Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 155-166.DOI: 10.13745/j.esf.sf.2022.1.35
Previous Articles Next Articles
LI Dong1,2,3(), ZHAO Min1,2,*(), LIU Zaihua1,2,*(), CHEN Bo4
Received:
2021-12-05
Revised:
2022-01-12
Online:
2022-05-25
Published:
2022-04-28
Contact:
ZHAO Min,LIU Zaihua
CLC Number:
LI Dong, ZHAO Min, LIU Zaihua, CHEN Bo. Dual carbon isotope (δ13C-Δ14C) characteristics and carbon footprint in the spring-pond systems at the Puding Karst Water-Carbon Cycle Test Site[J]. Earth Science Frontiers, 2022, 29(3): 155-166.
Fig.1 Geographic location and layout of the Shawan Karst Water-Carbon Cycle Test Site, Puding, Guizhou. Basemap from China online national standard map service.
Fig.2 Comparisons of Δ14C-δ13C characteristics between spring and spring-fed pond systems under different land uses. (a)δ13CDIC comparison; (b) δ13CPOC comparison; (c) Δ14CDIC comparison;(d) Δ14CPOC comparison
监测池 | 水生植物 | δ13C植物/‰ | Δ14 | Δ14 | Δ14C植物/‰ | 植物年龄/a BP |
---|---|---|---|---|---|---|
P2 | 轮藻(Hydrilla verticillata) | -16.47 | -358±2 | -297±4 | -293±3 | 2 897 |
水绵(Spirogyra) | -8.14 | -298±2 | 2 963 | |||
P3 | 轮藻(Hydrilla verticillata) | -10.58 | -359±3 | -316±6 | -317±3 | 3 261 |
金鱼藻(Hornwort) | -13.44 | -314±3 | 3 220 | |||
P4 | 轮藻(Hydrilla verticillata) | -16.36 | -124±1 | -59±3 | -120±1 | 935 |
水绵(Spirogyra) | -6.72 | -118±1 | 903 | |||
P5 | 轮藻(Hydrilla verticillata) | -22.93 | -291±2 | -266±2 | -264±2 | 2 544 |
金鱼藻(Hornwort) | -16.34 | -267±2 | 2 570 |
Table 3 Isotopic composition of aquatic plants in four experimental ponds
监测池 | 水生植物 | δ13C植物/‰ | Δ14 | Δ14 | Δ14C植物/‰ | 植物年龄/a BP |
---|---|---|---|---|---|---|
P2 | 轮藻(Hydrilla verticillata) | -16.47 | -358±2 | -297±4 | -293±3 | 2 897 |
水绵(Spirogyra) | -8.14 | -298±2 | 2 963 | |||
P3 | 轮藻(Hydrilla verticillata) | -10.58 | -359±3 | -316±6 | -317±3 | 3 261 |
金鱼藻(Hornwort) | -13.44 | -314±3 | 3 220 | |||
P4 | 轮藻(Hydrilla verticillata) | -16.36 | -124±1 | -59±3 | -120±1 | 935 |
水绵(Spirogyra) | -6.72 | -118±1 | 903 | |||
P5 | 轮藻(Hydrilla verticillata) | -22.93 | -291±2 | -266±2 | -264±2 | 2 544 |
金鱼藻(Hornwort) | -16.34 | -267±2 | 2 570 |
[1] |
BROECKER W S, TAKAHASHI T, SIMPSON H J, et al. Fate of fossil fuel carbon dioxide and the global carbon budget[J]. Science, 1979, 206(4417): 409-418.
DOI URL |
[2] |
SUNDQUIST E T. The global carbon dioxide budget[J]. Science, 1993, 259(5097): 934-941.
DOI URL |
[3] |
JOOS F. Imbalance in the budget[J]. Nature, 1994, 370(6486): 181-182.
DOI URL |
[4] |
SCHINDLER D W. Carbon cycling: the mysterious missing sink[J]. Nature, 1999, 398(6723): 105-107.
DOI URL |
[5] |
LIU Z H, DREYBRODT W. Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land[J]. Science Bulletin, 2015, 60(2): 182-191.
DOI URL |
[6] |
LIU Z H, DREYBRODT W, WANG H J. A new direction in effective accounting for the atmospheric CO2 budget: considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3/4): 162-172.
DOI URL |
[7] | 袁道先. “岩溶作用与碳循环”研究进展[J]. 地球科学进展, 1999, 14(5): 425-432. |
[8] |
LIU Z, ZHAO J. Contribution of carbonate rock weathering to the atmospheric CO2 sink[J]. Environmental Geology, 2000, 39(9): 1053-1058.
DOI URL |
[9] |
LIU Y, LIU Z H, ZHANG J L, et al. Experimental study on the utilization of DIC by Oocystis solitaria Wittr and its influence on the precipitation of calcium carbonate in karst and non-karst waters[J]. Carbonates and Evaporites, 2010, 25(1): 21-26.
DOI URL |
[10] |
LIU Z H, MACPHERSON G L, GROVES C, et al. Large and active CO2uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182: 42-49.
DOI URL |
[11] |
ZHAO M, ZENG C, LIU Z H, et al. Effect of different land use/land cover on karst hydrogeochemistry: a paired catchment study of Chenqi and Dengzhanhe, Puding, Guizhou, SW China[J]. Journal of Hydrology, 2010, 388(1/2): 121-130.
DOI URL |
[12] |
ZHAO M, LIU Z H, LI H C, et al. Response of dissolved inorganic carbon (DIC) and δ13CDIC to changes in climate and land cover in SW China karst catchments[J]. Geochimica et Cosmochimica Acta, 2015, 165: 123-136.
DOI URL |
[13] |
YANG R, LIU Z H, ZENG C, et al. Response of epikarst hydrochemical changes to soil CO2 and weather conditions at Chenqi, Puding, SW China[J]. Journal of Hydrology, 2012, 468/469: 151-158.
DOI URL |
[14] |
YANG R, CHEN B, LIU H, et al. Carbon sequestration and decreased CO2emission caused by terrestrial aquatic photosynthesis: insights from diel hydrochemical variations in an epikarst spring and two spring-fed ponds in different seasons[J]. Applied Geochemistry, 2015, 63: 248-260.
DOI URL |
[15] |
ZENG S B, LIU H, LIU Z H, et al. Seasonal and diurnal variations in DIC, $NO_{3}^{-}$ and TOC concentrations in spring-pond ecosystems under different land-uses at the Shawan Karst Test Site, SW China: carbon limitation of aquatic photosynthesis[J]. Journal of Hydrology, 2019, 574: 811-821.
DOI URL |
[16] |
CHEN B, YANG R, LIU Z H, et al. Coupled control of land uses and aquatic biological processes on the diurnal hydrochemical variations in the five ponds at the Shawan Karst Test Site, China: implications for the carbonate weathering-related carbon sink[J]. Chemical Geology, 2017, 456: 58-71.
DOI URL |
[17] | BUESSELER K O, BALL L, ANDREWS J, et al. Upper Ocean export of particulate organic carbon and biogenic silica in the Southern Ocean along 170° W[J]. Deep Sea Research Part Ⅱ-Topical Studies in Oceanography, 2001, 48(19/20): 4275-4297. |
[18] |
RAYMOND P A, BAUER J E. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis[J]. Organic Geochemistry, 2001, 32(4): 469-485.
DOI URL |
[19] |
RAYMOND P A, BAUER J E, CARACO N F, et al. Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers[J]. Marine Chemistry, 2004, 92(1/2/3/4): 353-366.
DOI URL |
[20] |
BUTMAN D E, WILSON H F, BARNES R T, et al. Increased mobilization of aged carbon to rivers by human disturbance[J]. Nature Geoscience, 2015, 8(2): 112-116.
DOI URL |
[21] |
MARWICK T R, TAMOOH F, TEODORU C R, et al. The age of river-transported carbon: a global perspective[J]. Global Biogeochemical Cycles, 2015, 29(2): 122-137.
DOI URL |
[22] |
CHEN J G, YANG H Q, ZENG Y, et al. Combined use of radiocarbon and stable carbon isotope to constrain the sources and cycling of particulate organic carbon in a large freshwater lake, China[J]. Science of the Total Environment, 2018, 625: 27-38.
DOI URL |
[23] |
WEI X G, YI W X, SHEN C D, et al. 14C as a tool for evaluating riverine POC sources and erosion of the Zhujiang (Pearl River) drainage basin, South China[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2010, 268(7/8): 1094-1097.
DOI URL |
[24] |
LIU Z H, ZHAO M, SUN H L, et al. “Old” carbon entering the South China Sea from the carbonate-rich Pearl River Basin: coupled action of carbonate weathering and aquatic photosynthesis[J]. Applied Geochemistry, 2017, 78: 96-104.
DOI URL |
[25] |
CHEN S, ZHONG J, LI S L, et al. Multiple controls on carbon dynamics in mixed karst and non-karst mountainous rivers, Southwest China, revealed by carbon isotopes (δ13C and Δ14C)[J]. Science of the Total Environment, 2021, 791: 148347.
DOI URL |
[26] |
ATEKWANA E A, KRISHNAMURTHY R V. Seasonal variations of dissolved inorganic carbon and δ13C of surface waters: application of a modified gas evolution technique[J]. Journal of Hydrology, 1998, 205(3/4): 265-278.
DOI URL |
[27] |
STUIVER M, REIMER P J. Extended 14C data-base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1): 215-230.
DOI URL |
[28] | PARKHURST D L, APPELO C A J. User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[R]. Denver: US Geological Survey Earth Science Information Center, 1999. |
[29] |
ZENG Q R, LIU Z H, CHEN B, et al. Carbonate weathering-related carbon sink fluxes under different land uses: a case study from the Shawan Simulation Test Site, Puding, Southwest China[J]. Chemical Geology, 2017, 474: 58-71.
DOI URL |
[30] | DREYBRODT W. Processes in karst system[M]. Heidelberg: Springer, 1988. |
[31] |
BAO Q, LIU Z H, ZHAO M, et al. Primary productivity and seasonal dynamics of planktonic algae species composition in karst surface waters under different land uses[J]. Journal of Hydrology, 2020, 591: 125295.
DOI URL |
[32] |
DEINES P, LANGMUIR D, HARMON R S. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters[J]. Geochimica et Cosmochimica Acta, 1974, 38(7): 1147-1164.
DOI URL |
[33] |
SPIRO B, PENTECOST A. One day in the life of a stream: a diurnal inorganic carbon mass balance for a travertine-depositing stream (waterfall beck, Yorkshire)[J]. Geomicrobiology Journal, 1991, 9(1): 1-11.
DOI URL |
[34] | FALKWSK P G, RAVEN J A. Aquatic photosynthesis[M]. Malden: Blackwell Science, 1997. |
[35] |
HERCZEG A L, FAIRBANKS R G. Anomalous carbon isotope fractionation between atmospheric CO2 and dissolved inorganic carbon induced by intense photosynthesis[J]. Geochimica et Cosmochimica Acta, 1987, 51(4): 895-899.
DOI URL |
[36] | KOMADA T, DRUFFEL E R M, TRUMBORE S E. Oceanic export of relict carbon by small mountainous rivers[J]. Geophysical Research Letters, 2004, 31(7) : L07504. |
[37] | GUO L D, MACDONALD R W. Source and transport of terrigenous organic matter in the upper Yukon River: evidence from isotope (δ13C, Δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases[J]. Global Biogeochemical Cycles, 2006, 20(2) : GB2011. |
[38] |
CLARK K E, HILTON R G, WEST A J, et al. New views on “old” carbon in the Amazon River: insight from the source of organic carbon eroded from the Peruvian Andes[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(5): 1644-1659.
DOI URL |
[39] |
GALY V, PEUCKER-EHRENBRINK B, EGLINTON T. Global carbon export from the terrestrial biosphere controlled by erosion[J]. Nature, 2015, 521(7551): 204-207.
DOI URL |
[40] | 林清, 王绍令. 沉水植物稳定碳同位素组成及影响因素分析[J]. 生态学报, 2001, 21(5): 806-809. |
[41] |
VAN T K, HALLER W T, BOWES G. Comparison of the photosynthetic characteristics of three submersed aquatic plants[J]. Plant Physiology, 1976, 58(6): 761-768.
DOI URL |
[42] | DEEVEY E S Jr, GROSS M S, HUTCHINSON G E, et al. The natural 14C contents of materials from hard-water lakes[J]. Proceedings of the National Academy of Sciences of the United States of America, 1954, 40(5): 285-288. |
[43] |
NIELSEN E S. Diffusion of dissolved substances through thalli and leaves of aquatic plants[J]. Nature, 1947, 160(4063): 376-377.
DOI URL |
[44] |
OLSSON I U, KAUP E. The varying radiocarbon activity of some recent submerged Estonian plants grown in the early 1990s[J]. Radiocarbon, 2001, 43(2B): 809-820.
DOI URL |
[45] |
FLANAGAN K M, MCCAULEY E, WRONA F. Freshwater food webs control carbon dioxide saturation through sedimentation[J]. Global Change Biology, 2006, 12(4): 644-651.
DOI URL |
[1] | HOU Jing-Xie, YANG Zhong-Fang, TU Chao, GU Zhao-Tan, JIA Hua-Ji, CHEN Cheng-De. Origin of particulate organic carbon in the Wuyuer River: Carbon isotopic evidences. [J]. Earth Science Frontiers, 2011, 18(6): 150-160. |
[2] | DING Hu, LIU Cong-Jiang, LANG Bin-Chao, LIU Wen-Jing. Variations of dissolved carbon and δ13CDIC of surface water during rainfall events in a typical karst peak clusterdepression catchment, SW China. [J]. Earth Science Frontiers, 2011, 18(6): 182-189. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||