Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (6): 282-303.DOI: 10.13745/j.esf.sf.2024.6.80
Previous Articles Next Articles
HU Han1,2(), ZHANG Lifei2,*(
), PENG Weigang3, LAN Chunyuan2, LIU Zhicheng2
Received:
2024-05-05
Revised:
2024-06-20
Online:
2024-11-25
Published:
2024-11-25
CLC Number:
HU Han, ZHANG Lifei, PENG Weigang, LAN Chunyuan, LIU Zhicheng. Formation of graphite in ultrahigh-pressure pelitic schists from the southwestern Tianshan: Implications for carbon migration and sequestration in subduction zones[J]. Earth Science Frontiers, 2024, 31(6): 282-303.
Fig.2 Representative hand specimen photographs and photomicrographs of the Type-1 graphite-bearing pelitic schists from the southwestern Tianshan, and the coesite and graphite inclusions in garnet. Adapted from [69].
Fig.3 Representative hand specimen photographs and photomicrographs of the Type-2 graphite-bearing pelitic schists from the southwestern Tianshan. Adapted from [70].
Fig.4 Petrographic characteristics and Raman spectra of fluid inclusions in Type-2 graphite-bearing pelitic schists from the southwestern Tianshan. Adapted from [70].
Fig.5 Morphologies of Type-1 and Type-2 graphite crystals and aggregates in graphite-bearing pelitic schists from the southwestern Tianshan (d—f adapted from [70])
Fig.6 Representative Raman spectra of the two types of graphite in the graphite-bearing pelitic schists and histograms of the corresponding R2 values for each graphite type. Adapted from [70].
类型 | 样品编号 | δ13CTOC/‰ | TOC质量分数/% | δ13CTIC/‰ | δ18O/‰ |
---|---|---|---|---|---|
含Type-1石墨 泥质片岩 | H1811D | -24.26 | 0.75 | <b.d.l. | <b.d.l. |
H1813B | -23.15 | 0.23 | -6.52 | 14.17 | |
H1811H | -23.58 | 1.07 | <b.d.l. | <b.d.l. | |
H1817 | -24.14 | 1.24 | -10.67 | 11.48 | |
含Type-2石墨 泥质片岩 | H1842 | -12.48 | 0.42 | -6.76 | 15.80 |
H1840-2 | -14.33 | 0.11 | -6.71 | 10.78 | |
H1840-1 | -14.78 | 0.06 | -6.63 | 10.65 | |
H1821-2 | -14.48 | 1.64 | -7.03 | 12.52 | |
H1845 | -13.48 | 0.65 | -5.00 | 18.78 | |
H1845(重复样) | -13.37 | 0.63 | <b.d.l. | <b.d.l. | |
H1713-6 | -14.55 | 0.49 | -7.03 | 12.45 | |
H1713-6(重复样) | -14.51 | 0.51 | <b.d.l. | <b.d.l. | |
含石榴石云母片岩 | H1814B | -23.26 | 0.12 | -11.31 | 14.19 |
Table 1 Stable isotope analysis of carbonates and graphite, and organic carbon content in pelitic schists from the southwestern Tianshan, China. Adapted from [69-70].
类型 | 样品编号 | δ13CTOC/‰ | TOC质量分数/% | δ13CTIC/‰ | δ18O/‰ |
---|---|---|---|---|---|
含Type-1石墨 泥质片岩 | H1811D | -24.26 | 0.75 | <b.d.l. | <b.d.l. |
H1813B | -23.15 | 0.23 | -6.52 | 14.17 | |
H1811H | -23.58 | 1.07 | <b.d.l. | <b.d.l. | |
H1817 | -24.14 | 1.24 | -10.67 | 11.48 | |
含Type-2石墨 泥质片岩 | H1842 | -12.48 | 0.42 | -6.76 | 15.80 |
H1840-2 | -14.33 | 0.11 | -6.71 | 10.78 | |
H1840-1 | -14.78 | 0.06 | -6.63 | 10.65 | |
H1821-2 | -14.48 | 1.64 | -7.03 | 12.52 | |
H1845 | -13.48 | 0.65 | -5.00 | 18.78 | |
H1845(重复样) | -13.37 | 0.63 | <b.d.l. | <b.d.l. | |
H1713-6 | -14.55 | 0.49 | -7.03 | 12.45 | |
H1713-6(重复样) | -14.51 | 0.51 | <b.d.l. | <b.d.l. | |
含石榴石云母片岩 | H1814B | -23.26 | 0.12 | -11.31 | 14.19 |
Fig.7 δ13CTOC values and total organic carbon (TOC) mass fractions for the two types of graphite, and δ13CTIC and δ18O values for carbonates in graphite-bearing pelitic schists. Adapted from [70].
Fig.9 A C—O—H ternary diagram showing the graphite saturation curve, and p—XO diagrams showing the atomic carbon content and oxygen fugacity of carbon-saturated COH fluids. Adapted from [70].
[1] | PLANK T, MANNING C E. Subducting carbon[J]. Nature, 2019, 574(7778): 343-352. |
[2] | KERRICK D M, CONNOLLY J A D. Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling[J]. Earth and Planetary Science Letters, 2001, 189(1/2): 19-29. |
[3] | KERRICK D M, CONNOLLY J A. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle[J]. Nature, 2001, 411(6835): 293-296. |
[4] | GORMAN P J, KERRICK D M, CONNOLLY J A D. Modeling open system metamorphic decarbonation of subducting slabs[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(4): n/a. |
[5] | COOK-KOLLARS J, BEBOUT G E, COLLINS N C, et al. Subduction zone metamorphic pathway for deep carbon cycling: I. Evidence from HP/UHP metasedimentary rocks, Italian Alps[J]. Chemical Geology, 2014, 386: 31-48. |
[6] | FREZZOTTI M L, SELVERSTONE J, SHARP Z D, et al. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps[J]. Nature Geoscience, 2011, 4: 703-706. |
[7] | AGUE J J, NICOLESCU S. Carbon dioxide released from subduction zones by fluid-mediated reactions[J]. Nature Geoscience, 2014, 7(5): 355-360. |
[8] | KELEMEN P B, MANNING C E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30): E3997-E4006. |
[9] | GALVEZ M E, BEYSSAC O, MARTINEZ I, et al. Graphite formation by carbonate reduction during subduction[J]. Nature Geoscience, 2013, 6(6): 473-477. |
[10] | LAZAR C, ZHANG C, MANNING C E, et al. Redox effects on calcite-portlandite-fluid equilibria at forearc conditions: carbon mobility, methanogenesis, and reduction melting of calcite[J]. American Mineralogist, 2014, 99(8/9): 1604-1615. |
[11] |
VITALE BROVARONE A, MARTINEZ I, ELMALEH A, et al. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps[J]. Nature Communications, 2017, 8: 14134.
DOI PMID |
[12] | TAO R B, ZHANG L F, TIAN M, et al. Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: constraints from petrological observation and experimental simulation[J]. Geochimica et Cosmochimica Acta, 2018, 239: 390-408. |
[13] | PENG W G, ZHANG L F, TUMIATI S, et al. Abiotic methane generation through reduction of serpentinite-hosted dolomite: implications for carbon mobility in subduction zones[J]. Geochimica et Cosmochimica Acta, 2021, 311: 119-140. |
[14] |
POLI S. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids[J]. Nature Geoscience, 2015, 8(8): 633-636.
DOI |
[15] | THOMSON A R, WALTER M J, KOHN S C, et al. Slab melting as a barrier to deep carbon subduction[J]. Nature, 2016, 529(7584): 76-79. |
[16] | STEWART E M, AGUE J J, FERRY J M, et al. Carbonation and decarbonation reactions: implications for planetary habitability[J]. American Mineralogist, 2019, 104(10): 1369-1380. |
[17] | PICCOLI F, VITALE BROVARONE A, BEYSSAC O, et al. Carbonation by fluid-rock interactions at high-pressure conditions: implications for carbon cycling in subduction zones[J]. Earth and Planetary Science Letters, 2016, 445: 146-159. |
[18] | SCAMBELLURI M, BEBOUT G E, BELMONTE D, et al. Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling[J]. Earth and Planetary Science Letters, 2016, 441: 155-166. |
[19] | PENG W G, ZHANG L F, MENZEL M D, et al. Multistage CO2 sequestration in the subduction zone: insights from exhumed carbonated serpentinites, SW Tianshan UHP belt, China[J]. Geochimica et Cosmochimica Acta, 2020, 270: 218-243. |
[20] | HU H, VITALE BROVARONE A, ZHANG L F, et al. Retrograde carbon sequestration in orogenic complexes: a case study from the Chinese southwestern Tianshan[J]. Lithos, 2021, 392: 106151. |
[21] | SVERJENSKY D A, STAGNO V, HUANG F. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle[J]. Nature Geoscience, 2014, 7(12): 909-913. |
[22] |
FREZZOTTI M L. Diamond growth from organic compounds in hydrous fluids deep within the Earth[J]. Nature Communications, 2019, 10: 4952.
DOI PMID |
[23] | DUNCAN M S, DASGUPTA R. Rise of Earth’s atmospheric oxygen controlled by efficient subduction of organic carbon[J]. Nature Geoscience, 2017, 10(5): 387-392. |
[24] | EGUCHI J, SEALES J, DASGUPTA R. Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon[J]. Nature Geoscience, 2020, 13(1): 71-76. |
[25] |
TUMIATI S, RECCHIA S, REMUSAT L, et al. Subducted organic matter buffered by marine carbonate rules the carbon isotopic signature of arc emissions[J]. Nature Communications, 2022, 13: 2909.
DOI PMID |
[26] | YANG J S, WU W W, LIAN D Y, et al. Peridotites, chromitites and diamonds in ophiolites[J]. Nature Reviews Earth & Environment, 2021, 2(3): 198-212. |
[27] | CARTIGNY P, PALOT M, THOMASSOT E, et al. Diamond formation: a stable isotope perspective[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 699-732. |
[28] | SCHULZE D J, HARTE B, PAGE F Z et al. Anticorrelation between low δ13C of eclogitic diamonds and high δ18O of their coesite and garnet inclusions requires a subduction origin[J]. Geology, 2013, 41(4): 455-458. |
[29] | GIULIANI A, DRYSDALE R N, WOODHEAD J D, et al. Perturbation of the deep-Earth carbon cycle in response to the Cambrian Explosion[J]. Science Advances, 2022, 8(9): eabj1325. |
[30] | BUSECK P R, BEYSSAC O. From organic matter to graphite: graphitization[J]. Elements, 2014, 10(6): 421-426. |
[31] | LUQUE F J, CRESPO-FEO E, BARRENECHEA J F, et al. Carbon isotopes of graphite: implications on fluid history[J]. Geoscience Frontiers, 2012, 3(2): 197-207. |
[32] | SALOTTI C A, HEINRICH E W, GIARDINI A A. Abiotic carbon and the formation of graphite deposits[J]. Economic Geology, 1971, 66(6): 929-932. |
[33] | BARRENECHEA J F, LUQUE F J, MILLWARD D, et al. Graphite morphologies from the Borrowdale deposit (NW England, UK): Raman and SIMS data[J]. Contributions to Mineralogy and Petrology, 2009, 158(1): 37-51. |
[34] | TOURET J L R, HUIZENGA J M, WILBERT KEHELPANNALA K V, et al. Vein-type graphite deposits in Sri Lanka: the ultimate fate of granulite fluids[J]. Chemical Geology, 2019, 508: 167-181. |
[35] | LUQUE F J, PASTERIS J D, WOPENKA B, et al. Natural fluid-deposited graphite: mineralogical characteristics and mechanisms of formation[J]. American Journal of Science, 1998, 298(6): 471-498. |
[36] | PASTERIS J D, CHOU I M. Fluid-deposited graphitic inclusions in quartz: comparison between KTB (German continental deep-drilling) core samples and artificially reequilibrated natural inclusions[J]. Geochimica et Cosmochimica Acta, 1998, 62(1): 109-122. |
[37] | LUQUE F J, ORTEGA L, BARRENECHEA J F, et al. Deposition of highly crystalline graphite from moderate-temperature fluids[J]. Geology, 2009, 37(3): 275-278. |
[38] | ZHU J J, ZHANG L F, TAO R B, et al. The formation of graphite-rich eclogite vein in S.W. Tianshan (China) and its implication for deep carbon cycling in subduction zone[J]. Chemical Geology, 2020, 533: 119430. |
[39] | SCHIDLOWSKI M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept[J]. Precambrian Research, 2001, 106(1/2): 117-134. |
[40] | SATISH-KUMAR M. Graphite-bearing CO2-fluid inclusions in granulites: insights on graphite precipitation and carbon isotope evolution[J]. Geochimica et Cosmochimica Acta, 2005, 69(15): 3841-3856. |
[41] | GAO J, LI M S, XIAO X C, et al. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China[J]. Tectonophysics, 1998, 287(1/2/3/4): 213-231. |
[42] | GAO, KLEMD, ZHANG, et al. p-T path of high-pressure/low-temperature rocks and tectonic implications in the western Tianshan Mountains, NW China[J]. Journal of Metamorphic Geology, 1999, 17(6): 621-636. |
[43] | ZHANG L F, AI Y L, LI X P, et al. Triassic collision of western Tianshan orogenic belt, China: evidence from SHRIMP U-Pb dating of zircon from HP/UHP eclogitic rocks[J]. Lithos, 2007, 96(1/2): 266-280. |
[44] | ZHANG L F, DU J X, LÜ Z, et al. A huge oceanic-type UHP metamorphic belt in southwestern Tianshan, China: peak metamorphic age and P-T path[J]. Chinese Science Bulletin, 2013, 58(35): 4378-4383. |
[45] | LÜ Z, BUCHER K, ZHANG L, et al. The Habutengsu metapelites and metagreywackes in western Tianshan, China: metamorphic evolution and tectonic implications[J]. Journal of Metamorphic Geology, 2012, 30(9): 907-926. |
[46] | LÜ Z, ZHANG L F. Coesite in the eclogite and schist of the Atantayi Valley, southwestern Tianshan, China[J]. Chinese Science Bulletin, 2012, 57(13): 1467-1472. |
[47] | YANG X, ZHANG L F, TIAN Z L, et al. Petrology and U-Pb zircon dating of coesite-bearing metapelite from the Kebuerte Valley, western Tianshan, China[J]. Journal of Asian Earth Sciences, 2013, 70: 295-307. |
[48] | ZHANG L F, WANG Y, ZHANG L J, et al. Ultrahigh pressure metamorphism and tectonic evolution of southwestern Tianshan Orogenic Belt, China: a comprehensive review[J]. Geological Society, London, Special Publications, 2019, 474(1): 133-152. |
[49] | ZHANG L F, ELLIS D J, JIANG W B. Ultrahigh-pressure metamorphism in western Tianshan, China: part I. Evidence from inclusions of coesite pseudomorphs in garnet and from quartz exsolution lamellae in omphacite in eclogites[J]. American Mineralogist, 2002, 87(7): 853-860. |
[50] | LI X P, ZHANG L, WEI C, et al. Petrology of rodingite derived from eclogite in western Tianshan, China[J]. Journal of Metamorphic Geology, 2007, 25(3): 363-382. |
[51] | LÜ Z, BUCHER K, ZHANG L F. Omphacite-bearing calcite marble and associated coesite-bearing pelitic schist from the meta-ophiolitic belt of Chinese western Tianshan[J]. Journal of Asian Earth Sciences, 2013, 76: 37-47. |
[52] | SHEN T T, HERMANN J, ZHANG L F, et al. UHP metamorphism documented in Ti-chondrodite- and Ti-clinohumite-bearing serpentinized ultramafic rocks from Chinese southwestern Tianshan[J]. Journal of Petrology, 2015, 56(7): 1425-1458. |
[53] | LÜ Z, ZHANG L F, YUE J, et al. Ultrahigh-pressure and high-P lawsonite eclogites in Muzhaerte, Chinese western Tianshan[J]. Journal of Metamorphic Geology, 2019, 37(5): 717-743. |
[54] | TAO R B, ZHANG L J, ZHANG L F. Redox evolution of western Tianshan subduction zone and its effect on deep carbon cycle[J]. Geoscience Frontiers, 2020, 11(3): 915-924. |
[55] | ZHANG L F, ELLIS D J, WILLIAMS S, et al. Ultra-high pressure metamorphism in western Tianshan, China: part II. Evidence from magnesite in eclogite[J]. American Mineralogist, 2002, 87(7): 861-866. |
[56] | LI J L, KLEMD R, GAO J, et al. Compositional zoning in dolomite from lawsonite-bearing eclogite (SW Tianshan, China): evidence for prograde metamorphism during subduction of oceanic crust[J]. American Mineralogist, 2014, 99(1): 206-217. |
[57] | LÜ Z, ZHANG L F, CHEN Z Y. Jadeite- and dolomite-bearing coesite eclogite from western Tianshan, NW China[J]. European Journal of Mineralogy, 2014, 26(2): 245-256. |
[58] | 彭卫刚, 张立飞, 申婷婷, 等. 俯冲带碳酸盐化对深部碳循环的启示: 以中国西南天山碳酸盐化云母片岩为例[J]. 岩石学报, 2018, 34(4): 1204-1218. |
[59] | LÜ Z, ZHANG L, DU J, et al. Petrology of coesite-bearing eclogite from Habutengsu Valley, western Tianshan, NW China and its tectonometamorphic implication[J]. Journal of Metamorphic Geology, 2009, 27(9): 773-787. |
[60] | TAO R B, ZHANG L F, FEI Y W, et al. The effect of Fe on the stability of dolomite at high pressure: experimental study and petrological observation in eclogite from southwestern Tianshan, China[J]. Geochimica et Cosmochimica Acta, 2014, 143: 253-267. |
[61] | LÜ Z, ZHANG L F, DU J X, et al. Petrology of HP metamorphic veins in coesite-bearing eclogite from western Tianshan, China: fluid processes and elemental mobility during exhumation in a cold subduction zone[J]. Lithos, 2012, 136: 168-186. |
[62] | BEYSSAC O, GOFFÉ B, CHOPIN C, et al. Raman spectra of carbonaceous material in metasediments: a new geothermometer[J]. Journal of Metamorphic Geology, 2002, 20(9): 859-871. |
[63] | BEYSSAC O, GOFFÉ B, PETITET J P, et al. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59(10): 2267-2276. |
[64] | WOJDYR M. Fityk: a general-purpose peak fitting program[J]. Journal of Applied Crystallography, 2010, 43(5): 1126-1128. |
[65] | DONG J, WEI C J. Multi-stage metamorphism of the South Altyn ultrahigh-pressure metamorphic belt, West China: insights into tectonic evolution from continental subduction to arc-backarc extension[J]. Journal of Petrology, 2021, 62(11): egab082. |
[66] | ZHANG C, DUAN Z H. GFluid: an Excel spreadsheet for investigating C-O-H fluid composition under high temperatures and pressures[J]. Computers and Geosciences, 2010, 36(4): 569-572. |
[67] | ZHANG C, DUAN Z H. A model for C-O-H fluid in the Earth’s mantle[J]. Geochimica et Cosmochimica Acta, 2009, 73(7): 2089-2102. |
[68] | WHITNEY D L, EVANS B W. Abbreviations for names of rock-forming minerals[J]. American Mineralogist, 2010, 95(1): 185-187. |
[69] | HU H, ZHANG L F, LAN C Y, et al. Petrological evidence for deep subduction of organic carbon to subarc depths[J]. Communications Earth & Environment, 2023, 4: 418. |
[70] | HU H, ZHANG L, BADER T, et al. Fluid-deposited graphite in metapelites from the southwestern Tianshan Orogen (China): implications for carbon cycling in subduction zones[J]. Lithos, 2024, 482: 107733. |
[71] | NEMANICH R J, SOLIN S A. First- and second-order Raman scattering from finite-size crystals of graphite[J]. Physical Review B, 1979, 20(2): 392-401. |
[72] | WOPENKA B, PASTERIS J D. Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy[J]. American Mineralogist, 1993, 78(5/6): 533-557. |
[73] | REICH S, THOMSEN C. Raman spectroscopy of graphite[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362(1824): 2271-2288. |
[74] | YANG X Q, MAO J W, JIANG Z S, et al. The Carboniferous Shikebutai iron deposit in western Tianshan, northwestern China: petrology, Fe-O-C-Si isotopes, and implications for iron pathways[J]. Economic Geology, 2019, 114(6): 1207-1222. |
[75] | LIAN D Y, YANG J S. Ophiolite-hosted diamond: a new window for probing carbon cycling in the deep mantle[J]. Engineering, 2019, 5(3): 406-420. |
[76] | DAY H W. A revised diamond-graphite transition curve[J]. American Mineralogist, 2012, 97(1): 52-62. |
[77] | ZHANG L J, CHU X, ZHANG L F, et al. The early exhumation history of the western Tianshan UHP metamorphic belt, China: new constraints from titanite U-Pb geochronology and thermobarometry[J]. Journal of Metamorphic Geology, 2018, 36(5): 631-651. |
[78] | TOMKINS H S, POWELL R, ELLIS D J. The pressure dependence of the zirconium-in-rutile thermometer[J]. Journal of Metamorphic Geology, 2007, 25(6): 703-713. |
[79] | KOHN M J. A refined zirconium-in-rutile thermometer[J]. American Mineralogist, 2020, 105(6): 963-971. |
[80] | HOEFS J. Stable isotope geochemistry[M]. Berlin, Heidelberg: Springer, 2004. |
[81] | DERA G, PUCÉAT E, PELLENARD P, et al. Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: evidence from neodymium and oxygen isotopes of fish teeth and belemnites[J]. Earth and Planetary Science Letters, 2009, 286(1/2): 198-207. |
[82] | VALLEY J W, O’NEIL J R. 13C 12C exchange between calcite and graphite: a possible thermometer in Grenville marbles[J]. Geochimica et Cosmochimica Acta, 1981, 45(3): 411-419. |
[83] | WADA H. Microscale isotopic zoning in calcite and graphite crystals in marble[J]. Nature, 1988, 331(6151): 61-63. |
[84] | RAY J S. Carbon isotopic variations in fluid-deposited graphite: evidence for multicomponent Rayleigh isotopic fractionation[J]. International Geology Review, 2009, 51(1): 45-57. |
[85] | ZHU J J, ZHANG L F, LÜ Z, et al. Elemental and isotopic (C, O, Sr, Nd) compositions of Late Paleozoic carbonated eclogite and marble from the SW Tianshan UHP belt, NW China: implications for deep carbon cycle[J]. Journal of Asian Earth Sciences, 2018, 153: 307-324. |
[86] | SHI G U, TROPPER P, CUI W Y, et al. Methane (CH4)-bearing fluid inclusions in the Myanmar jadeitite[J]. Geochemical Journal, 2005, 39(6): 503-516. |
[87] | DEINES P. The isotopic composition of reduced organic carbon[M]//Handbook of environmental isotope geochemistry, vol 1. New York, Amsterdam: Elsevier, 1980: 239-406. |
[88] | SHEPPARD S M F, SCHWARCZ H P. Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite[J]. Contributions to Mineralogy and Petrology, 1970, 26(3): 161-198. |
[89] | BOTTINGA Y. Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor[J]. Geochimica et Cosmochimica Acta, 1969, 33(1): 49-64. |
[90] | OHMOTO H, RYE R O. Isotopes of sulfur and carbon[M]//BARNES H L. Geochemistry of hydrothermal ore deposits. New York: Wiley, 1979: 509-567. |
[91] | RUMBLE D. Hydrothermal graphitic carbon[J]. Elements, 2014, 10(6): 427-433. |
[92] | LUQUE F J, RODAS M. Constraints on graphite crystallinity in some Spanish fluid-deposited occurrences from different geologic settings[J]. Mineralium Deposita, 1999, 34(2): 215-219. |
[93] | PASTERIS. Causes of the uniformly high crystallinity of graphite in large epigenetic deposits[J]. Journal of Metamorphic Geology, 1999, 17(6): 779-787. |
[94] | ETIOPE G, SHERWOOD LOLLAR B. Abiotic methane on Earth[J]. Reviews of Geophysics, 2013, 51(2): 276-299. |
[95] | PASSCHIER C W, TROUW R A. Microtectonics[M]. Berlin: Springer, 2005. |
[96] | GAO J, JOHN T, KLEMD R, et al. Mobilization of Ti-Nb-Ta during subduction: evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China[J]. Geochimica et Cosmochimica Acta, 2007, 71(20): 4974-4996. |
[97] | AOYA M, KOUKETSU Y, ENDO S, et al. Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks[J]. Journal of Metamorphic Geology, 2010, 28(9): 895-914. |
[98] | WEI C J, WANG W, CLARKE G L, et al. Metamorphism of high/ultrahigh-pressure pelitic-felsic schist in the South Tianshan Orogen, NW China: phase equilibria and P-T path[J]. Journal of Petrology, 2009, 50(10): 1973-1991. |
[99] | ZACK T, MORAES R, KRONZ A. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer[J]. Contributions to Mineralogy and Petrology, 2004, 148(4): 471-488. |
[100] | SOBOLEV N V, FURSENKO B A, GORYAINOV S V, et al. Fossilized high pressure from the Earth’s deep interior: the coesite-in-diamond barometer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(22): 11875-11879. |
[101] | CARTIGNY P. Stable isotopes and the origin of diamond[J]. Elements, 2005, 1(2): 79-84. |
[102] | TAPPERT R, STACHEL T, HARRIS J W, et al. Subducting oceanic crust: the source of deep diamonds[J]. Geology, 2005, 33(7): 565-568. |
[103] |
FARSANG S, LOUVEL M, ZHAO C S, et al. Deep carbon cycle constrained by carbonate solubility[J]. Nature Communications, 2021, 12: 4311.
DOI PMID |
[104] | LAN C Y, TAO R B, HUANG F, et al. High-pressure experimental and thermodynamic constraints on the solubility of carbonates in subduction zone fluids[J]. Earth and Planetary Science Letters, 2023, 603: 117989. |
[105] | SIEBER M J, HERMANN J, YAXLEY G M. An experimental investigation of C-O-H fluid-driven carbonation of serpentinites under forearc conditions[J]. Earth and Planetary Science Letters, 2018, 496: 178-188. |
[106] | SIEBER M J, YAXLEY G M, HERMANN J. COH-fluid induced metasomatism of peridotites in the forearc mantle[J]. Contributions to Mineralogy and Petrology, 2022, 177(4): 44. |
[1] | HUANG Siyu, PU Junbing, PAN Moucheng, LI Jianhong, ZHANG Tao. Effects of algae-derived organic matter source on sediment mineralization in the karst reservoir [J]. Earth Science Frontiers, 2024, 31(5): 387-396. |
[2] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[3] | WANG Ye, CHEN Yang, CHEN Jun. Petrogenic organic carbon weathering and its controlling factors—a review [J]. Earth Science Frontiers, 2024, 31(2): 402-409. |
[4] | ZHENG Cheng, SUN Chengjun, JIN Hong, HUANG Yuhuan, YUE Xin'an, YANG Guipeng, DING Haibing. Compositions, sources and formation processes of abyssal and hadal sediments in the northern Yap Trench [J]. Earth Science Frontiers, 2022, 29(5): 73-87. |
[5] | LI Dong, ZHAO Min, LIU Zaihua, CHEN Bo. Dual carbon isotope (δ13C-Δ14C) characteristics and carbon footprint in the spring-pond systems at the Puding Karst Water-Carbon Cycle Test Site [J]. Earth Science Frontiers, 2022, 29(3): 155-166. |
[6] | LI Haiming, LI Mengdi, XIAO Han, LIU Xuena. Hydrochemical characteristics of shallow groundwater and carbon sequestration in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 167-178. |
[7] | TIAN Fei, WANG Yong, YUAN Lupeng, TANG Wenkun. Surface sediments of an alkaline lake in the Otindag sandy land: Grain size and sedimentary organic matter variations and their environmental significance [J]. Earth Science Frontiers, 2022, 29(2): 317-326. |
[8] | CAO Daiyong, LIU Zhifei, WANG Anmin, WANG Lu, DING Zhengyun, LI Yang. Control of coal metamorphism by tectonic physicochemical conditions [J]. Earth Science Frontiers, 2022, 29(1): 439-448. |
[9] | LI Kuo,PENG Min,ZHAO Chuandong,YANG Ke,ZHOU Yalong,LIU Fei,TANG Shiqi,YANG Fan,HAN Wei,YANG Zheng,CHENG Xiaomeng,XIA Xueqi,GUAN Tao,LUO Jianlan,CHENG Hangxin. Vicennial implementation of geochemical survey of land quality in China [J]. Earth Science Frontiers, 2019, 26(6): 128-158. |
[10] | YANG Yuan-Yuan, MA Yin-Sheng, LIU Cheng-Lin, CHENG Hai-Yan. Influence of weathering on abundance of source rocks:A case study of Keluke Formation of Upper Carboniferous in the Shihuigou area, North Margin of Qaidam Basin. [J]. Earth Science Frontiers, 2016, 23(5): 113-118. |
[11] | DING Hu, LIU Cong-Jiang, LANG Bin-Chao, LIU Wen-Jing. Variations of dissolved carbon and δ13CDIC of surface water during rainfall events in a typical karst peak clusterdepression catchment, SW China. [J]. Earth Science Frontiers, 2011, 18(6): 182-189. |
[12] |
MAO Chang-Beng, JI Jun-Feng, LUO Yun, YUAN Xu-Yin, YANG Zhong-Fang, SONG Ken-Xian, CHEN Jun.
Seasonal variation in the flux and isotopic composition of particulate organic carbon along the mainstream of the Changjiang River. [J]. Earth Science Frontiers, 2011, 18(6): 161-168. |
[13] | HOU Jing-Xie, YANG Zhong-Fang, TU Chao, GU Zhao-Tan, JIA Hua-Ji, CHEN Cheng-De. Origin of particulate organic carbon in the Wuyuer River: Carbon isotopic evidences. [J]. Earth Science Frontiers, 2011, 18(6): 150-160. |
[14] | LIAO Yan, YANG Zhong-Fang, JIA Hua-Ji, JIANG Hong-Chen. Research on temperature sensitivity of soil respiration and different active organic carbon fractions of QinghaiTibet Plateau permafrost. [J]. Earth Science Frontiers, 2011, 18(6): 85-93. |
[15] | XIANG Wu, Jiasong Fang, MO Xiang, HE Ling, SUN Xin-Ting, BI Xiang-Yang. Driving mechanisms for the DOC increases in surface waters released from Northern Peatlands under global change. [J]. Earth Science Frontiers, 2011, 18(6): 72-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||