Mass Transfer, 1999, 42(18): 3373-3385. |
[51] | SHAIK A R, RAHMAN S S, TRAN N H, et al. Numerical simulation of Fluid-Rock coupling heat transfer in naturally fractured geothermal system[J]. Applied Thermal Engineering, 2011, 31(10): 1600-1606. |
[52] | WANG G S, SONG X Z, SONG G F, et al. Analyzes of thermal characteristics of a hydrothermal coaxial closed-loop geothermal system in a horizontal well[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121755. |
[53] | JIANG P X, REN Z P. Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model[J]. International Journal of Heat and Fluid Flow, 2001, 22(1): 102-110. |
[54] | JIANG P X. Numerical simulation of forced convection heat transfer in porous plate channels using thermal equilibrium and nonthermal equilibrium models[J]. Numerical Heat Transfer, Part A: Applications, 1999, 35(1): 99-113. |
[55] | OUYANG X L, JIANG P X, XU R N. Thermal boundary conditions of local thermal non-equilibrium model for convection heat transfer in porous media[J]. International Journal of Heat and Mass Transfer, 2013, 60: 31-40. |
[56] | WANG G S, SONG X Z, SHI Y, et al. Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system[J]. Renewable Energy, 2021, 163: 974-986. |
[57] | GUO Y H, ZHANG L, YANG Y F, et al. Pore-scale investigation of immiscible displacement in rough fractures[J]. Journal of Petroleum Science and Engineering, 2021, 207: 109107. |
[58] | WANG G S, SONG X Z, YU C, et al. Heat extraction study of a novel hydrothermal open-loop geothermal system in a multi-lateral horizontal well[J]. Energy, 2022, 242: 122527. |
[59] | HEINZE T, HAMIDI S. Heat transfer and parameterization in local thermal non-equilibrium for dual porosity continua[J]. Applied Thermal Engineering, 2017, 114: 645-652. |
[60] | HAN S C, CHENG Y F, GAO Q, et al. Investigation on heat extraction characteristics in randomly fractured geothermal reservoirs considering thermo‐poroelastic effects[J]. Energy Science and Engineering, 2019, 7(5): 1705-1726. |
[61] | 朱家玲, 张国伟, 李君, 等. 裂隙通道内流固换热系数解析解及敏感性分析[J]. 太阳能学报, 2016, 37(8): 2019-2025. |
[62] | CHEN Y, MA G W, WANG H D. Heat extraction mechanism in a geothermal reservoir with rough-walled fracture networks[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1083-1093. |
[63] | WANG Y, LI T, CHEN Y, et al. Numerical analysis of heat mining and geological carbon sequestration in supercritical CO2 circulating enhanced geothermal systems inlayed with complex discrete fracture networks[J]. Energy, 2019, 173: 92-108. |
[64] | WANG Y. Coupled THM formulation and wellbore analytical solution in naturally fractured media during injection/production[J]. Advances in Water Resources, 2023, 178: 104492. |
[65] | ZHAO Z H. On the heat transfer coefficient between rock fracture walls and flowing fluid[J]. Computers and Geotechnics, 2014, 59: 105-111. |
[66] | HEINZE T, HAMIDI S, GALVAN B. A dynamic heat transfer coefficient between fractured rock and flowing fluid[J]. Geothermics, 2017, 65: 10-16. |
[67] | HUANG W B, CAO W J, GUO J, et al. An analytical method to determine the fluid-rock heat transfer rate in two-equation thermal model for EGS heat reservoir[J]. International Journal of Heat and Mass Transfer, 2017, 113: 1281-1290. |
[68] | MA Y Q, ZHANG Y J, YU Z W, et al. Heat transfer by water flowing through rough fractures and distribution of local heat transfer coefficient along the flow direction[J]. International Journal of Heat and Mass Transfer, 2018, 119: 139-147. |
[69] | ZHAO J, TSO C P. Heat transfer by water flow in rock fractures and the application to hot dry rock geothermal systems[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1993, 30(6): 633-641. |
[70] | BAI B, HE YY, LI X C, et al. Local heat transfer characteristics of water flowing through a single fracture within a cylindrical granite specimen[J]. Environmental Earth Sciences, 2016, 75(22): 1460. |
[71] | ZHANG G W, ZHU J L, LI J, et al. The analytical solution of the water-rock heat transfer coefficient and sensitivity analyses of parameters[C]//Proceedings of World Geothermal Congress 2015. Melbourne: International Geothermal Association, 2015. |
[72] | HUANG X X, ZHU J L, LI J, et al. Fluid friction and heat transfer through a single rough fracture in granitic rock under confining pressure[J]. International Communications in Heat and Mass Transfer, 2016, 75: 78-85. |
[73] | BAI B, HE Y Y, HU S B, et al. An analytical method for determining the convection heat transfer coefficient between flowing fluid and rock fracture walls[J]. Rock Mechanics and Rock Engineering, 2017, 50(7): 1787-1799. |
[74] | BAI B, HE Y Y, LI X C, et al. Experimental and analytical study of the overall heat transfer coefficient of water flowing through a single fracture in a granite core[J]. Applied Thermal Engineering, 2017, 116: 79-90. |
[75] | JIANG Y Q, YAO H Y, CUI Y X, et al. Evaluative analysis of formulas of heat transfer coefficient of rock fracture[J]. International Journal of Thermophysics, 2020, 41(8): 104. |
[76] | HEIDARYAN E, HATAMI T, RAHIMI M, et al. Viscosity of pure carbon dioxide at supercritical region: measurement and correlation approach[J]. The Journal of Supercritical Fluids, 2011, 56(2): 144-151. |
[77] | ZHANG J, XING H L. Numerical modeling of non-Darcy flow in near-well region of a geothermal reservoir[J]. Geothermics, 2012, 42: 78-86. |
[78] | 刘松泽, 魏建光, 马媛媛, 等. 超临界二氧化碳在地热开发中的应用研究进展[J]. 应用化工, 2020, 49(6): 1537-1540. |
[79] | KAIEDA H, UEDA A, KUBOTA K, et al. Field experiments for studying on CO2 sequestration in solid minerals at the Ogachi HDR geothermal site, Japan[C]//Proceedings of 34th workshop on geothermal reservoir engineering. Stanford: Stanford Geothermal Program, 2009. |
[80] | LI P, HAO Y, WU Y, et al. Experimental study on the effect of CO2 storage on the reservoir permeability in a CO2-based enhanced geothermal system[J]. Geothermal Energy, 2023, 11(1): 24. |
[81] | 许光祥, 张永兴, 哈秋舲. 粗糙裂隙渗流的超立方和次立方定律及其试验研究[J]. 水利学报, 2003, 34(3): 74-79. |
[82] | SINGH KK, SINGH D N, RANJITH P G. Laboratory simulation of flow through single fractured granite[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 987-1000. |
[83] | TSANG Y W. The effect of tortuosity on fluid flow through a single fracture[J]. Water Resources Research, 1984, 20(9): 1209-1215. |
[84] | RANJITH P G. An experimental study of single and two-phase fluid flow through fractured granite specimens[J]. Environmental Earth Sciences, 2010, 59(7): 1389-1395. |
[85] | AMADEI B, ILLANGASEKARE T. A mathematical model for flow and solute transport in non-homogeneous rockfractures[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1994, 31(6): 719-731. |
[86] | 速宝玉, 詹美礼, 赵坚. 仿天然岩体裂隙渗流的实验研究[J]. 岩土工程学报, 1995, 17(5): 19-24. |
[87] | 王志良, 申林方, 李邵军, 等. 基于格子Boltzmann方法的岩体单裂隙面渗流特性研究[J]. 岩土力学, 2017, 38(4): 1203-1210. |
[88] | 张戈, 田园, 李英骏. 不同JRC粗糙单裂隙的渗流机理数值模拟研究[J]. 中国科学: 物理学力学天文学, 2019, 49(1): 30-39. |
[89] | XIAO W M, XIA C C, WEI W, et al. Combined effect of tortuosity and surface roughness on estimation of flow rate through a single rough joint[J]. Journal of Geophysics and Engineering, 2013, 10(4): 045015. |
[90] | BARTON N, BANDIS S, BAKHTAR K. Strength,deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1985, 22(3): 121-140. |
[91] | BROWN S R. Fluid flow through rock joints: the effect of surface roughness[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B2): 1337-1347. |
[92] | AVANTHI ISAKA B L, RANJITH P G. Investigation of temperature- and pressure-dependent flow characteristics of supercritical carbon dioxide- induced fractures in Harcourt granite: application to CO2-based enhanced geothermal systems[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119931. |
[93] | SHI Y, SONG X Z, SHEN Z H, et al. Numerical investigation on heat extraction performance of a CO2 enhanced geothermal system with multilateral wells[J]. Energy, 2018, 163: 38-51. |
[94] | GUO T K, ZHANG Y L, HE J Y, et al. Research on geothermal development model of abandoned high temperature oil reservoir in North China oilfield[J]. Renewable Energy, 2021, 177: 1-12. |
[95] | HUANG W B, CAO W J, JIANG F M. A novel single-well geothermal system for hot dry rock geothermal energyexploitation[J]. Energy, 2018, 162: 630-644. |
[96] | LIU X L, WANG Y M, LI S, et al. Convection heat transfer of supercritical CO2 in a single fracture in enhanced geothermal systems[J]. International Communications in Heat and Mass Transfer, 2021, 123: 105170. |
[97] | TAN J, RONG G, HE R H, et al. Numerical investigation of heat transfer effect on flow behavior in a single fracture[J]. Arabian Journal of Geosciences, 2020, 13(17): 851. |
[98] | KOHL T, EVANS K F, HOPKIRK R J, et al. Observation and simulation of non-Darcian flow transients in fractured rock[J]. Water Resources Research, 1997, 33(3): 407-418. |
[99] | ZHANG J, ZHAO M, WANG G Y, et al. Evaluation of heat extraction performance of multi-well injection enhanced geothermal system[J]. Applied Thermal Engineering, 2022, 201: 117808. |
[100] | ASAI P, PODGORNEY R, MCLENNAN J, et al. Analytical model for fluid flow distribution in an Enhanced Geothermal Systems (EGS)[J]. Renewable Energy, 2022, 193: 821-831. |
[101] | PRUESS K. On production behavior of enhanced geothermal systems with CO2 as working fluid[J]. Energy Conversion and Management, 2008, 49(6): 1446-1454. |
[102] | JIANG P X, ZHANG L, XU R N. Experimental study of convective heat transfer of carbon dioxide at supercritical pressures in a horizontal rock fracture and its application to enhanced geothermal systems[J]. Applied Thermal Engineering, 2017, 117: 39-49. |
[103] | WANG C G, SHI X K, ZHANG W, et al. Dynamic analysis of heat extraction rate by supercritical carbon dioxide in fractured rock mass based on a thermal-hydraulic-mechanics coupled model[J]. International Journal of Mining Science and Technology, 2022, 32(2): 225-236. |
[104] | DOBSON P, KNEAFSEY T J, BLANKENSHIP D, et al. An introduction to the EGS Collab Project[C]//Geothermal energy:power to do more - geothermal resources council 2017 annual meeting, GRC 2017. Salt Lake City: Geothermal Resources Council, 2017: 837-849. |
[105] | ZHANG E Y, WEN D G, WANG G L, et al. The first power generation test of hot dry rock resources exploration and production demonstration project in the Gonghe Basin, Qinghai Province, China[J]. China Geology, 2022, 5(3): 372-382. |
[106] | XU T F, FENG G H, HOU Z Y, et al. Wellbore-reservoir coupled simulation to study thermal and fluid processes in a CO2-based geothermal system: identifying favorable and unfavorable conditions in comparison with water[J]. Environmental Earth Sciences, 2015, 73(11): 6797-6813. |
[107] | SINGH M, TANGIRALA S K, CHAUDHURI A. Potential of CO2 based geothermal energy extraction from hot sedimentary and dry rock reservoirs, and enabling carbon geo-sequestration[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6(1): 16. |
[108] | OLDENBURG C M. Joule-Thomson cooling due to CO2 injection into natural gas reservoirs[J]. Energy Conversion and Management, 2007, 48(6): 1808-1815. |
[109] | 王贵玲, 刘峰, 蔺文静, 等. 我国陆区地壳生热率分布与壳幔热流特征研究[J]. 地球物理学报, 2023, 66(12): 5041-5056. |
[110] | 王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660. |
[111] | LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259. |
[112] | 张盛生, 张磊, 田成成, 等. 青海共和盆地干热岩赋存地质特征及开发潜力[J]. 地质力学学报, 2019, 25(4): 501-508. |
[113] | 刘耀光. 松辽盆地地热场特征与油气勘探的关系[J]. 石油勘探与开发, 1982, 9(3): 26-31. |
[114] | 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937. |
[115] | 王贵玲, 马峰, 侯贺晟, 等. 松辽盆地坳陷层控地热系统研究[J]. 地球学报, 2023, 44(1): 21-32. |
[116] | WANG G L, GAN H, LIN W J, et al. Hydrothermal systems characterized by crustal thermally‐dominated structures of southeastern China[J]. Acta Geologica Sinica (English Edition), 2023, 97(4): 1003-1013. |
[117] | 蔺文静, 王贵玲, 甘浩男. 华南陆缘火成岩区差异性地壳热结构及地热意义[J]. 地质学报, 2024, 98(2): 544-557. |
[118] | LIN W J, WANG G L, GAN H N, et al. Heat generation and accumulation for hot dry rock resources in the igneous rock distribution areas of southeastern China[J]. Lithosphere, 2022, 2021(Special 5): 2039112 |
[119] | 蔺文静, 陈向阳, 甘浩男, 等. 东南沿海厦门湾—漳州盆地地热地质特征及干热岩勘查方向[J]. 地质学报, 2020, 94(7): 2066-2077. |
[120] | ZHAO W T, YUAN Y L, JING T Y, et al. Heat production performance from an enhanced geothermal system (EGS) using CO2 as the working fluid[J]. Energies, 2023, 16(20): 7202. |
[1] | XU Jiading, ZHANG Chongyuan, ZHANG Hao, BAI Jinpeng, ZHANG Shi’an, ZHANG Shengsheng, QIN Xianghui, SUN Dongsheng, HE Manchao, WU Manlu. In-situ stress measurements in hot dry rock, Qinghai Gonghe Basin and simulation analysis of reservoir fracture modification [J]. Earth Science Frontiers, 2024, 31(6): 130-144. |
[2] | ZHAO Kan, SHEN Jian, CAI Yun, ZHAO Sumin. Insights into the root causes of difficulties in reinjection in sandstone geothermal reservoir and countermeasures [J]. Earth Science Frontiers, 2024, 31(6): 196-203. |
[3] | QI Xiaofei, XIAO Yong, SHANGGUAN Shuantong, SU Ye, WANG Hongke, LI Yingying, HU Zhixing. Fracture propagation mechanism in artificial reservoir of deep hot dry rock, Matouying and its applications [J]. Earth Science Frontiers, 2024, 31(6): 224-234. |
[4] | SHANGGUAN Shuantong, TIAN Lanlan, PAN Miaomiao, YANG Fengliang, YUE Gaofan, SU Ye, QI Xiaofei. Fault slip tendency and induced-earthquake risks in hot dry rock development: A case study in the Tangshan Matouying HDR site [J]. Earth Science Frontiers, 2024, 31(6): 252-260. |
[5] | WANG Guiling, MA Feng, ZHANG Wei, ZHU Xi, YU Mingxiao, ZHANG Hanxiong, LUO Cheng. Dominant heat transfer mechanism in buried-hill reservoirs in North China: A case study in Xiong’an new area [J]. Earth Science Frontiers, 2024, 31(6): 52-66. |
[6] | MA Jianhua, LIU Jinfeng, ZHOU Yongzhang, ZHENG Yijun, LU Kefei, LIN Xingyu, WANG Hanyu, ZHANG Can. Online monitoring of CO2 using IoT for assessment of leakage risks associated with geological sequestration [J]. Earth Science Frontiers, 2024, 31(4): 139-146. |
[7] | ZHANG Baojian, LEI Yude, ZHAO Zhen, TANG Xianchun, LUO Yinfei, WANG Guiling, GAO Jun, ZHANG Dailei. Geodynamic processes and mechanisms of the formation of hot dry rock in the Gonghe Basin [J]. Earth Science Frontiers, 2023, 30(5): 384-401. |
[8] | WANG Xinchu, LIU Congqiang, LI Siliang, XU Sheng, DING Hu, PANG Zhiyong, SHUAI Yanhua. Methane clumped isotopes: Research progress and application in carbon cycling in Earth surface systems [J]. Earth Science Frontiers, 2023, 30(2): 463-478. |
[9] | HE Bizhu, ZHENG Menglin, YUN Xiaorui, CAI Zhihui, JIAO Cunli, CHEN Xijie, ZHENG Yong, MA Xuxuan, LIU Ruohan, CHEN Huiming, ZHANG Shengsheng, LEI Min, FU Guoqiang, LI Zhenyu. Structural architecture and energy resource potential of Gonghe Basin, NE Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2023, 30(1): 81-105. |
[10] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
[11] | KANG Fangchao, TANG Chun’an. Overview of enhanced geothermal system (EGS) based on excavation in China [J]. Earth Science Frontiers, 2020, 27(1): 185-193. |
[12] | GUO Qinghai, HE Tong, ZHUANG Yaqin, LUO Jin, ZHANG Canhai. Expansion of fracture network in granites via chemical stimulation: a laboratory study [J]. Earth Science Frontiers, 2020, 27(1): 159-169. |
[13] | PANG Zhonghe, LUO Ji, CHENG Yuanzhi, DUAN Zhongfeng, TIAN Jiao, KONG Yanlong, LI Yiman, HU Shengbiao, WANG Jiyang. Evaluation of geological conditions for the development of deep geothermal energy in China [J]. Earth Science Frontiers, 2020, 27(1): 134-151. |
[14] | TIAN Jiao, PANG Zhonghe, ZHANG Rui. The application of FixAl and isotopic methods in the study of flowback fluids from Enhanced Geothermal Systems (EGS) [J]. Earth Science Frontiers, 2020, 27(1): 112-122. |
[15] | QI Xiaofei, SHANGGUAN Shuantong, ZHANG Guobin, PAN Miaomiao, SU Ye, TIAN Lanlan, LI Xiang, QIAO Yongchao, ZHANG Jianyong. Site selection and developmental prospect of a hot dry rock resource project in the Matouying Uplift, Hebei Province [J]. Earth Science Frontiers, 2020, 27(1): 94-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||