Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (2): 463-478.DOI: 10.13745/j.esf.sf.2022.2.74
Previous Articles Next Articles
WANG Xinchu1(), LIU Congqiang1,*(
), LI Siliang1, XU Sheng1, DING Hu1, PANG Zhiyong1, SHUAI Yanhua2
Received:
2021-11-23
Revised:
2022-05-06
Online:
2023-03-25
Published:
2023-01-05
Contact:
LIU Congqiang
CLC Number:
WANG Xinchu, LIU Congqiang, LI Siliang, XU Sheng, DING Hu, PANG Zhiyong, SHUAI Yanhua. Methane clumped isotopes: Research progress and application in carbon cycling in Earth surface systems[J]. Earth Science Frontiers, 2023, 30(2): 463-478.
气体 | 质量/amu | 准确质量/amu | 同位素分子 | 相对丰度 | 前提 | 来源文献 |
---|---|---|---|---|---|---|
CH4 | 16 | 16.031 | 12CH4 | 98.80% | 假设甲烷δ13C=0‰, δD=0‰ | [ |
17 | 17.035 | 13CH4 | 1.11×10-2 | |||
17.038 | 12CH3D | 6.16×10-4 | ||||
18 | 18.041 | 13CH3D | 6.92×10-6 | |||
18.044 | 12CH2D2 | 1.44×10-7 | ||||
19 | 19.047 | 13CH2D2 | 1.62×10-9 | |||
19.050 | 12CHD3 | 1.49×10-11 | ||||
20 | 20.053 | 13CHD3 | 4.68×10-13 | |||
20.056 | 12CD4 | 5.82×10-16 | ||||
21 | 21.060 | 13CD4 | 6.54×10-18 | |||
气体 | 质量/amu | 准确质量/amu | 同位素分子 | 相对丰度 | 前提 | 来源文献 |
CO2 | 44 | 44.001 | 12C16O2 | 98.4% | 假设17O/16O和18O/16O 比值等于VSMOW标准, 13C/12C比值等于PDB标准 | [ |
45 | 44.993 | 13C16O2 | 1.11×10-2 | |||
45.005 | 12C17O16O | 7.48×10-6 | ||||
46 | 46.005 | 12C18O16O | 4.00×10-3 | |||
45.997 | 13C17O16O | 8.4×10-6 | ||||
46.009 | 12C17O2 | 1.42×10-7 | ||||
47 | 46.997 | 13C18O16O | 44.4×10-6 | |||
47.009 | 12C17O18O | 1.50×10-6 | ||||
47.001 | 13C17O2 | 1.60×10-9 | ||||
48 | 48.009 | 12C18O2 | 3.96×10-6 | |||
48.001 | 13C17O18O | 1.68×10-9 | ||||
49 | 49.001 | 13C18O2 | 4.45×10-9 |
Table 1 Abundances and masses of CH4 and CO2 isotopologues in random states
气体 | 质量/amu | 准确质量/amu | 同位素分子 | 相对丰度 | 前提 | 来源文献 |
---|---|---|---|---|---|---|
CH4 | 16 | 16.031 | 12CH4 | 98.80% | 假设甲烷δ13C=0‰, δD=0‰ | [ |
17 | 17.035 | 13CH4 | 1.11×10-2 | |||
17.038 | 12CH3D | 6.16×10-4 | ||||
18 | 18.041 | 13CH3D | 6.92×10-6 | |||
18.044 | 12CH2D2 | 1.44×10-7 | ||||
19 | 19.047 | 13CH2D2 | 1.62×10-9 | |||
19.050 | 12CHD3 | 1.49×10-11 | ||||
20 | 20.053 | 13CHD3 | 4.68×10-13 | |||
20.056 | 12CD4 | 5.82×10-16 | ||||
21 | 21.060 | 13CD4 | 6.54×10-18 | |||
气体 | 质量/amu | 准确质量/amu | 同位素分子 | 相对丰度 | 前提 | 来源文献 |
CO2 | 44 | 44.001 | 12C16O2 | 98.4% | 假设17O/16O和18O/16O 比值等于VSMOW标准, 13C/12C比值等于PDB标准 | [ |
45 | 44.993 | 13C16O2 | 1.11×10-2 | |||
45.005 | 12C17O16O | 7.48×10-6 | ||||
46 | 46.005 | 12C18O16O | 4.00×10-3 | |||
45.997 | 13C17O16O | 8.4×10-6 | ||||
46.009 | 12C17O2 | 1.42×10-7 | ||||
47 | 46.997 | 13C18O16O | 44.4×10-6 | |||
47.009 | 12C17O18O | 1.50×10-6 | ||||
47.001 | 13C17O2 | 1.60×10-9 | ||||
48 | 48.009 | 12C18O2 | 3.96×10-6 | |||
48.001 | 13C17O18O | 1.68×10-9 | ||||
49 | 49.001 | 13C18O2 | 4.45×10-9 |
Fig.1 Hydrogen exchange reaction energy difference and Δi changes. (a) Keq-T plot showing temperature dependence of equilibrium constants for the homogeneous isotope exchange reactions. (b) Stochastic reference frame for the stable isotopologues of molecular hydrogen. Modified after [30,35].
作者 | 机构 | 时间 | 仪器 | Δ13CH3D精度 (± 1 SE) | Δ12CH2D2精度 (± 1 SE) |
---|---|---|---|---|---|
Stolper等[ | 加州理工学院 | 2014 | 253 Ultra原型机 | ±0.23‰ | |
Wang等[ | 麻省理工学院 | 2015 | 可调谐激光光谱仪 | ±0.42‰ | |
Shuai等[ | 加州理工学院 | 2018 | 253 Ultra原型机 | ±0.23‰ | |
Eldridge等[ | 伯克利大学 | 2019 | 253 Ultra | ±0.33‰ | ±1.35‰ |
Giunta等[ | 加州大学洛杉矶分校 | 2019 | Nu Panorama | ±0.30‰ | ±1.00‰ |
Zhang等[ | 东京工业大学 | 2021 | 253 Ultra | ±0.31‰ | ±1.24‰ |
庞智勇[ | 天津大学 | 2021 | 253 Ultra | ±0.27‰ | ±1.35‰ |
Table 2 Comparison of experimental Δ13CH3D and Δ12CH2D2 values obtained by different laboratories for methane clumped isotopes. Adapted from [23,40,51,55-56,82-83].
作者 | 机构 | 时间 | 仪器 | Δ13CH3D精度 (± 1 SE) | Δ12CH2D2精度 (± 1 SE) |
---|---|---|---|---|---|
Stolper等[ | 加州理工学院 | 2014 | 253 Ultra原型机 | ±0.23‰ | |
Wang等[ | 麻省理工学院 | 2015 | 可调谐激光光谱仪 | ±0.42‰ | |
Shuai等[ | 加州理工学院 | 2018 | 253 Ultra原型机 | ±0.23‰ | |
Eldridge等[ | 伯克利大学 | 2019 | 253 Ultra | ±0.33‰ | ±1.35‰ |
Giunta等[ | 加州大学洛杉矶分校 | 2019 | Nu Panorama | ±0.30‰ | ±1.00‰ |
Zhang等[ | 东京工业大学 | 2021 | 253 Ultra | ±0.31‰ | ±1.24‰ |
庞智勇[ | 天津大学 | 2021 | 253 Ultra | ±0.27‰ | ±1.35‰ |
[1] |
MYNENI R B, KEELING C D, TUCKER C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991[J]. Nature, 1997, 386(6626): 698-702.
DOI URL |
[2] |
BATJES N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 1996, 47(2): 151-63.
DOI URL |
[3] |
SCHLESINGER W H, ANDREWS J A. Soil respiration and the global carbon cycle[J]. Biogeochemistry, 2000, 48(1): 7-20.
DOI URL |
[4] |
SHI P, QIN Y L, LIU Q, et al. Soil respiration and response of carbon source changes to vegetation restoration in the Loess Plateau, China[J]. Science of the Total Environment, 2020, 707: 135507
DOI URL |
[5] |
LENG M J, MARSHALL J D. Palaeoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews, 2004, 23(7/8): 811-831.
DOI URL |
[6] | FRANK D C, POULTER B, SAURER M, et al. Water-use efficiency and transpiration across European forests during the Anthropocene[J]. Nature Climate Change, 2015, 5(6): 579-583. |
[7] |
ZAMANIAN K, PUSTOVOYTOV K, KUZYAKOV Y. Pedogenic carbonates: forms and formation processes[J]. Earth-Science Reviews, 2016, 157: 1-17.
DOI URL |
[8] |
DE NIJS E A, HICKS L C, LEIZEAGA A, et al. Soil microbial moisture dependences and responses to drying-rewetting: the legacy of 18 years drought[J]. Global Change Biology, 2019, 25(3): 1005-1015.
DOI PMID |
[9] | COLE J J, PRAIRIE Y T, CARACO N F, et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007, 10(1): 171-185. |
[10] |
ARORA V K, BOER G J. Uncertainties in the 20th century carbon budget associated with land use change[J]. Global Change Biology, 2010, 16(12): 3327-3348.
DOI URL |
[11] |
SCHIMEL D S. Terrestrial ecosystems and the carbon cycle[J]. Global Change Biology, 1995, 1(1): 77-91.
DOI URL |
[12] |
COX P M, BETTS R A, JONES C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000, 408(6809): 184-187.
DOI URL |
[13] |
GRUBER N, GALLOWAY J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176): 293-296.
DOI URL |
[14] |
RAMANATHAN V, CARMICHAEL G. Global and regional climate changes due to black carbon[J]. Nature Geoscience, 2008, 1(4): 221-227.
DOI URL |
[15] |
ZEEBE R E, RIDGWELL A, ZACHOS J C. Anthropogenic carbon release rate unprecedented during the past 66 million years[J]. Nature Geoscience, 2016, 9(4): 325-329.
DOI URL |
[16] |
BUI M, ADJIMAN C S, BARDOW A, et al. Carbon capture and storage (CCS): the way forward[J]. Energy and Environmental Science, 2018, 11(5): 1062-1176.
DOI URL |
[17] |
MAAVARA T, CHEN Q W, VAN METER K, et al. River Dam impacts on biogeochemical cycling[J]. Nature Reviews Earth and Environment, 2020, 1(2): 103-116.
DOI URL |
[18] |
BORRELLI P, ROBINSON D A, FLEISCHER L R, et al. An assessment of the global impact of 21st century land use change on soil erosion[J]. Nature Communications, 2017, 8: 2013.
DOI PMID |
[19] |
LE QUERE C, ANDREW R M, FRIEDLINGSTEIN P, et al. Global carbon budget 2017[J]. Earth System Science Data, 2018, 10(1): 405-448.
DOI URL |
[20] |
LE QUERE C, ANDREW R M, FRIEDLINGSTEIN P, et al. Global carbon budget 2018[J]. Earth System Science Data, 2018, 10(4): 2141-2194.
DOI URL |
[21] |
DOUGLAS P M J, STOLPER D A, EILER J M, et al. Methane clumped isotopes: progress and potential for a new isotopic tracer[J]. Organic Geochemistry, 2017, 113: 262-282.
DOI URL |
[22] |
GRUEN D S, WANG D T, KÖNNEKE M, et al. Experimental investigation on the controls of clumped isotopologue and hydrogen isotope ratios in microbial methane[J]. Geochimica et Cosmochimica Acta, 2018, 237: 339-356.
DOI URL |
[23] |
WANG D T, GRUEN D S, LOLLAR B S, et al. Nonequilibrium clumped isotope signals in microbial methane[J]. Science, 2015, 348(6233): 428-431.
DOI URL |
[24] |
WHITEHILL A R, JOELSSON L M T, SCHMIDT J A, et al. Clumped isotope effects during OH and Cl oxidation of methane[J]. Geochimica et Cosmochimica Acta, 2017, 196: 307-325.
DOI URL |
[25] |
SAUNOIS M, BOUSQUET P, POULTER B, et al. The global methane budget 2000-2012[J]. Earth System Science Data, 2016, 8(2): 697-751.
DOI URL |
[26] |
MILICH L. The role of methane in global warming: where might mitigation strategies be focused?[J]. Global Environmental Change, 1999, 9(3): 179-201.
DOI URL |
[27] |
GANESAN A L, SCHWIETZKE S, POULTER B, et al. Advancing scientific understanding of the global methane budget in support of the Paris agreement[J]. Global Biogeochemical Cycles, 2019, 33(12): 1475-1512.
DOI URL |
[28] |
UREY H C, RITTENBERG D. Some thermodynamic properties of the H1H2, H2H2 molecules and compounds containing the H2 atom[J]. The Journal of Chemical Physics, 1933, 1(2): 137-143.
DOI URL |
[29] |
WANG ZR, SCHAUBLE E A, EILER J M. Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases[J]. Geochimica et Cosmochimica Acta, 2004, 68(23): 4779-4797.
DOI URL |
[30] |
EILER J M, CLOG M, MAGYAR P, et al. A high-resolution gas-source isotope ratio mass spectrometer[J]. International Journal of Mass Spectrometry, 2013, 335: 45-56.
DOI URL |
[31] |
GHOSH P, ADKINS J, AFFEK H, et al. 13C-18O bonds in carbonate minerals: a new kind of paleothermometer[J]. Geochimica et Cosmochimica Acta, 2006, 70(6): 1439-1456.
DOI URL |
[32] |
POPA M E, PAUL D, JANSSEN C, et al. H-2 clumped isotope measurements at natural isotopic abundances[J]. Rapid Communications in Mass Spectrometry: RCM, 2019, 33(3): 239-251.
DOI URL |
[33] |
LASKAR A H, PEETHAMBARAN R, ADNEW G A, et al. Measurement of 18O18O and 17O18O in atmospheric O2 using the 253 Ultra mass spectrometer and applications to stratospheric and tropospheric air samples[J]. Rapid Communications in Mass Spectrometry: RCM, 2019, 33(11): 981-994.
DOI URL |
[34] |
YEUNG L Y, ASH J L, YOUNG E D. Rapid photochemical equilibration of isotope bond ordering in O2[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(17): 10552-10566.
DOI URL |
[35] |
EILER J M. “Clumped-isotope” geochemistry: the study of naturally-occurring, multiply-substituted isotopologues[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 309-327.
DOI URL |
[36] |
EILER J M, SCHAUBLE E. 18O13C16O in Earth’s atmosphere[J]. Geochimica et Cosmochimica Acta, 2004, 68(23): 4767-4777.
DOI URL |
[37] | 唐茂, 赵辉, 刘耘. 天然气中甲烷和CO2的二元同位素特征[J]. 矿物学报, 2007, 27(增刊1): 396-399. |
[38] | 帅燕华, 张水昌, 胡国艺. 天然气组分的簇同位素研究进展[J]. 矿物岩石地球化学通报, 2018, 37(4): 559-571, 794. |
[39] | 邓文峰, 郭炀锐, 韦刚健. 近十年我国团簇同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 2020, 39(5): 912-926, 1069. |
[40] |
STOLPER D A, SESSIONS A L, FERREIRA A A, et al. Combined 13C-D and D-D clumping in methane: methods and preliminary results[J]. Geochimica et Cosmochimica Acta, 2014, 126: 169-191.
DOI URL |
[41] |
CLOG M, LAWSON M, PETERSON B, et al. A reconnaissance study of 13C-13C clumping in ethane from natural gas[J]. Geochimica et Cosmochimica Acta, 2018, 223: 229-244.
DOI URL |
[42] |
BIGELEISEN J. Statisticalmechanics of isotopic systems with small quantum corrections. I. General considerations and the rule of the geometric mean[J]. The Journal of Chemical Physics, 1955, 23(12): 2264-2267.
DOI URL |
[43] |
MROZ E J, ALEI M, CAPPIS J H, et al. Detection of multiply deuterated methane in the atmosphere[J]. Geophysical Research Letters, 1989, 16(7): 677-678.
DOI URL |
[44] |
KAYE J A, JACKMAN C H. Comment on“Detection of multiply deuterated methane in the atmosphere”[J]. Geophysical Research Letters, 1990, 17: 659-660.
DOI URL |
[45] |
EILER J M. Paleoclimate reconstruction using carbonate clumped isotope thermometry[J]. Quaternary Science Reviews, 2011, 30(25/26): 3575-3588.
DOI URL |
[46] |
THIAGARAJAN N, ADKINS J, EILER J. Carbonate clumped isotope thermometry of deep-sea corals and implications for vital effects[J]. Geochimica et Cosmochimica Acta, 2011, 75(16): 4416-4425.
DOI URL |
[47] |
STOLPER D A, LAWSON M, DAVIS C L, et al. Formation temperatures of thermogenic and biogenic methane[J]. Science, 2014, 344(6191): 1500-1503.
DOI URL |
[48] |
BERNARD B B, BROOKS J M, SACKETT W M. Natural gas seepage in the gulf of Mexico[J]. Earth and Planetary Science Letters, 1976, 31(1): 48-54.
DOI URL |
[49] |
AFFEK H P, XU X M, EILER J M. Seasonal and diurnal variations of 13C18O16O in air: initial observations from Pasadena, CA[J]. Geochimica et Cosmochimica Acta, 2007, 71(21): 5033-5043.
DOI URL |
[50] |
AFFEK H P, EILER J M. Abundance of mass 47 CO2 in urban air, car exhaust, and human breath[J]. Geochimica et Cosmochimica Acta, 2006, 70(1): 1-12.
DOI URL |
[51] |
SHUAI Y H, ETIOPE G, ZHANG S C, et al. Methane clumped isotopes in the Songliao Basin (China): new insights into abiotic vs. biotic hydrocarbon formation[J]. Earth and Planetary Science Letters, 2018, 482: 213-221.
DOI URL |
[52] |
KELSON J R, HUNTINGTON K W, SCHAUER A J, et al. Toward a universal carbonate clumped isotope calibration: diverse synthesis and preparatory methods suggest a single temperature relationship[J]. Geochimica et Cosmochimica Acta, 2017, 197: 104-131.
DOI URL |
[53] |
WANG X, CUI L L, ZHAI J X, et al. Stable and clumped isotopes in shell carbonates of land snails Cathaica sp. and Bradybaena sp. in North China and implications for ecophysiological characteristics and paleoclimate studies[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(1): 219-231.
DOI URL |
[54] |
GUO Y R, DENG W F, WEI G J, et al. Clumped isotopic signatures in land-snail shells revisited: possible palaeoenvironmental implications[J]. Chemical Geology, 2019, 519: 83-94.
DOI URL |
[55] |
GIUNTA T, YOUNG E D, WARR O, et al. Methane sources and sinks in continental sedimentary systems: new insights from paired clumped isotopologues 13CH3D and 12CH2D2[J]. Geochimica et Cosmochimica Acta, 2019, 245: 327-351.
DOI URL |
[56] |
ZHANG N Z, SNYDER G T, LIN M, et al. Doubly substituted isotopologues of methane hydrate (13CH3D and 12CH2D2): implications for methane clumped isotope effects, source apportionments and global hydrate reservoirs[J]. Geochimica et Cosmochimica Acta, 2021, 315: 127-151.
DOI URL |
[57] |
YOUNG E D, RUMBLE D III, FREEDMAN P, et al. A large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gases[J]. International Journal of Mass Spectrometry, 2016, 401: 1-10.
DOI URL |
[58] |
YOUNG E D, KOHL I E, LOLLAR B S, et al. The relative abundances of resolved 12CH2D2 and 13CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases[J]. Geochimica et Cosmochimica Acta, 2017, 203: 235-264.
DOI URL |
[59] |
STOLPER D A, LAWSON M, FORMOLO M J, et al. The utility of methane clumped isotopes to constrain the origins of methane in natural gas accumulations[J]. Geological Society, London, Special Publications, 2017, 468(1): 23-52.
DOI URL |
[60] |
THAUER R K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson[J]. Microbiology, 1998, 144: 2377-406.
DOI URL |
[61] |
JEFFERY S, VERHEIJEN F G A, KAMMANN C, et al. Biochar effects on methane emissions from soils: a meta- analysis[J]. Soil Biology and Biochemistry, 2016, 101: 251-258.
DOI URL |
[62] |
COVEY K R, MEGONIGAL J P. Methane production and emissions in trees and forests[J]. The New Phytologist, 2019, 222(1): 35-51.
DOI URL |
[63] |
KIRSCHKE S, BOUSQUET P, CIAIS P, et al. Three decades of global methane sources and sinks[J]. Nature Geoscience, 2013, 6(10): 813-823.
DOI URL |
[64] |
LOULERGUE L, SCHILT A, SPAHNI R, et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800000 years[J]. Nature, 2008, 453(7193): 383-386.
DOI URL |
[65] |
CAHILL A G, PARKER B L, MAYER B, et al. High resolution spatial and temporal evolution of dissolved gases in groundwater during a controlled natural gas release experiment[J]. Science of the Total Environment, 2018, 622/623: 1178-1192.
DOI URL |
[66] |
STOLPER D A, MARTINI A M, CLOG M, et al. Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues[J]. Geochimica et Cosmochimica Acta, 2015, 161: 219-247.
DOI URL |
[67] |
NIEMANN H, LÖSEKANN T, DE BEER D, et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink[J]. Nature, 2006, 443(7113): 854-858.
DOI URL |
[68] |
KARAKURT I, AYDIN G, AYDINER K. Sources and mitigation of methane emissions by sectors: a critical review[J]. Renewable Energy, 2012, 39(1): 40-48.
DOI URL |
[69] | SMITH P, MARTINO D, CAI Z C, et al. Greenhouse gas mitigation in agriculture[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2008, 363(1492): 789-813. |
[70] |
MARTELL E A. On the inventory of artificial tritium and its occurrence in atmospheric methane[J]. Journal of Geophysical Research: Atmospheres, 1963, 68(13): 3759-3770.
DOI URL |
[71] |
WHITICAR M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1/2/3): 291-314.
DOI URL |
[72] |
WHITICAR M J, FABER E, SCHOELL M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation: isotope evidence[J]. Geochimica et Cosmochimica Acta, 1986, 50(5): 693-709.
DOI URL |
[73] |
LOWE D C, BRENNINKMEIJER C A M, MANNING M R, et al. Radiocarbon determination of atmospheric methane at Baring Head, New Zealand[J]. Nature, 1988, 332(6164): 522-525.
DOI URL |
[74] |
SCHOELL M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins[J]. Geochimica et Cosmochimica Acta, 1980, 44(5): 649-661.
DOI URL |
[75] |
QUAY P, STUTSMAN J, WILBUR D, et al. The isotopic composition of atmospheric methane[J]. Global Biogeochemical Cycles, 1999, 13(2): 445-461.
DOI URL |
[76] | MONTEIL G, HOUWELING S, DLUGOCKENKY E J, et al. Interpreting methane variations in the past two decades using measurements of CH4 mixing ratio and isotopic composition[J]. Atmospheric Chemistry and Physics, 2011, 11(17): 9141-9153. |
[77] | NEEF L, VAN WEELE M, VAN VELTHOVEN P. Optimal estimation of the present-day global methane budget[J]. Global Biogeochemical Cycles, 2010, 24(4). https://doi.org/10.1029/2009GB003661. |
[78] | BROSIUS H B, HAAS A, KOSCHEL F. Befragung III: das interview-interviewer und befragte[M]//BROSIUS H B, KOSCHEL F. Methoden der empirischen kommunikationsforschung:Eine Einführung. Wiesbaden: VS Verlag für Sozialwissenschaften, 2012: 117-128. |
[79] |
WALTER K M, ZIMOV S A, CHANTON J P, et al. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming[J]. Nature, 2006, 443(7107): 71-75.
DOI URL |
[80] |
XIA X Y, GAO Y L. Validity of geochemical signatures of abiotic hydrocarbon gases on Earth[J]. Journal of the Geological Society 2022, 179 (3). DOI: 10.1144/jgs2021-077.
DOI |
[81] |
LIU Q, LIU Y. Clumped-isotope signatures at equilibrium of CH4, NH3, H2O, H2S and SO2[J]. Geochimica et Cosmochimica Acta, 2016, 175: 252-270.
DOI URL |
[82] |
ELDRIDGE D L, KOROL R, LLOYD M K, et al. Comparison of experimental vs theoretical abundances of 13CH3D and 12CH2D2 for isotopically equilibrated systems from 1 to 500 ℃[J]. ACS Earth and Space Chemistry, 2019, 3(12): 2747-2764.
DOI URL |
[83] |
庞智勇, 王欣楚, 李思亮, 等. 基于高分辨气体稳定同位素质谱仪的甲烷团簇同位素测试方法研究[J/OL]. 分析试验室: 1-7[2022-07-29]. DOI: 10.13595/j.cnki.issn1000-0720.2021.111703.
DOI |
[84] |
DOUGLAS P M J, STOLPER D A, SMITH D A, et al. Diverse origins of Arctic and Subarctic methane point source emissions identified with multiply-substituted isotopologues[J]. Geochimica et Cosmochimica Acta, 2016, 188: 163-188.
DOI URL |
[85] |
VALENTINE D L, CHIDTHAISONG A, RICE A, et al. Carbon and hydrogen isotope fractionation by moderately thermophilicmethanogens[J]. Geochimica et Cosmochimica Acta, 2004, 68(7): 1571-1590.
DOI URL |
[86] |
PENNING H, PLUGGE C M, GALAND P E, et al. Variation of carbon isotope fractionation in hydrogenotrophic methanogenic microbial cultures and environmental samples at different energy status[J]. Global Change Biology, 2005, 11(12): 2103-2113.
DOI PMID |
[87] |
ONO S, RHIM J H, GRUEN D S, et al. Clumped isotopologue fractionation by microbial cultures performing the anaerobicoxidation of methane[J]. Geochimica et Cosmochimica Acta, 2021, 293: 70-85.
DOI URL |
[88] |
DONG G N, XIE H, FORMOLO M, et al. Clumped isotope effects of thermogenic methane formation: insights from pyrolysis of hydrocarbons[J]. Geochimica et Cosmochimica Acta, 2021, 303: 159-183.
DOI URL |
[89] |
TAENZER L, LABIDI J, MASTERSON A L, et al. Low Δ12CH2D2 values in microbialgenic methane result from combinatorial isotope effects[J]. Geochimica et Cosmochimica Acta, 2020, 285: 225-236.
DOI URL |
[90] |
THIAGARAJAN N, KITCHEN N, XIE H, et al. Identifying thermogenic and microbial methane in deep water Gulf of Mexico reservoirs[J]. Geochimica et Cosmochimica Acta, 2020, 275: 188-208.
DOI URL |
[91] | YOUNG E D. A two-dimensional perspective on CH4 isotope clumping: distinguishing process from source[M]//ORCUTT B N, DANIEL I, DASGUPTA R. Deep carbon:past to present. Cambridge: Cambridge University Press, 2019: 388-414. |
[92] |
GIUNTA T, LABIDI J, KOHL I E, et al. Evidence for methane isotopic bond re-ordering in gas reservoirs sourcing cold seeps from the Sea of Marmara[J]. Earth and Planetary Science Letters, 2021, 553: 116619.
DOI URL |
[93] |
SHUAI Y H, XIE H, ZHANG S C, et al. Recognizing the pathways of microbial methanogenesis through methane isotopologues in the subsurface biosphere[J]. Earth and Planetary Science Letters, 2021, 566: 116960.
DOI URL |
[94] |
WARR O, YOUNG E D, GIUNTA T, et al. High-resolution, long-term isotopic and isotopologue variation identifies the sources and sinks of methane in a deep subsurface carbon cycle[J]. Geochimica et Cosmochimica Acta, 2021, 294: 315-334.
DOI URL |
[95] | ASH J L, EGGER M, TREUDE T, et al. Exchange catalysis during anaerobic methanotrophy revealed by 12CH2D2 and 13CH3D in methane[J]. Geochemical Perspectives Letters, 2019: 26-30. |
[96] |
LABIDI J, YOUNG E D, GIUNTA T, et al. Methane thermometry in deep-sea hydrothermal systems: evidence for re-ordering of doubly-substituted isotopologues during fluid cooling[J]. Geochimica et Cosmochimica Acta, 2020, 288: 248-261.
DOI URL |
[97] |
HAGHNEGAHDAR M A, SCHAUBLE E A, YOUNG E D. A model for 12CH2D2 and 13CH3D as complementary tracers for the budget of atmospheric CH4[J]. Global Biogeochemical Cycles, 2017, 31(9): 1387-1407.
DOI URL |
[98] | JOELSSON L M T, SCHMIDT J A, NILSSON E J K, et al. Kinetic isotope effects of 12CH3D+OH and 13CH3D+OH from 278 to 313 K[J]. Atmospheric Chemistry and Physics, 2016, 16(7): 4439-4449. |
[99] |
YEUNG L Y. Combinatorial effects on clumped isotopes and their significance in biogeochemistry[J]. Geochimica et Cosmochimica Acta, 2016, 172: 22-38.
DOI URL |
[100] |
RÖCKMANN T, POPA M E, KROL M C, et al. Statistical clumped isotope signatures[J]. Scientific Reports, 2016, 6: 31947.
DOI PMID |
[101] |
GOLDING S D, BOREHAM C J, ESTERLE J S. Stable isotope geochemistry of coal bed and shale gas and related production waters: a review[J]. International Journal of Coal Geology, 2013, 120: 24-40.
DOI URL |
[102] |
EILER J M. The isotopic anatomies of molecules and minerals[J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 411-441.
DOI URL |
[103] |
PIASECKI A, SESSIONS A, LAWSON M, et al. Position-specific 13C distributions within propane from experiments and natural gas samples[J]. Geochimica et Cosmochimica Acta, 2018, 220: 110-124.
DOI URL |
[104] |
PIASECKI A, SESSIONS A, LAWSON M, et al. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer[J]. Geochimica et Cosmochimica Acta, 2016, 188: 58-72.
DOI URL |
[105] |
WANG D T, WELANDER P V, ONO S. Fractionation of the methane isotopologues 13CH4, 12CH3D, and 13CH3D during aerobic oxidation of methane by methylococcus capsulatus (bath)[J]. Geochimica et Cosmochimica Acta, 2016, 192: 186-202.
DOI URL |
[106] |
GIERCZAK T, TALUKDAR R K, HERNDON S C, et al. Rate coefficients for the reactions of hydroxyl radicals with methane and deuterated methanes[J]. The Journal of Physical Chemistry A, 1997, 101(17): 3125-3134.
DOI URL |
[107] |
FEILBERG K L, GRIFFITH D W T, JOHNSON M S, et al. The 13C and D kinetic isotope effects in the reaction of CH4 with Cl[J]. International Journal of Chemical Kinetics, 2005, 37(2): 110-118.
DOI URL |
[108] |
ONO S, WANG D T, GRUEN D S, et al. Measurement of a doubly substituted methane isotopologue, 13CH3D, by tunable infrared laser direct absorption spectroscopy[J]. Analytical Chemistry, 2014, 86(13): 6487-6494.
DOI URL |
[109] |
PETRENKO V V, SMITH A M, BRAILSFORD G, et al. A new method for analyzing 14C of methane in ancient air extracted from glacial ice[J]. Radiocarbon, 2008, 50(1): 53-73.
DOI URL |
[110] | FISHER R E, SRISKANTHARAJAH S, LOWRY D, et al. Arctic methane sources: isotopic evidence for atmospheric inputs[J]. Geophysical Research Letters, 2011, 38(21): L21803. |
[111] | DOUGLAS P M J, MOGUEL R G, ANTHONY K M W, et al. Clumped isotopes link older carbon substrates with slower rates of methanogenesis in northern lakes[J]. Geophysical Research Letters, 2020, 47(6): e2019GL086756. |
[112] |
SCHUUR E A G, BOCKHEIM J, CANADELL J G, et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle[J]. BioScience, 2008, 58(8): 701-714.
DOI URL |
[113] |
KOVEN C D, RINGEVAL B, FRIEDLINGSTEIN P, et al. Permafrost carbon-climate feedbacks accelerate global warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(36): 14769-14774.
DOI PMID |
[114] |
WANG D T, REEVES E P, MCDERMOTT J M, et al. Clumped isotopologue constraints on the origin of methane at seafloor hot springs[J]. Geochimica et Cosmochimica Acta, 2018, 223: 141-158.
DOI URL |
[115] |
ETIOPE G, OZE C. Microbial vs abiotic origin of methane in continental serpentinized ultramafic rocks: a critical review and the need of a holistic approach[J]. Applied Geochemistry, 2022, 143: 105373.
DOI URL |
[116] | WANG D T, SATTLER A, PACCAGNINI M, et al. Method for calibrating methane clumped isotope measurements via catalytic equilibration of methane isotopologues on γ-alumina[J]. Rapid Communications in Mass Spectrometry: Rapid Communications in Mass Spectrometry, 2020, 34(10): e8555. |
[117] |
LAANBROEK H J. Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review[J]. Annals of Botany, 2009, 105(1): 141-153.
DOI URL |
[118] |
OLEFELDT D, TURETSKY M R, CRILL P M, et al. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones[J]. Global Change Biology, 2013, 19(2): 589-603.
DOI PMID |
[119] |
MELTON J R, WANIA R, HODSON E L, et al. Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP)[J]. Biogeosciences, 2013, 10(2): 753-788.
DOI URL |
[120] |
LAINE A M, MEHTÄTALO L, TOLVANEN A, et al. Impacts of drainage, restoration and warming on boreal wetland greenhouse gas fluxes[J]. Science of the Total Environment, 2019, 647: 169-181.
DOI URL |
[121] |
DEAN J F, MIDDELBURG J J, RÖCKMANN T, et al. Methane feedbacks to the global climate system in a warmer world[J]. Reviews of Geophysics, 2018, 56(1): 207-250.
DOI URL |
[122] |
SCHWIETZKE S, SHERWOOD O A, BRUHWILER L M P, et al. Upward revision of global fossil fuel methane emissions based on isotope database[J]. Nature, 2016, 538(7623): 88-91.
DOI URL |
[123] |
THIAGARAJAN N, XIE H, PONTON C, et al. Isotopic evidence for quasi-equilibrium chemistry in thermally mature natural gases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(8): 3989-3995.
DOI PMID |
[124] |
HELGESON H C, RICHARD L, MCKENZIE W F, et al. A chemical and thermodynamic model of oil generation in hydrocarbon source rocks[J]. Geochimica et Cosmochimica Acta, 2009, 73(3): 594-695.
DOI URL |
[125] |
HELGESON H C, KNOX A M, OWENS C E, et al. Petroleum, oil field waters, and authigenic mineral assemblages: are they in metastable equilibrium in hydrocarbon reservoirs?[J]. Geochimica et Cosmochimica Acta, 1993, 57(14): 3295-3339.
DOI URL |
[1] | JIANG Zheng, SHU Biao, TAN Jingqiang. Heat transfer in geothermal reservoir of CO2-based enhanced geothermal systems—current research status and prospects [J]. Earth Science Frontiers, 2024, 31(6): 235-251. |
[2] | HU Han, ZHANG Lifei, PENG Weigang, LAN Chunyuan, LIU Zhicheng. Formation of graphite in ultrahigh-pressure pelitic schists from the southwestern Tianshan: Implications for carbon migration and sequestration in subduction zones [J]. Earth Science Frontiers, 2024, 31(6): 282-303. |
[3] | XU Tianwu, ZHANG Hong’an. Analysis of oil and gas distribution and exploration potential in oil-rich depression: Taking Dongpu Depression as an example [J]. Earth Science Frontiers, 2024, 31(6): 368-380. |
[4] | ZHOU Nianqing, GUO Mengshen, CAI Yi, LU Shuaishuai, LIU Xiaoqun, ZHAO Wengang. Mechanism of carbon cycle and source-sink conversion and quantitative carbon exchange model in critical zone of wetland [J]. Earth Science Frontiers, 2024, 31(6): 436-449. |
[5] | CAO Jianhua, YANG Hui, HUANG Fen, ZHANG Chunlai, ZHANG Liankai, ZHU Tongbin, ZHOU Mengxia, YUAN Daoxian. The principle, process, and measurement of karst carbon sink [J]. Earth Science Frontiers, 2024, 31(5): 358-376. |
[6] | MA Jianhua, LIU Jinfeng, ZHOU Yongzhang, ZHENG Yijun, LU Kefei, LIN Xingyu, WANG Hanyu, ZHANG Can. Online monitoring of CO2 using IoT for assessment of leakage risks associated with geological sequestration [J]. Earth Science Frontiers, 2024, 31(4): 139-146. |
[7] | ZHANG Shunyao, SHI Zeming, YANG Zhibin, ZHOU Yalong, ZHANG Fugui, PENG Min. Advances and trends on soil methane emission in permafrost region [J]. Earth Science Frontiers, 2024, 31(4): 354-365. |
[8] | WANG Ye, CHEN Yang, CHEN Jun. Petrogenic organic carbon weathering and its controlling factors—a review [J]. Earth Science Frontiers, 2024, 31(2): 402-409. |
[9] | XIE Shucheng, ZHU Zongmin, ZHANG Hongbin, YANG Yi, WANG Canfa, RUAN Xiaoyan. Earth sphere interaction reflected in microbial fingerprints through Earth's history—a critical review [J]. Earth Science Frontiers, 2024, 31(1): 446-454. |
[10] | WANG Jiahao, HU Xiumian, JIANG Jingxin, MA Chao, MA Pengfei. High-resolution reconstruction of carbonate compensation depth in the South China Sea since 27 Ma [J]. Earth Science Frontiers, 2024, 31(1): 500-510. |
[11] | XIE Yincai, YU Shi, MIAO Xiongyi, LI Jun, HE Shiyi, SUN Ping’an. Chemical weathering and its associated CO2 consumption on the Tibetan Plateau: A case of the Lhasa River Basin [J]. Earth Science Frontiers, 2023, 30(5): 510-525. |
[12] | CHEN Xueqian, ZHANG Lifei. Carbon sequestration, transport, transfer, and degassing: Insights into the deep carbon cycle [J]. Earth Science Frontiers, 2023, 30(3): 313-339. |
[13] | LI Siqi, CHEN Ye, YIN Xia, ZANG Kunpeng, ZHEN Yu. Vertical distributions of CH4 and N2O in sediments of the Bohai and Yellow Seas in spring [J]. Earth Science Frontiers, 2022, 29(5): 35-46. |
[14] | LI Dong, ZHAO Min, LIU Zaihua, CHEN Bo. Dual carbon isotope (δ13C-Δ14C) characteristics and carbon footprint in the spring-pond systems at the Puding Karst Water-Carbon Cycle Test Site [J]. Earth Science Frontiers, 2022, 29(3): 155-166. |
[15] | ZHAO Xingmin,DENG Jian,RAO Zhu,YI Li,LU Cheng,LI Song. Abnormalities of stable carbon and hydrogen isotopes of methane in the Mohe Basin, Northeast China and mechanisms of isotopic change [J]. Earth Science Frontiers, 2019, 26(4): 231-237. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||