Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (5): 387-396.DOI: 10.13745/j.esf.sf.2024.2.7
Previous Articles Next Articles
HUANG Siyu1,2(), PU Junbing3,*(), PAN Moucheng4, LI Jianhong4, ZHANG Tao3
Received:
2023-11-02
Revised:
2024-01-29
Online:
2024-09-25
Published:
2024-10-11
CLC Number:
HUANG Siyu, PU Junbing, PAN Moucheng, LI Jianhong, ZHANG Tao. Effects of algae-derived organic matter source on sediment mineralization in the karst reservoir[J]. Earth Science Frontiers, 2024, 31(5): 387-396.
Fig.3 Mineralization rate of organic carbon in the surface sediment of Dalongdong Reservoir (Red area represents the pre-culture period; Yellow area represents the early culture period; Blue area represents the middle culture period; Green area represents the late culture period)
样品号 | 拟合回归方程 | R2 |
---|---|---|
B1 | y=24.402-4.831ln x | 0.69 |
B2 | y=17.3-2.977ln x | 0.68 |
B3 | y=7.8066-1.014ln x | 0.36 |
B6 | y=36.964-7.746ln x | 0.65 |
B7 | y=44.216-9.8ln x | 0.75 |
B8 | y=38.278-8.4ln x | 0.76 |
B9 | y=27.778-5.843ln x | 0.76 |
Table 1 Logarithmic relationship between mineralization of organic carbon in the surface sediment and time
样品号 | 拟合回归方程 | R2 |
---|---|---|
B1 | y=24.402-4.831ln x | 0.69 |
B2 | y=17.3-2.977ln x | 0.68 |
B3 | y=7.8066-1.014ln x | 0.36 |
B6 | y=36.964-7.746ln x | 0.65 |
B7 | y=44.216-9.8ln x | 0.75 |
B8 | y=38.278-8.4ln x | 0.76 |
B9 | y=27.778-5.843ln x | 0.76 |
样品号 | Ct/(mg·kg-1) | C0/(mg·kg-1) | k/d-1 | T1/2/d | Ct/C0 | C0/TOC含量 | R2 |
---|---|---|---|---|---|---|---|
B1 | 560.37 | 753.88 | 0.015 1 | 45.93 | 0.74 | 0.051 | 0.991 |
B2 | 515.62 | 1 107.52 | 0.007 5 | 92.79 | 0.47 | 0.094 | 0.995 |
B3 | 333.21 | 1 356.52 | 0.003 4 | 204.47 | 0.25 | 0.134 | 0.997 |
B6 | 713.89 | 888.21 | 0.017 3 | 40.04 | 0.80 | 0.050 | 0.987 |
B7 | 712.88 | 794.18 | 0.024 8 | 27.94 | 0.90 | 0.042 | 0.990 |
B8 | 626.51 | 720.27 | 0.022 6 | 30.64 | 0.87 | 0.039 | 0.991 |
B9 | 530.73 | 596.87 | 0.021 4 | 32.45 | 0.89 | 0.032 | 0.985 |
Table 2 Cumulative mineralization of organic carbon and kinetic equation parameters in surface sediments after 84 days of culturing
样品号 | Ct/(mg·kg-1) | C0/(mg·kg-1) | k/d-1 | T1/2/d | Ct/C0 | C0/TOC含量 | R2 |
---|---|---|---|---|---|---|---|
B1 | 560.37 | 753.88 | 0.015 1 | 45.93 | 0.74 | 0.051 | 0.991 |
B2 | 515.62 | 1 107.52 | 0.007 5 | 92.79 | 0.47 | 0.094 | 0.995 |
B3 | 333.21 | 1 356.52 | 0.003 4 | 204.47 | 0.25 | 0.134 | 0.997 |
B6 | 713.89 | 888.21 | 0.017 3 | 40.04 | 0.80 | 0.050 | 0.987 |
B7 | 712.88 | 794.18 | 0.024 8 | 27.94 | 0.90 | 0.042 | 0.990 |
B8 | 626.51 | 720.27 | 0.022 6 | 30.64 | 0.87 | 0.039 | 0.991 |
B9 | 530.73 | 596.87 | 0.021 4 | 32.45 | 0.89 | 0.032 | 0.985 |
[1] | MAAVARA T, LAUERWALD R, REGNIER P, et al. Global perturbation of organic carbon cycling by river damming[J]. Nature Communications, 2017, 8(1): 15347. |
[2] |
MENDONÇA R, MÜLLER R A, CLOW D, et al. Organic carbon burial in global lakes and reservoirs[J]. Nature Communications, 2017, 8(1): 1694.
DOI PMID |
[3] | MULHOLLAND P J, ELWOOLD J W. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle[J]. Tellus, 1982, 34(5): 490-499. |
[4] | STALLARD R F. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial[J]. Global Biogeochemical Cycles, 1998, 12(2): 231-257. |
[5] | DEAN W E, GORHAM E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands[J]. Geology, 1998, 26(6): 535. |
[6] | FEARNSIDE P M, PUEYO S. Greenhouse-gas emissions from tropical dams[J]. Nature Climate Change, 2012, 2(6): 382-384. |
[7] | FEARNSIDE P M. Hydroelectric dams in the Brazilian Amazon as sources of ‘greenhouse’ gases[J]. Environmental Conservation, 1995, 22(1): 7-19. |
[8] | BARROS N, COLE J J, TRANVIK L J, et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude[J]. Nature Geoscience, 2011, 4: 593-596. |
[9] | MULLER M. Hydropower dams can help mitigate the global warming impact of wetlands[J]. Nature, 2019, 566(7744): 315-317. |
[10] | MATTHEWS J H. Dam development: value both wetlands and hydropower[J]. Nature, 2019, 568(7750): 33. |
[11] | BAO Q, LIU Z H, ZHAO M, et al. Response of OC, TN, and TP deposition mediated by aquatic photosynthetic community structures in shallow karst surface waters under different land uses[J]. Environmental Research, 2023, 223: 115488. |
[12] | 王培, 曹建华, 李亮, 等. 不同来源小球藻对岩溶水Ca2+、$\mathrm{HCO}_{3}^{-}$利用的初步研究[J]. 水生生物学报, 2013, 37(4): 626-631. |
[13] | RAN L S, BUTMAN D E, BATTIN T J, et al. Substantial decrease in CO2 emissions from Chinese inland waters due to global change[J]. Nature Communications, 2021, 12(1): 1730. |
[14] | BERGGREN M, DEL GIORGIO P A. Distinct patterns of microbial metabolism associated to riverine dissolved organic carbon of different source and quality[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(6): 989-999. |
[15] | AMON R M W, BENNER R. Bacterial utilization of different size classes of dissolved organic matter[J]. Limnology and Oceanography, 1996, 41(1): 41-51. |
[16] | MUSCARELLA M E, BOOT C M, BROECKLING C D, et al. Resource heterogeneity structures aquatic bacterial communities[J]. The ISME Journal, 2019, 13(9): 2183-2195. |
[17] | FORTINO K, HOAK J, WATERS M N. Evidence for positive priming of leaf litter decomposition by contact with eutrophic pond sediments[J]. Hydrobiologia, 2020, 847(1): 137-149. |
[18] | STEGEN J C, FREDRICKSON J K, WILKINS M J, et al. Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover[J]. Nature Communications, 2016, 7(1): 11237. |
[19] | 李典鹏, 姚美思, 孙涛, 等. 水位变化对干涸湖底沉积物有机碳矿化的影响[J]. 湖泊科学, 2019, 31(3): 881-890. |
[20] | 陈默, 张雅庆, 李家轩, 等. 温度对湖泊沉积物中沉水植物残体厌氧分解的影响[J]. 环境科学学报, 2020, 40(8): 3013-3019. |
[21] | 沈悦, 杜先, 张璐, 等. 藻源性有机质对高原深水湖泊沉积物矿化作用的激发效应[J]. 湖泊科学, 2023, 35(1): 103-119. |
[22] | XIA X H, WU Q, ZHU B T, et al. Analyzing the contribution of climate change to long-term variations in sediment nitrogen sources for reservoirs/lakes[J]. Science of the Total Environment, 2015, 523: 64-73. |
[23] | MURI G, WAKEHAM S G. Organic matter and lipids in sediments of Lake Bled (NW Slovenia): source and effect of anoxic and oxic depositional regimes[J]. Organic Geochemistry, 2006, 37(12): 1664-1679. |
[24] | MEYERS P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3/4): 289-302. |
[25] | DUNN R J K, WELSH D T, TEASDALE P R, et al. Investigating the distribution and sources of organic matter in surface sediment of Coombabah Lake (Australia) using elemental, isotopic and fatty acid biomarkers[J]. Continental Shelf Research, 2008, 28(18): 2535-2549. |
[26] | BERTRAND S, STERKEN M, VARGAS-RAMIREZ L, et al. Bulk organic geochemistry of sediments from Puyehue Lake and its watershed (Chile, 40°S): implications for paleoenvironmental reconstructions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 294(1/2): 56-71. |
[27] | HUANG S Y, PU J B, CAO J H, et al. Origin and effect factors of sedimentary organic carbon in a karst groundwater-fed reservoir, South China[J]. Environmental Science and Pollution Research, 2018, 25(9): 8497-511. |
[28] | 王雯雯, 王书航, 姜霞, 等. 多方法研究呼伦湖表层沉积物有机质的赋存特征及来源[J]. 环境科学研究, 2021, 34(2): 305-318. |
[29] | KALFF J. 湖沼学: 内陆水生态系统[M]. 古滨河, 刘正文, 李宽意, 等译. 北京: 高等教育出版社, 2011. |
[30] | 李飞鹏, 陈蒙蒙, 贾玉宝, 等. 气象因素对封闭浅水湖泊浮游藻类生长和分布影响[J]. 水生态学杂志, 2019, 40(5): 55-62. |
[31] | WANG H, ZHANG Z Z, LIANG D F, et al. Separation of wind’s influence on harmful cyanobacterial blooms[J]. Water Research, 2016, 98: 280-292. |
[32] | 陈敬安, 万国江, 陈振楼, 等. 洱海近代气候变化的化学记录[J]. 地理科学, 2000, 20(1): 83-87. |
[33] | WANG W F, LI S L, ZHONG J, et al. Carbonate mineral dissolution and photosynthesis-induced precipitation regulate inorganic carbon cycling along the karst river-reservoir continuum, SW China[J]. Journal of Hydrology, 2022, 615: 128621. |
[34] | 殷志强, 秦小光, 吴金水, 等. 中国北方部分地区黄土、沙漠沙、湖泊、河流细粒沉积物粒度多组分分布特征研究[J]. 沉积学报, 2009, 27(2): 343-351. |
[35] | YANG H, MO B Q, ZHOU M X, et al. Effects of plum plantation ages on soil organic carbon mineralization in the karst rocky desertification ecosystem of southwest China[J]. Forests, 2019, 10(12): 1107. |
[36] | MUNDA S, BHADURI D, MOHANTY S, et al. Dynamics of soil organic carbon mineralization and C fractions in paddy soil on application of rice husk biochar[J]. Biomass and Bioenergy, 2018, 115: 1-9. |
[37] | 金相灿, 崔哲, 王圣瑞. 连续淹水培养条件下沉积物和土壤的氮素矿化过程[J]. 土壤通报, 2006, 37(5): 909-915. |
[38] |
BENNER R, AMON R M W. The size-reactivity continuum of major bioelements in the ocean[J]. Annual Review of Marine Science, 2015, 7: 185-205.
DOI PMID |
[39] | HOPKINSON C S, BUFFAM I, HOBBIE J, et al. Terrestrial inputs of organic matter to coastal ecosystems: an intercomparison of chemical characteristics and bioavailability[J]. Biogeochemistry, 1998, 43(3): 211-234. |
[40] | XIA F, LIU Z H, ZHAO M, et al. High stability of autochthonous dissolved organic matter in karst aquatic ecosystems: evidence from fluorescence[J]. Water Research, 2022, 220: 118723. |
[41] | 韩翠红, 孙海龙, 魏榆, 等. 喀斯特筑坝河流中生物碳泵效应的碳施肥及对水化学时空变化的影响: 以贵州平寨水库及红枫湖为例[J]. 湖泊科学, 2020, 32(6): 1683-1694. |
[42] | HE H B, WANG Y Y T, LIU Z H, et al. Lake metabolic processes and their effects on the carbonate weathering CO2 sink: insights from diel variations in the hydrochemistry of a typical karst lake in SW China[J]. Water Research, 2022, 222: 118907. |
[43] | PU J B, LI J H, ZHANG T, et al. Varying thermal structure controls the dynamics of CO2 emissions from a subtropical reservoir, South China[J]. Water Research, 2020, 178: 115831. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||