Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (1): 377-402.DOI: 10.13745/j.esf.sf.2020.10.31
Previous Articles Next Articles
HUANG Ranxiao1,2(), WANG Guosheng1, YUAN Guoli1,*(
), QIU Kunfeng1, Hounkpe Jechonias BIDOSSESSI3
Received:
2020-06-19
Revised:
2020-09-15
Online:
2022-01-25
Published:
2022-02-22
Contact:
YUAN Guoli
CLC Number:
HUANG Ranxiao, WANG Guosheng, YUAN Guoli, QIU Kunfeng, Hounkpe Jechonias BIDOSSESSI. Assimilation-fractional crystallization (AFC) of pegmatitic magma and its implications for uranium mineralization: A case study of the Husab uranium deposit, Namibia[J]. Earth Science Frontiers, 2022, 29(1): 377-402.
Fig.1 (a) Tectonic sketch map of the inland branch of the Damara Orogen in Namibia (basemap from [40]) and (b) sketch map of part of the central zone of the Damara Orogen showing the distribution of domes and locations of significant uranium deposits (basemap from [24])
群 | 亚群 | 组 | 厚度 | 岩性 | 年龄 |
---|---|---|---|---|---|
斯瓦科普群 | 霍玛斯 | 卡塞布组 | >3 000 m | 黑云母长英质片岩、黑云母-石榴石-堇青石片岩、角闪石片岩、石英岩、大理岩 | |
卡里比组 | 1 000 m | 大理岩、白云岩、黑云母片岩、石英片岩、页岩 | |||
楚斯组 | 700 m | 冰碛岩、含砾片岩、少量石英岩、BIF 条带、片岩 | 约710 Ma | ||
平行不整合 | |||||
奥加布 | 罗辛组 | 200 m | 大理岩、石英岩、砾岩、变质杂砂岩、黑云母片岩、黑云母-堇青石片岩和片麻岩、黑云母-角闪石片岩 | ||
平行不整合 | |||||
诺斯比群 | 可汗组 | 1 100 m | 含辉石的斜长角闪岩、角闪石-辉石片麻岩、黑云母-角闪石片岩、石英岩 | ||
埃图西斯组 | 3 000 m | 长石砂岩、砾岩、长石片麻岩; 少量黑云母片岩、大理岩、角闪岩、变质流纹岩 | |||
角度不整合 | |||||
前达马拉基底 | 以眼球状片麻岩和石英长石片麻岩为主,含少量泥质片岩、石英岩、大理岩、斜长角闪岩 | 约2 Ga |
Table 1 Stratigraphic succession of the Central Damara Belt in Husab area, Namibia. Modified after [26-27,44-45].
群 | 亚群 | 组 | 厚度 | 岩性 | 年龄 |
---|---|---|---|---|---|
斯瓦科普群 | 霍玛斯 | 卡塞布组 | >3 000 m | 黑云母长英质片岩、黑云母-石榴石-堇青石片岩、角闪石片岩、石英岩、大理岩 | |
卡里比组 | 1 000 m | 大理岩、白云岩、黑云母片岩、石英片岩、页岩 | |||
楚斯组 | 700 m | 冰碛岩、含砾片岩、少量石英岩、BIF 条带、片岩 | 约710 Ma | ||
平行不整合 | |||||
奥加布 | 罗辛组 | 200 m | 大理岩、石英岩、砾岩、变质杂砂岩、黑云母片岩、黑云母-堇青石片岩和片麻岩、黑云母-角闪石片岩 | ||
平行不整合 | |||||
诺斯比群 | 可汗组 | 1 100 m | 含辉石的斜长角闪岩、角闪石-辉石片麻岩、黑云母-角闪石片岩、石英岩 | ||
埃图西斯组 | 3 000 m | 长石砂岩、砾岩、长石片麻岩; 少量黑云母片岩、大理岩、角闪岩、变质流纹岩 | |||
角度不整合 | |||||
前达马拉基底 | 以眼球状片麻岩和石英长石片麻岩为主,含少量泥质片岩、石英岩、大理岩、斜长角闪岩 | 约2 Ga |
类型 | 标志矿物学特征 | 放射性特征 |
---|---|---|
A | 浅灰白色,细到中粒、糖粒状结构,以白色长石为主 | 低,Th>U |
B | 白色,细粒到伟晶结构,含有石榴子石、电气石和黑云母 | 低,Th>U |
C | 白到浅粉红色,中粒伟晶结构,石英洁净,含微斜长石和斜长石,副矿物为磁铁矿、褐铁矿和电气石 | 低,局部较高,Th>U |
D | 白色,中粗粒到伟晶结构,原生铀矿化的围岩,白色长石,烟灰色石英,偶尔可见 β 硅钙铀矿、铌钛铀矿和磷灰石 | 极高,U >Th |
E | 红到粉红色,可见有氧化晕圈,细粒、粗粒到伟晶结构,矿物组成与D型相似,由烟灰色石英和粉红色长石构成 | 高,U >Th |
F | 红到粉红色,粗粒伟晶结构,粗粒条纹长石,乳白色石英,副矿物为磁铁矿和褐铁矿 | 低,U≈Th |
Table 2 Characteristics of six types of leucogranites/pegmatites in Husab area, Namibia. Modified after [25,27].
类型 | 标志矿物学特征 | 放射性特征 |
---|---|---|
A | 浅灰白色,细到中粒、糖粒状结构,以白色长石为主 | 低,Th>U |
B | 白色,细粒到伟晶结构,含有石榴子石、电气石和黑云母 | 低,Th>U |
C | 白到浅粉红色,中粒伟晶结构,石英洁净,含微斜长石和斜长石,副矿物为磁铁矿、褐铁矿和电气石 | 低,局部较高,Th>U |
D | 白色,中粗粒到伟晶结构,原生铀矿化的围岩,白色长石,烟灰色石英,偶尔可见 β 硅钙铀矿、铌钛铀矿和磷灰石 | 极高,U >Th |
E | 红到粉红色,可见有氧化晕圈,细粒、粗粒到伟晶结构,矿物组成与D型相似,由烟灰色石英和粉红色长石构成 | 高,U >Th |
F | 红到粉红色,粗粒伟晶结构,粗粒条纹长石,乳白色石英,副矿物为磁铁矿和褐铁矿 | 低,U≈Th |
Fig.2 Geological section of prospecting line (22.544°E) in Zone 1 of the Husab uranium deposit (data provided by China General Nuclear Power Group Uranium Resources Co., Ltd., Beijing, China)
Fig.7 Chondrite-normalized REE distribution patterns (a-c) and primitive mantle-normalized spider diagrams (d-f) of Type-D pegmatite from the Husab deposit. Standard values adapted from [52-53].
岩石类型 | 矿物种类 | 测点编号 | wB/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y2O3 | MgO | FeO | UO2 | SiO2 | TiO2 | ThO2 | Ce2O3 | PbO | Nd2O3 | CaO | Total | |||
高铀含量伟晶 岩(D-HUP) | 晶质铀矿 | 1 | 2.13 | 0.04 | 0.00 | 81.51 | 0.06 | 0.00 | 5.03 | 0.36 | 5.61 | 0.00 | 0.17 | 94.91 |
2 | 1.84 | 0.00 | 0.04 | 83.19 | 0.00 | 0.00 | 4.40 | 0.32 | 5.73 | 0.00 | 0.22 | 95.74 | ||
3 | 1.80 | 0.03 | 0.00 | 80.40 | 0.00 | 0.00 | 5.32 | 0.29 | 5.99 | 0.30 | 0.24 | 94.37 | ||
4 | 1.87 | 0.00 | 0.00 | 80.25 | 0.00 | 0.00 | 5.49 | 0.27 | 6.18 | 0.00 | 0.20 | 94.26 | ||
5 | 1.98 | 0.00 | 0.00 | 82.40 | 0.04 | 0.00 | 4.32 | 0.25 | 5.77 | 0.17 | 0.29 | 95.22 | ||
6 | 1.66 | 0.00 | 0.00 | 79.48 | 0.12 | 0.00 | 5.92 | 0.60 | 5.81 | 0.47 | 0.39 | 94.45 | ||
7 | 1.59 | 0.00 | 0.00 | 80.17 | 0.03 | 0.00 | 5.78 | 0.68 | 5.48 | 0.64 | 0.34 | 94.71 | ||
8 | 1.93 | 0.00 | 0.06 | 81.16 | 0.00 | 0.00 | 4.77 | 0.31 | 6.09 | 0.40 | 0.20 | 94.92 | ||
9 | 1.63 | 0.00 | 0.00 | 78.69 | 0.08 | 0.00 | 5.70 | 1.16 | 6.09 | 0.78 | 0.39 | 94.52 | ||
10 | 1.49 | 0.00 | 0.04 | 82.44 | 0.00 | 0.00 | 4.23 | 0.40 | 5.59 | 0.24 | 0.32 | 94.75 | ||
11 | 1.70 | 0.03 | 0.06 | 79.22 | 0.11 | 0.00 | 5.64 | 0.65 | 6.13 | 0.33 | 0.25 | 94.12 | ||
12 | 1.58 | 0.04 | 0.00 | 80.35 | 0.00 | 0.00 | 5.38 | 0.34 | 6.12 | 0.28 | 0.15 | 94.24 | ||
13 | 1.97 | 0.00 | 0.00 | 79.56 | 0.06 | 0.00 | 5.24 | 0.54 | 5.88 | 0.61 | 0.19 | 94.05 | ||
中等铀含量伟晶 岩(D-MUP) | 晶质铀矿 | 1 | 1.52 | 0.00 | 0.00 | 78.41 | 0.10 | 0.00 | 8.49 | 0.44 | 5.91 | 0.29 | 0.35 | 95.51 |
2 | 1.64 | 0.03 | 0.00 | 79.77 | 0.08 | 0.00 | 7.06 | 0.37 | 5.81 | 0.31 | 0.57 | 95.64 | ||
3 | 1.53 | 0.00 | 0.00 | 79.98 | 0.12 | 0.00 | 8.43 | 0.31 | 5.89 | 0.26 | 0.35 | 96.87 | ||
4 | 2.17 | 0.04 | 0.04 | 77.77 | 0.11 | 0.00 | 7.61 | 0.66 | 5.84 | 0.54 | 0.41 | 95.19 | ||
5 | 1.73 | 0.00 | 0.04 | 78.33 | 0.05 | 0.00 | 7.32 | 0.71 | 5.39 | 0.53 | 0.63 | 94.73 | ||
6 | 1.29 | 0.00 | 0.08 | 80.91 | 0.12 | 0.00 | 6.91 | 0.10 | 5.77 | 0.00 | 0.20 | 95.38 | ||
7 | 2.24 | 0.03 | 0.00 | 78.20 | 0.14 | 0.00 | 5.58 | 0.80 | 5.80 | 0.76 | 0.52 | 94.07 | ||
8 | 1.89 | 0.05 | 0.00 | 78.45 | 0.10 | 0.00 | 7.36 | 0.34 | 5.77 | 0.11 | 0.30 | 94.37 | ||
9 | 1.95 | 0.06 | 0.08 | 77.91 | 0.12 | 0.00 | 7.05 | 0.62 | 5.80 | 0.52 | 0.50 | 94.61 | ||
10 | 1.65 | 0.05 | 0.00 | 79.17 | 0.06 | 0.00 | 6.81 | 0.63 | 6.27 | 0.44 | 0.18 | 95.26 | ||
11 | 2.09 | 0.00 | 0.00 | 79.34 | 0.08 | 0.00 | 6.15 | 0.52 | 6.33 | 0.57 | 0.44 | 95.52 | ||
12 | 1.86 | 0.00 | 0.00 | 77.86 | 0.12 | 0.00 | 6.95 | 0.59 | 5.77 | 0.40 | 0.74 | 94.29 | ||
13 | 1.33 | 0.04 | 0.00 | 81.52 | 0.09 | 0.00 | 7.43 | 0.29 | 5.79 | 0.16 | 0.37 | 97.02 | ||
14 | 1.99 | 0.00 | 0.00 | 81.40 | 0.04 | 0.00 | 5.24 | 0.38 | 6.08 | 0.32 | 0.38 | 95.83 | ||
低铀含量伟晶 岩(D-LUP) | 铀钍石 | 1 | 0.54 | 0.02 | 0.33 | 8.20 | 15.20 | 0.00 | 64.11 | 0.28 | 1.75 | 0.00 | 1.92 | 92.35 |
2 | 0.58 | 0.09 | 0.08 | 8.07 | 15.12 | 0.05 | 64.23 | 0.09 | 2.39 | 0.00 | 1.81 | 92.51 | ||
3 | 0.62 | 0.05 | 0.54 | 6.96 | 15.89 | 0.03 | 65.27 | 0.39 | 1.78 | 0.12 | 1.82 | 93.47 | ||
4 | 0.96 | 0.03 | 0.15 | 9.80 | 15.47 | 0.05 | 64.02 | 0.24 | 2.10 | 0.00 | 1.71 | 94.53 | ||
5 | 1.23 | 0.04 | 0.48 | 8.69 | 14.97 | 0.00 | 63.81 | 0.19 | 2.12 | 0.15 | 1.59 | 93.27 |
Table 4 Chemical compositions of representative uranium-bearing oxides in Type-D pegmatites from the Husab deposit
岩石类型 | 矿物种类 | 测点编号 | wB/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y2O3 | MgO | FeO | UO2 | SiO2 | TiO2 | ThO2 | Ce2O3 | PbO | Nd2O3 | CaO | Total | |||
高铀含量伟晶 岩(D-HUP) | 晶质铀矿 | 1 | 2.13 | 0.04 | 0.00 | 81.51 | 0.06 | 0.00 | 5.03 | 0.36 | 5.61 | 0.00 | 0.17 | 94.91 |
2 | 1.84 | 0.00 | 0.04 | 83.19 | 0.00 | 0.00 | 4.40 | 0.32 | 5.73 | 0.00 | 0.22 | 95.74 | ||
3 | 1.80 | 0.03 | 0.00 | 80.40 | 0.00 | 0.00 | 5.32 | 0.29 | 5.99 | 0.30 | 0.24 | 94.37 | ||
4 | 1.87 | 0.00 | 0.00 | 80.25 | 0.00 | 0.00 | 5.49 | 0.27 | 6.18 | 0.00 | 0.20 | 94.26 | ||
5 | 1.98 | 0.00 | 0.00 | 82.40 | 0.04 | 0.00 | 4.32 | 0.25 | 5.77 | 0.17 | 0.29 | 95.22 | ||
6 | 1.66 | 0.00 | 0.00 | 79.48 | 0.12 | 0.00 | 5.92 | 0.60 | 5.81 | 0.47 | 0.39 | 94.45 | ||
7 | 1.59 | 0.00 | 0.00 | 80.17 | 0.03 | 0.00 | 5.78 | 0.68 | 5.48 | 0.64 | 0.34 | 94.71 | ||
8 | 1.93 | 0.00 | 0.06 | 81.16 | 0.00 | 0.00 | 4.77 | 0.31 | 6.09 | 0.40 | 0.20 | 94.92 | ||
9 | 1.63 | 0.00 | 0.00 | 78.69 | 0.08 | 0.00 | 5.70 | 1.16 | 6.09 | 0.78 | 0.39 | 94.52 | ||
10 | 1.49 | 0.00 | 0.04 | 82.44 | 0.00 | 0.00 | 4.23 | 0.40 | 5.59 | 0.24 | 0.32 | 94.75 | ||
11 | 1.70 | 0.03 | 0.06 | 79.22 | 0.11 | 0.00 | 5.64 | 0.65 | 6.13 | 0.33 | 0.25 | 94.12 | ||
12 | 1.58 | 0.04 | 0.00 | 80.35 | 0.00 | 0.00 | 5.38 | 0.34 | 6.12 | 0.28 | 0.15 | 94.24 | ||
13 | 1.97 | 0.00 | 0.00 | 79.56 | 0.06 | 0.00 | 5.24 | 0.54 | 5.88 | 0.61 | 0.19 | 94.05 | ||
中等铀含量伟晶 岩(D-MUP) | 晶质铀矿 | 1 | 1.52 | 0.00 | 0.00 | 78.41 | 0.10 | 0.00 | 8.49 | 0.44 | 5.91 | 0.29 | 0.35 | 95.51 |
2 | 1.64 | 0.03 | 0.00 | 79.77 | 0.08 | 0.00 | 7.06 | 0.37 | 5.81 | 0.31 | 0.57 | 95.64 | ||
3 | 1.53 | 0.00 | 0.00 | 79.98 | 0.12 | 0.00 | 8.43 | 0.31 | 5.89 | 0.26 | 0.35 | 96.87 | ||
4 | 2.17 | 0.04 | 0.04 | 77.77 | 0.11 | 0.00 | 7.61 | 0.66 | 5.84 | 0.54 | 0.41 | 95.19 | ||
5 | 1.73 | 0.00 | 0.04 | 78.33 | 0.05 | 0.00 | 7.32 | 0.71 | 5.39 | 0.53 | 0.63 | 94.73 | ||
6 | 1.29 | 0.00 | 0.08 | 80.91 | 0.12 | 0.00 | 6.91 | 0.10 | 5.77 | 0.00 | 0.20 | 95.38 | ||
7 | 2.24 | 0.03 | 0.00 | 78.20 | 0.14 | 0.00 | 5.58 | 0.80 | 5.80 | 0.76 | 0.52 | 94.07 | ||
8 | 1.89 | 0.05 | 0.00 | 78.45 | 0.10 | 0.00 | 7.36 | 0.34 | 5.77 | 0.11 | 0.30 | 94.37 | ||
9 | 1.95 | 0.06 | 0.08 | 77.91 | 0.12 | 0.00 | 7.05 | 0.62 | 5.80 | 0.52 | 0.50 | 94.61 | ||
10 | 1.65 | 0.05 | 0.00 | 79.17 | 0.06 | 0.00 | 6.81 | 0.63 | 6.27 | 0.44 | 0.18 | 95.26 | ||
11 | 2.09 | 0.00 | 0.00 | 79.34 | 0.08 | 0.00 | 6.15 | 0.52 | 6.33 | 0.57 | 0.44 | 95.52 | ||
12 | 1.86 | 0.00 | 0.00 | 77.86 | 0.12 | 0.00 | 6.95 | 0.59 | 5.77 | 0.40 | 0.74 | 94.29 | ||
13 | 1.33 | 0.04 | 0.00 | 81.52 | 0.09 | 0.00 | 7.43 | 0.29 | 5.79 | 0.16 | 0.37 | 97.02 | ||
14 | 1.99 | 0.00 | 0.00 | 81.40 | 0.04 | 0.00 | 5.24 | 0.38 | 6.08 | 0.32 | 0.38 | 95.83 | ||
低铀含量伟晶 岩(D-LUP) | 铀钍石 | 1 | 0.54 | 0.02 | 0.33 | 8.20 | 15.20 | 0.00 | 64.11 | 0.28 | 1.75 | 0.00 | 1.92 | 92.35 |
2 | 0.58 | 0.09 | 0.08 | 8.07 | 15.12 | 0.05 | 64.23 | 0.09 | 2.39 | 0.00 | 1.81 | 92.51 | ||
3 | 0.62 | 0.05 | 0.54 | 6.96 | 15.89 | 0.03 | 65.27 | 0.39 | 1.78 | 0.12 | 1.82 | 93.47 | ||
4 | 0.96 | 0.03 | 0.15 | 9.80 | 15.47 | 0.05 | 64.02 | 0.24 | 2.10 | 0.00 | 1.71 | 94.53 | ||
5 | 1.23 | 0.04 | 0.48 | 8.69 | 14.97 | 0.00 | 63.81 | 0.19 | 2.12 | 0.15 | 1.59 | 93.27 |
Fig.11 Classification diagram (a, modified from [70]) and Mg/(Fe+Mg)-Al/(Al+Mg+Fe) diagram (b) for D-HUP and D-MUP type chlorite from the Husab deposit
Fig.14 Fractional crystallization diagrams (a-d), FeOT+MgO+TiO2+MnO (hybridization index) vs. U (e) diagram, Th (f) diagram, Nb (g) diagram and Ta (h) diagram for Type-D pegmatites from the Husab deposit
[1] | 王登红, 邹天人, 徐志刚, 等. 伟晶岩矿床示踪造山过程的研究进展[J]. 地球科学进展, 2004, 19(4):614-620. |
[2] |
DILL H G. Pegmatites and aplites: their genetic and applied ore geology[J]. Ore Geology Reviews, 2015, 69:417-561.
DOI URL |
[3] |
LONDON D. Granitic pegmatites: an assessment of current concepts and directions for the future[J]. Lithos, 2005, 80(1/2/3/4):281-303.
DOI URL |
[4] | NORTON J J, REDDEN J A. Relations of zoned pegmatites to other pegmatites, granite, and metamorphic rocks in the southern Black Hills, South Dakota[J]. American Mineralogist, 1990, 75(5/6):631-655. |
[5] |
THOMAS R, DAVIDSON P, BEURLEN H. The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research[J]. Mineralogy and Petrology, 2012, 106(1/2):55-73.
DOI URL |
[6] | LONDON D. A petrologic assessment of internal zonation in granitic pegmatites[J]. Lithos, 2014, 184/185/186/187:74-104. |
[7] |
GLOVER A S, ROGERS W Z, BARTON J E. Granitic pegmatites: storehouses of industrial minerals[J]. Elements, 2012, 8(4):269-273.
DOI URL |
[8] |
LINNEN R L, VAN LICHTERVELDE M, ČERNÝ P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4):275-280.
DOI URL |
[9] |
CUNEY M. The extreme diversity of uranium deposits[J]. Mineralium Deposita, 2008, 44(1):3-9.
DOI URL |
[10] | 朱鹏飞, 蔡煜琦, 郭庆银, 等. 中国铀矿资源成矿地质特征与资源潜力分析[J]. 地学前缘, 2018, 25(3):148-158. |
[11] |
YUAN F, JIANG S Y, LIU J J, et al. Origin and evolution of uraniferous pegmatite: A case study from the Xiaohuacha granite-pegmatite system and related country rocks in the Shangdan uranium mineralization district of North Qinling Orogenic Belt, China[J]. Lithos, 2020, 356/357:105379.
DOI URL |
[12] |
LONDON D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 2018, 101:349-383.
DOI URL |
[13] |
CUNEY M. Felsic magmatism and uranium deposits[J]. Bulletin de la Societe Geologique de France, 2014, 185(2):75-92.
DOI URL |
[14] | 胡瑞忠, 骆金诚, 陈佑纬, 等. 华南铀矿床研究若干进展[J]. 岩石学报, 2019, 35(9):2625-2636. |
[15] | 张丽, 孙立强, 陈卫锋, 等. 诸广南部产铀花岗岩长江岩体中的绿泥石和铀源矿物研究[J]. 高校地质学报, 2018, 24(1):13-32. |
[16] |
BALLOUARD C, POUJOL M, BOULVAIS P, et al. Magmatic and hydrothermal behavior of uranium in syntectonic leucogranites: the uranium mineralization associated with the Hercynian Guérande granite (Armorican Massif, France)[J]. Ore Geology Reviews, 2017, 80:309-331.
DOI URL |
[17] |
CHEN Y W, HU R Z, BI X W, et al. Genesis of the Guangshigou pegmatite-type uranium deposit in the North Qinling Orogenic Belt, China[J]. Ore Geology Reviews, 2019, 115:103165.
DOI URL |
[18] |
LENTZ D. U, Mo, and REE mineralization in late-tectonic granitic pegmatites, southwestern Grenville Province, Canada[J]. Ore Geology Reviews, 1996, 11(4):197-227.
DOI URL |
[19] |
LENTZ D. Petrogenesis and geochemical composition of biotites in rare-element granitic pegmatites in the southwestern Grenville Province, Canada[J]. Mineralogy and Petrology, 1992, 46(3):239-256.
DOI URL |
[20] |
BONALES L J, MENOR-SALVÁN C, COBOS J. Study of the alteration products of a natural uraninite by Raman spectroscopy[J]. Journal of Nuclear Materials, 2015, 462:296-303.
DOI URL |
[21] | 王江波, 侯晓华, 李万华, 等. 东秦岭丹凤地区伟晶岩型铀矿矿化特征与成矿模式[J]. 地球科学, 2020, 45(1):61-71. |
[22] | 张帅, 刘家军, 袁峰, 等. 陕西商丹陈家庄铀矿区花岗岩体和伟晶岩脉U-Pb年龄、 地球化学特征与铀成矿作用[J]. 地学前缘, 2019, 26(5):270-289. |
[23] | 左立波, 任军平, 邱京卫, 等. 纳米比亚罗辛铀矿床地质特征、 地球化学特征及成矿模式[J]. 地质找矿论丛, 2015, 30(S1):137-145, 180. |
[24] | KINNAIRD J A, NEX P A M. A review of geological controls on uranium mineralisation in sheeted leucogranites within the Damara Orogen, Namibia[J]. Applied Earth Scienc, 2007, 116(2):68-85. |
[25] |
NEX P A M, KINNAIRD J A, OLIVER G J H. Petrology, geochemistry, and uranium mineralisation of post-collisional magmatism around Goanikontes, southern Central Zone, Damaran Orogen, Namibia[J]. Journal of African Earth Sciences, 2001, 33(3/4):481-502.
DOI URL |
[26] | 张怀峰, 陆建军. 纳米比亚湖山铀矿地质特征、 控矿因素及其成因探讨[J]. 世界地质, 2018, 37(1):105-123. |
[27] | 荣建锋, 林泳钊, 王照良. 纳米比亚湖山铀矿床地质概况[J]. 四川地质学报, 2016, 36(1):101-106. |
[28] | 陈金勇, 范洪海, 王生云, 等. 纳米比亚欢乐谷地区白岗岩微量元素、 稀土元素地球化学特征及与铀矿化关系[J]. 地球化学, 2016, 45(5):486-498. |
[29] | 范洪海, 陈金勇, 顾大钊, 等. 纳米比亚欢乐谷地区白岗岩型铀矿床流体包裹体特征及成矿作用[J]. 矿床地质, 2015, 34(1):189-199. |
[30] |
NEX P A M, HERD D, KINNAIRD J. Fluid extraction from quartz in sheeted leucogranites as a monitor to styles of uranium mineralization: an example from the Rössing area, Namibia[J]. Geochemistry: Exploration, Environment, Analysis, 2002, 2(1):83-96.
DOI URL |
[31] | 陈金勇, 范洪海, 陈东欢, 等. 纳米比亚欢乐谷地区白岗岩型铀矿矿物特征研究[J]. 地质论评, 2013, 59(5):962-970. |
[32] | 高阳, 范洪海, 陈东欢, 等. 白岗岩型铀矿床: 构造和岩浆作用耦合的产物[J]. 地质与勘探, 2012, 48(5):1058-1066. |
[33] | 顾大钊, 范洪海, 舒良树, 等. 纳米比亚欢乐谷地区构造演化对铀成矿的制约[J]. 地质论评, 2016, 62(1):83-93. |
[34] | 吕荣平, 金永吉, 顾大钊, 等. 纳米比亚欢乐谷地区铀成矿条件分析及找矿潜力评价[J]. 世界核地质科学, 2015, 32(3):125-131. |
[35] |
CORVINO A F, PRETORIUS L E. Uraniferous leucogranites south of Ida Dome, central Damara Belt, Namibia: morphology, distribution and mineralisation[J]. Journal of African Earth Sciences, 2013, 80:60-73.
DOI URL |
[36] |
UNRUG R. The supercontinent cycle and gondwanaland assembly: component cratons and the timing of suturing events[J]. Journal of Geodynamics, 1992, 16(4):215-240.
DOI URL |
[37] | 宁福俊, 王杰, 任军平, 等. 纳米比亚达马拉构造带演化和成矿研究综述[J]. 地质调查与研究, 2018, 41(2):113-120. |
[38] | GOSCOMBE B, FOSTER D A, GRAY D, et al. The evolution of the Damara orogenic system: a record of West Gondwana assembly and crustal response[M]// SIEGESMUND S, BASEI M, OYHANTCABAL P, et al. Geology of Southwest Gondwana. Regional geology reviews. Cham: Springer, 2018: 303-352. |
[39] |
FAN H H, CHEN J Y, WANG S Y, et al. Genesis and uranium sources of leucogranite-hosted uranium deposits in the Gaudeanmus area, Central Damara Belt, Namibia: study of element and Nd isotope geochemistry[J]. Acta Geologica Sinica-English Edition, 2017, 91(6):2126-2137.
DOI URL |
[40] |
GOSCOMBE B, GRAY D, HAND M. Extrusional tectonics in the core of a transpressional orogen: the Kaoko Belt, Namibia[J]. Journal of Petrology, 2005, 46(6):1203-1241.
DOI URL |
[41] |
SHANYENGANA S H, FAN H H, XUE C J, et al. An example of uraniferous leucogranites in the Rössing South-West deposit, Namibia[J]. Journal of African Earth Sciences, 2020, 162:103698.
DOI URL |
[42] | 陈金勇, 范洪海, 王生云, 等. 纳米比亚欢乐谷地区白岗岩型铀矿中硫化物特征及S-Pb同位素示踪[J]. 地质学报, 2020, 94(2):587-598. |
[43] | 陈金勇, 范洪海, 王生云, 等. 纳米比亚欢乐谷地区白岗岩型铀矿成矿机理剖析[J]. 高校地质学报, 2017, 23(2):202-212. |
[44] |
HOFFMANN K H, CONDON D J, BOWRING S A, et al. U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: constraints on Marinoan glaciation[J]. Geology, 2004, 32(9):817-820.
DOI URL |
[45] | LONGRIDGE L. Tectonothermal evolution of the southwestern Central Zone, Damara Belt, Namibia[D]. Johannesburg: University of the Witwatersrand, 2012: 525. |
[46] |
BASSON I J, GREENWAY G. The Rössing uranium deposit: a product of late-kinematic localization of uraniferous granites in the Central Zone of the Damara Orogen, Namibia[J]. Journal of African Earth Sciences, 2004, 38(5):413-435.
DOI URL |
[47] | HOLDEN E. The cause of color in smoky quartz and amethyst[J]. American Mineralogist, 1925, 10(9):203-252. |
[48] |
YUAN F, LIU J J, CARRANZA E J M, et al. The Guangshigou uranium deposit, northern Qinling Orogen, China: a product of assimilation-fractional crystallization of pegmatitic magma[J]. Ore Geology Reviews, 2018, 99:17-41.
DOI URL |
[49] | 葛祥坤. 电子探针定年技术在铀及含铀矿物测年中的开发与研究[D]. 北京: 核工业北京地质研究院, 2013: 202. |
[50] |
MIDDLEMOST E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4):215-224.
DOI URL |
[51] |
DEBON F, LE FORT P. A chemical-mineralogical classification of common plutonic rocks and associations[J]. Transactions of the Royal Society of Edinburgh: Earth Science, 1983, 73(3):135-149.
DOI URL |
[52] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345.
DOI URL |
[53] |
MCDONOUGH W F, SUN S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4):223-253.
DOI URL |
[54] |
MASUDA A, IKEUCHL Y. Lanthanide tetrad effect observed in marine-environment[J]. Geochemical Journal, 1979, 13(1):19-22.
DOI URL |
[55] |
LIU C Q, ZHANG H. The lanthanide tetrad effect in apatite from the Altay No. 3 pegmatite, Xingjiang, China: an intrinsic feature of the pegmatite magma[J]. Chemical Geology, 2005, 214(1/2):61-77.
DOI URL |
[56] | 赵振华, 增田彰正, 夏巴尼. 稀有金属花岗岩的稀土元素四分组效应[J]. 地球化学, 1992, 21(3):221-233. |
[57] |
IRBER W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4):489-508.
DOI URL |
[58] |
JANECZEK J, EWING R C. Structural formula of uraninite[J]. Journal of Nuclear Materials, 1992, 190:128-132.
DOI URL |
[59] |
FINCH R J, EWING R C. The corrosion of uraninite under oxidizing conditions[J]. Journal of Nuclear Materials, 1992, 190:133-156.
DOI URL |
[60] | 冯张生. 陕南光石沟伟晶岩型铀矿床中长石矿物化学初步研究[J]. 化工矿产地质, 2012, 34(2):71-76. |
[61] | 郑巧荣. 由电子探针分析值计算Fe3+和 Fe2+[J]. 矿物学报, 1983, 3(1):55-62. |
[62] |
TISCHENDORF G, RIEDER M, FÖERSTER H J, et al. A new graphical presentation and subdivision of potassium micas[J]. Mineralogical Magazine, 2004, 68(4):649-667.
DOI URL |
[63] |
STONE D. Temperature and pressure variations in suites of Archean felsic plutonic rocks, Berens River area, northwest superior province, Ontario, Canada[J]. The Canadian Mineralogist, 2000, 38(2):455-470.
DOI URL |
[64] | FORSTER M D. Interpretation of the composition of trioctahedral micas[R]. Washington: Government Printing Office, 1960. |
[65] |
NACHIT H, IBHI A, ABIA E H, et al. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites[J]. Comptes Rendus Geoscience, 2005, 337(16):1415-1420.
DOI URL |
[66] | 陈佑纬, 毕献武, 胡瑞忠, 等. 陕南光石沟伟晶岩型铀矿床黑云母矿物化学研究及其对铀成矿的启示[J]. 矿物岩石, 2013, 33(4):17-28. |
[67] |
ABDEL-RAHMAN A F M. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas[J]. Journal of Petrology, 1994, 35(2):525-541.
DOI URL |
[68] | 周作侠. 侵入岩的镁铁云母化学成分特征及其地质意义[J]. 岩石学报, 1988, 4(3):63-73. |
[69] | ZANG W, FYFE W S. Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil[J]. Mineralium Deposita, 1995, 30(1):30-38. |
[70] | DEER W A, HOWIE R A, IUSSMAN J. Rock-forming minerals: sheet silicates[M]. London: Longmans, 1962: 270. |
[71] | LAIRD J. Chlorites: metamorphic petrology[M]// BAILEY S WW. Hydrous phyllosilicates. Berlin, Boston: De Gruyter, 1988: 405-454. |
[72] |
XIE X G, BYERLY G R, FERRELL R E Jr. IIb trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry[J]. Contributions to Mineralogy and Petrology, 1997, 126(3):275-291.
DOI URL |
[73] |
JAHREN J S. Compositional variations in diagenetic chlorites and illites, and relationships with formation-water chemistry[J]. Clay Minerals, 1989, 24(2):157-170.
DOI URL |
[74] |
BRYNDZIA L T, SCOTT S D. The composition of chlorite as a function of sulfur and oxygen fugacity: an experimental study[J]. American Journal of Science, 1987, 287(1):50-76.
DOI URL |
[75] | 夏菲, 孟华, 聂逢君, 等. 鄂尔多斯盆地纳岭沟铀矿床绿泥石特征及地质意义[J]. 地质学报, 2016, 90(12):3473-3482. |
[76] | 张展适, 华仁民, 季峻峰, 等. 201和361铀矿床中绿泥石的特征及其形成环境研究[J]. 矿物学报, 2007, 27(2):161-172. |
[77] |
FERRY J M. Reaction mechanisms, physical conditions, and mass transfer during hydrothermal alteration of mica and feldspar in granitic rocks from south-central Maine, USA[J]. Contributions to Mineralogy and Petrology, 1979, 68(2):125-139.
DOI URL |
[78] |
NISHIMOTO S, YOSHIDA H. Hydrothermal alteration of deep fractured granite: Effects of dissolution and precipitation[J]. Lithos, 2010, 115(1/2/3/4):153-162.
DOI URL |
[79] |
PARRY W T, DOWNEY L M. Geochemistry of hydrothermal chlorite replacing igneous biotite[J]. Clays and Clay Minerals, 1982, 30(2):81-90.
DOI URL |
[80] | 张龙, 陈振宇, 田泽瑾, 等. 粤北产铀与不产铀花岗岩中黑云母和绿泥石矿物化学特征及其与铀成矿的关系[J]. 地学前缘, 2017, 24(5):62-75. |
[81] |
PARNEIX J C, BEAUFORT D, DUDOIGNON P, et al. Biotite chloritization process in hydrothermally altered granites[J]. Chemical Geology, 1985, 51(1/2):89-101.
DOI URL |
[82] |
HELGESON H C. Kinetics of mass transfer among silicates and aqueous solutions[J]. Geochimica et Cosmochimica Acta, 1971, 35(5):421-469.
DOI URL |
[83] | VEBLEN D R, FERRY J M. A TEM study of the biotite-chlorite reaction and comparison with petrologic observations[J]. American Mineralogist, 1983, 68(11/12):1160-1168. |
[84] |
YAMINI M A, TUTTI F, AMINOROAYAEI YAMINI M R, et al. Examination of chloritization of biotite as a tool for reconstructing the physicochemical parameters of mineralization and associated alteration in the Zafarghand porphyry copper system, Ardestan, Central Iran: mineral-chemistry and stable isotope analyses[J]. Mineralogy and Petrology, 2017, 111(5):747-759.
DOI URL |
[85] | 王生云, 范洪海, 陈东欢, 等. 纳米比亚欢乐谷地区白岗岩岩石学及地球化学特征[J]. 岩石矿物学杂志, 2015, 34(2):131-142. |
[86] | MCKEOUGH M A, LENTZ D R, MCFARLANE C R M, et al. Geology and evolution of pegmatite-hosted U-Th ± REE-Y-Nb mineralization, Kulyk, Eagle, and Karin Lakes region, Wollaston Domain, northern Saskatchewan, Canada: examples of the dual role of extreme fractionation and hybridization processes[J]. Journal of Geosciences, 2013, 58(4):321-346. |
[87] |
NASH W P, CRECRAFT H R. Partition coefficients for trace elements in silicic magmas[J]. Geochimica et Cosmochimica Acta, 1985, 49(11):2309-2322.
DOI URL |
[88] |
ZHU Y F, ZENG Y S, GU L B. Geochemistry of the rare metal-bearing pegmatite No.3 vein and related granites in the Keketuohai region, Altay Mountains, Northwest China[J]. Journal of Asian Earth Sciences, 2006, 27(1):61-77.
DOI URL |
[89] |
LI X H, LI Z X, LI W X, et al. U-Pb zircon,geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: a major igneous event in response to foundering of asubducted flat-slab?[J]. Lithos, 2007, 96(1/2):186-204.
DOI URL |
[90] | 袁峰, 刘家军, 吕古贤, 等. 北秦岭光石沟铀矿区花岗岩、 伟晶岩锆石U-Pb年代学、 地球化学及成因意义[J]. 地学前缘, 2017, 24(6):25-45. |
[91] | 刘刚, 刘家军, 袁峰, 等. 陕西小花岔铀矿床岩浆演化及其对铀成矿作用的制约[J]. 现代地质, 2017, 31(5):990-1005. |
[92] | 赵希刚, 朱西养, 杨永记, 等. 纳米比亚达马拉造山带白岗岩型铀矿成矿规律及找矿思路[J]. 铀矿地质, 2015, 31(4):445-452. |
[93] | 魏春景, 王伟. 高级变质岩中深熔作用的相平衡研究[J]. 地学前缘, 2007, 14(1):125-134. |
[94] | 魏春景, 周喜文. 变质相平衡的研究进展[J]. 地学前缘, 2003, 10(4):341-351. |
[95] |
HOLLAND T J B, POWELL R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of Metamorphic Geology, 2011, 29(3):333-383.
DOI URL |
[96] |
WHITE R W, POWELL R, HOLLAND T J B. Progress relating to calculation of partial melting equilibria for metapelites[J]. Journal of Metamorphic Geology, 2007, 25(5):511-527.
DOI URL |
[97] |
WHITE R W, POWELL R, HOLLAND T J B. Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH)[J]. Journal of Metamorphic Geology, 2001, 19(2):139-153.
DOI URL |
[98] |
CONNOLLY J A D. Multivariable phase diagrams: an algorithm based on generalized thermodynamics[J]. American Journal of Science, 1990, 290(6):666-718.
DOI URL |
[99] |
ERDMANN S, MORGAN G B, CLARKE D B. The contamination of granitic magma by metasedimentary country-rock material: an experimental study[J]. The Canadian Mineralogist, 2007, 45(1):43-61.
DOI URL |
[100] |
CLARKE D B. Assimilation of xenocrysts in granitic magmas: principles, processes, proxies, and problems[J]. The Canadian Mineralogist, 2007, 45(1):5-30.
DOI URL |
[101] |
BEARD J S, RAGLAND P C, CRAWFORD M L. Reactive bulk assimilation: a model for crust-mantle mixing in silicic magmas[J]. Geology, 2005, 33(8):681-684.
DOI URL |
[102] |
DILL H G, SKODA R. The new Nb-P aplite at Reinhardsrieth: a keystone in the lateral and depth zonations of the Hagendorf-Pleystein Pegmatite Field, SE Germany[J]. Ore Geology Reviews, 2015, 70:208-227.
DOI URL |
[103] |
ERDMANN S, SCAILLET B, KELLETT D A. Xenocryst assimilation and formation of peritectic crystals during magma contamination: an experimental study[J]. Journal of Volcanology and Geothermal Research, 2010, 198(3/4):355-367.
DOI URL |
[104] |
FARRIS D W, PATERSON S R. Contamination of silicic magmas and fractal fragmentation of xenoliths in Paleocene plutons on Kodiak island, Alaska[J]. The Canadian Mineralogist, 2007, 45(1):107-129.
DOI URL |
[105] |
BEARD J S, RAGLAND P C, RUSHMER T. Hydrationcrystallization reactions between anhydrous minerals and hydrous melt to yield amphibole and biotite in igneous rocks: description and implications[J]. The Journal of Geology, 2004, 112(5):617-621.
DOI URL |
[106] |
CUNEY M. Evolution of uranium fractionation processes through time: driving the secular variation of uranium deposit types[J]. Economic Geology, 2010, 105(3):553-569.
DOI URL |
[107] |
MERCADIER J, CUNEY M, LACH P, et al. Origin of uranium deposits revealed by their rare earth element signature[J]. Terra Nova, 2011, 23(4):264-269.
DOI URL |
[108] |
PEIFFERT C, NGUYEN-TRUNG C, CUNEY M. Uranium in granitic magmas: Part 2. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H2O-NaX (X = Cl, F) system at 770 ℃, 2 kbar[J]. Geochimica et Cosmochimica Acta, 1996, 60(9):1515-1529.
DOI URL |
[109] | 曾令交, 金景福. 某花岗伟晶岩型铀矿床铀迁移沉淀机制探讨[J]. 华东地质学院学报, 1994, 17(3):264-269. |
[110] |
REDKIN A F, VELICHKIN V I. Uranium fluorides in hydrothermal-magmatic systems[J]. Doklady Earth Sciences, 2013, 450(1):544-547.
DOI URL |
[111] |
KOVALENKO N I, RYZHENKO B N, PRISYAGINA N I, et al. Experimental determination of uranium (IV) speciation in HF solutions at 500 ℃ and 1 000 bar[J]. Geochemistry International, 2012, 50(1):18-25.
DOI URL |
[1] | HUANG Siyu, PU Junbing, PAN Moucheng, LI Jianhong, ZHANG Tao. Effects of algae-derived organic matter source on sediment mineralization in the karst reservoir [J]. Earth Science Frontiers, 2024, 31(5): 387-396. |
[2] | AN Wentong, CHEN Jianping, ZHU Pengfei. A two-way forecasting method based on numerical simulation of mineralization process for the prediction of concealed ore deposits [J]. Earth Science Frontiers, 2021, 28(3): 97-111. |
[3] | DU Yangsong, CAO Yi, QIN Xinlong, PANG Zhenshan, DU Yilun, WANG Gongwen. A review on the Mesozoic crust-mantle interaction and metallogeny of various skarn deposits in the Jiangxi-Anhui segment along the Yangtze River [J]. Earth Science Frontiers, 2020, 27(2): 165-181. |
[4] | . Characteristics of oreforming fluid and mineralization process of the Yangla copper deposit, Yunnan. [J]. Earth Science Frontiers, 2013, 20(1): 82-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||