Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1): 500-510.DOI: 10.13745/j.esf.sf.2024.1.35
Previous Articles Next Articles
WANG Jiahao1(), HU Xiumian1,*(), JIANG Jingxin1, MA Chao2, MA Pengfei3
Received:
2024-01-04
Revised:
2024-01-19
Online:
2024-01-25
Published:
2024-01-25
CLC Number:
WANG Jiahao, HU Xiumian, JIANG Jingxin, MA Chao, MA Pengfei. High-resolution reconstruction of carbonate compensation depth in the South China Sea since 27 Ma[J]. Earth Science Frontiers, 2024, 31(1): 500-510.
Fig.1 Location and distribution of IODP and ODP (Ocean Drilling Program) sites in the study area and ocean current path in the modern South China Sea (Using GMT6.0 and Mercator projection). Current paths are modified from [16]. White: surface current; yellow: middle current; orange: deep current.
年代区间 | 年代区间内的 中心年代/Ma | CCD/m | 误差(±)/m |
---|---|---|---|
0.5~1 | 0.75 | 4 154 | 263 |
>1~1.5 | 1.25 | 399 | 215 |
>1.5~2 | 1.75 | 4 046 | 229 |
>2~2.5 | 2.25 | 4 107 | 256 |
>2.5~3 | 2.75 | 3 806 | 152 |
>3~3.5 | 3.25 | 3 693 | 202 |
>3.5~4 | 3.75 | 3 844 | 211 |
>4~4.5 | 4.25 | 3 981 | 429 |
>4.5~5 | 4.75 | 3 111 | 146 |
>5~5.5 | 5.25 | 3 350 | 83 |
>5.5~6 | 5.75 | 4 052 | 204 |
>6~6.5 | 6.25 | 3 612 | 261 |
>6.5~7 | 6.75 | 3 703 | 291 |
>7~7.5 | 7.25 | 3 778 | 489 |
>7.5~8 | 7.75 | 4 127 | 269 |
>8~8.5 | 8.25 | 3 828 | 214 |
>8.5~9 | 8.75 | 3 824 | 158 |
>9~9.5 | 9.25 | 4 046 | 40 |
>9.5~10 | 9.75 | 3 930 | 131 |
>10~10.5 | 10.25 | 4 118 | 251 |
>10.5~11 | 10.75 | 3 688 | 321 |
>11~11.5 | 11.25 | 4 116 | 137 |
>11.5~12 | 11.75 | 3 913 | 49 |
>12~12.5 | 12.25 | 3 899 | 77 |
>12.5~13 | 12.75 | 4 013 | 36 |
>13~13.5 | 13.25 | 3 558 | 464 |
>13.5~14 | 13.75 | 3 584 | 282 |
>14~14.5 | 14.25 | 3 549 | 277 |
>14.5~15 | 14.75 | 3 557 | 763 |
>15~15.5 | 15.25 | 2 823 | 252 |
>15.5~16 | 15.75 | 3 585 | 130 |
>16~16.5 | 16.25 | 2 860 | 262 |
>16.5~17 | 16.75 | 3 547 | 169 |
>17~17.5 | 17.25 | 3 569 | 153 |
>17.5~18.5 | 18 | 3 355 | 293 |
>18.5~19.5 | 19 | 3 699 | 416 |
>19.5~20.5 | 20 | 3 269 | 467 |
>20.5~21.5 | 21 | 3 001 | 480 |
>21.5~22.5 | 22 | 3 073 | 535 |
>22.5~23.5 | 23 | 2 202 | 504 |
>23.5~24.5 | 24 | 1 925 | 378 |
>24.5~25.5 | 25 | 1 545 | 164 |
>25.5~26.5 | 26 | 1 477 | 130 |
>26.5~27.5 | 27 | 1 015 | 103 |
Table 1 Calculation results on CCDs in the South China Sea of different ages since 27 Ma
年代区间 | 年代区间内的 中心年代/Ma | CCD/m | 误差(±)/m |
---|---|---|---|
0.5~1 | 0.75 | 4 154 | 263 |
>1~1.5 | 1.25 | 399 | 215 |
>1.5~2 | 1.75 | 4 046 | 229 |
>2~2.5 | 2.25 | 4 107 | 256 |
>2.5~3 | 2.75 | 3 806 | 152 |
>3~3.5 | 3.25 | 3 693 | 202 |
>3.5~4 | 3.75 | 3 844 | 211 |
>4~4.5 | 4.25 | 3 981 | 429 |
>4.5~5 | 4.75 | 3 111 | 146 |
>5~5.5 | 5.25 | 3 350 | 83 |
>5.5~6 | 5.75 | 4 052 | 204 |
>6~6.5 | 6.25 | 3 612 | 261 |
>6.5~7 | 6.75 | 3 703 | 291 |
>7~7.5 | 7.25 | 3 778 | 489 |
>7.5~8 | 7.75 | 4 127 | 269 |
>8~8.5 | 8.25 | 3 828 | 214 |
>8.5~9 | 8.75 | 3 824 | 158 |
>9~9.5 | 9.25 | 4 046 | 40 |
>9.5~10 | 9.75 | 3 930 | 131 |
>10~10.5 | 10.25 | 4 118 | 251 |
>10.5~11 | 10.75 | 3 688 | 321 |
>11~11.5 | 11.25 | 4 116 | 137 |
>11.5~12 | 11.75 | 3 913 | 49 |
>12~12.5 | 12.25 | 3 899 | 77 |
>12.5~13 | 12.75 | 4 013 | 36 |
>13~13.5 | 13.25 | 3 558 | 464 |
>13.5~14 | 13.75 | 3 584 | 282 |
>14~14.5 | 14.25 | 3 549 | 277 |
>14.5~15 | 14.75 | 3 557 | 763 |
>15~15.5 | 15.25 | 2 823 | 252 |
>15.5~16 | 15.75 | 3 585 | 130 |
>16~16.5 | 16.25 | 2 860 | 262 |
>16.5~17 | 16.75 | 3 547 | 169 |
>17~17.5 | 17.25 | 3 569 | 153 |
>17.5~18.5 | 18 | 3 355 | 293 |
>18.5~19.5 | 19 | 3 699 | 416 |
>19.5~20.5 | 20 | 3 269 | 467 |
>20.5~21.5 | 21 | 3 001 | 480 |
>21.5~22.5 | 22 | 3 073 | 535 |
>22.5~23.5 | 23 | 2 202 | 504 |
>23.5~24.5 | 24 | 1 925 | 378 |
>24.5~25.5 | 25 | 1 545 | 164 |
>25.5~26.5 | 26 | 1 477 | 130 |
>26.5~27.5 | 27 | 1 015 | 103 |
Fig.2 Evolution of CCDs in the South China Sea (black curve) and the equatorial Pacific Ocean (green, red curves). Grey error band captures the uncertainty in regression analysis; green curve was adapted from [5], red curve from [11]. The continuous expansion periods of the South China Sea Basin, MMCO, MMCT and the growth period of the Bashi sill were adapted from [22,28⇓-30].
Fig.3 Responses to CCD change in the South China Sea over the years. From top: CCD; CaCO3 (mass fraction); calcareous nannofossils abundance; Sc/Sr ratio (after [21]); δ18O (after [16]) and δ13C (after [34]) values of benthic foraminifera; relative sea-level (after [43]); CAR value; planktic foraminifera content in sediment
[1] | BRAMLETTE M N. Pelagic sediments[J]. Oceanography, 1961, 67: 345-366. |
[2] | LYLE M. Neogene carbonate burial in the Pacific Ocean[J]. Paleoceanography, 2003, 18(3): 2002PA000777. |
[3] |
DUTKIEWICZ A, MÜLLER R D. The carbonate compensation depth in the South Atlantic Ocean since the Late Cretaceous[J]. Geology, 2021, 49(7): 873-878.
DOI URL |
[4] |
PENMAN D E, TURNER S K, SEXTON P F, et al. An abyssal carbonate compensation depth overshoot in the aftermath of the Palaeocene-Eocene Thermal Maximum[J]. Nature Geoscience, 2016, 9(8): 575-580.
DOI |
[5] |
PÄLIKE H, LYLE M W, NISHI H, et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth[J]. Nature, 2012, 488(7413): 609-614.
DOI |
[6] |
DERRY L A. Carbonate weathering, CO2 redistribution, and Neogene CCD and pCO2 evolution[J]. Earth and Planetary Science Letters, 2022, 597: 117801.
DOI URL |
[7] | HSU K J, WEISSERT H J. South Atlantic paleoceanography[M]. Cambridge: Cambridge University Press, 1985:1-350. |
[8] | BERGER W H. Deep sea carbonates: dissolution facies and age-depth constancy[J]. Nature, 1972, 236(5347): 392-395. |
[9] |
VAN ANDEL T H, THIEDE J, SCLATER J G, et al. Depositional history of the South Atlantic Ocean during the last 125 million years[J]. The Journal of Geology, 1977, 85(6): 651-698.
DOI URL |
[10] |
MELGUEN M, LE PICHON X, SIBUET J C. Paleoenvironnement de l’Atlantique sud[J]. Bulletin de la Société Géologique de France, 1978, S7-XX(4): 471-489.
DOI URL |
[11] |
CAMPBELL S M, MOUCHA R, DERRY L A, et al. Effects of dynamic topography on the Cenozoic carbonate compensation depth[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(4): 1025-1034.
DOI URL |
[12] |
SCHROEDER K, CHIGGIATO J, JOSEY S A, et al. Rapid response to climate change in a marginal sea[J]. Scientific Reports, 2017, 7(1): 4065.
DOI PMID |
[13] | 李粹中. 南海深水碳酸盐沉积作用[J]. 沉积学报, 1989, 7(2): 35-43. |
[14] |
MIAO Q, THUNELL R C, ANDERSON D M. Glacial-Holocene carbonate dissolution and sea surface temperatures in the south China and Sulu seas[J]. Paleoceanography, 1994, 9(2): 269-290.
DOI URL |
[15] | 张江勇, 周洋, 陈芳, 等. 南海北部表层沉积物碳酸钙含量及主要钙质微体化石丰度分布[J]. 第四纪研究, 2015, 35(6): 1366-1382. |
[16] | 翦知湣, 田军. 南海海盆演变与深部海流[J]. 科技导报, 2020, 38(18): 52-56. |
[17] |
MÜLLER R D, CANNON J, WILLIAMS S, et al. PyBacktrack 1.0: a tool for reconstructing paleobathymetry on oceanic and continental crust[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(6): 1898-1909.
DOI URL |
[18] | 汪品先. 南海深部过程的探索[J]. 科技导报, 2020, 38(18): 6-20. |
[19] | 吴哲, 张丽丽, 朱伟林, 等. 南海北部白垩纪—渐新世早期沉积环境演变及构造控制[J]. 古地理学报, 2022, 24(1): 73-84. |
[20] | 朱作飞, 闫义, 赵奇. 古南海俯冲过程:婆罗洲晚白垩世—渐新世地层沉积记录[J]. 大地构造与成矿学, 2022, 46(3): 552-568. |
[21] |
MA R, LIU C, LI Q, et al. Calcareous nannofossil changes in response to the spreading of the South China Sea basin during Eocene-Oligocene[J]. Journal of Asian Earth Sciences, 2019, 184: 103963.
DOI URL |
[22] |
BARCKHAUSEN U, ENGELS M, FRANKE D, et al. Evolution of the South China Sea: revised ages for breakup and seafloor spreading[J]. Marine and Petroleum Geology, 2014, 58: 599-611.
DOI URL |
[23] | 王桂华, 田纪伟. 南海深层水的来龙去脉[J]. 科技导报, 2020, 38(18): 21-25. |
[24] | VAN ANDEL T H, HEATH G R, MOORE T C. Cenozoic history and paleoceanography of the central equatorial Pacific Ocean: a regional synthesis of Deep Sea Drilling Project data[J]. GSA Memoir, 1975, 143: 1-134. |
[25] | CONGRESS I O, SEARS M. Oceanography: invited lectures presented at the International Oceanographic Congress held in New York, 31 August-12 September 1959[M]. Washington: American Association for the Advancement of Science, 1961: 1-676. |
[26] | TAYLOR B, DENNIS H, 齐慧琴, 等. 南海盆地的构造演化[J]. 海洋地质译丛, 1981(1): 1-17. |
[27] |
WESSEL P, LUIS J F, UIEDA L, et al. The generic mapping tools version 6[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(11): 5556-5564.
DOI |
[28] |
FRIGOLA A, PRANGE M, SCHULZ M. Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0)[J]. Geoscientific Model Development, 2018, 11(4): 1607-1626.
DOI URL |
[29] |
MILLER K G, MOUNTAIN G S, BROWNING J V, et al. Cenozoic global sea level, sequences, and the New Jersey Transect: results from coastal plain and continental slope drilling[J]. Reviews of Geophysics, 1998, 36(4): 569-601.
DOI URL |
[30] |
LI Q, WANG P, ZHAO Q, et al. A 33 Ma lithostratigraphic record of tectonic and paleoceanographic evolution of the South China Sea[J]. Marine Geology, 2006, 230(3): 217-235.
DOI URL |
[31] | LI Q, JIAN Z, LI B. Oligocene-Miocene planktonic foraminifer biostratigraphy, Site 1148, northern South China Sea[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 2004, 184: 1-26. |
[32] |
WOODRUFF F, SAVIN S. Mid-Miocene isotope stratigraphy in the deep sea: high-resolution correlations, paleoclimatic cycles, and sediment preservation[J]. Paleoceanography, 1991, 6(6): 755-806.
DOI URL |
[33] | 陈荣华, 徐建, 孟翊, 等. 南海东北部表层沉积中微体化石与碳酸盐溶跃面和补偿深度[J]. 海洋学报, 2003(2): 48-56. |
[34] |
HARRIS K E, DEGRANDPRE M D, HALES B. Aragonite saturation state dynamics in a coastal upwelling zone[J]. Geophysical Research Letters, 2013, 40(11): 2720-2725.
DOI URL |
[35] |
ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
DOI PMID |
[36] | MILLER K G, BROWNING J V, SCHMELZ W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science Advances, 2020, 6(20): eaaz134. |
[37] | STEINTHORSDOTTIR M, COXALL H K, DE BOER A M, et al. The miocene: the future of the past[J]. Paleoceanography and Paleoclimatology, 2021, 36(4): e2020PA004037. |
[38] | STEINTHORSDOTTIR M, JARDINE P E, REMBER W C. Near-future pCO2 during the hot miocene climatic optimum[J]. Paleoceanography and Paleoclimatology, 2021, 36(1): e2020-PA003900. |
[39] | YOU Y, HUBER M, MÜLLER R D, et al. Simulation of the middle miocene climate optimum[JL]. Geophysical Research Letters, 2009, 36(4): L04702. |
[40] | SANGIORGI F, QUAIJTAAL W, DONDERS T H, et al. Middle miocene temperature and productivity evolution at a Northeast Atlantic Shelf Site (IODP U1318, Porcupine Basin): global and regional changes[J]. Paleoceanography and Paleoclimatology, 2021, 36(7): e2020PA004059. |
[41] |
CHEN W H, HUANG C Y, LIN Y J, et al. Depleted deep South China Sea δ13C paleoceanographic events in response to tectonic evolution in Taiwan-Luzon Strait since Middle Miocene[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 195-225.
DOI URL |
[42] | 张桂林. 18.5 Ma 以来南海海平面变化特征[D]. 成都: 成都理工大学, 2019. |
[43] | ROTH J M, DROXLER A W. The caribbean carbonate crash at the middle to late miocene transition: linkage to the establishment of the modern global ocean conveyor[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 2000, 165: 249-273. |
[44] | TIAN J, ZHAO Q, WANG P, et al. Astronomically modulated Neogene sediment records from the South China Sea[J]. Paleoceanography, 2008, 23(3): PA3210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||