Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (6): 14-31.DOI: 10.13745/j.esf.sf.2023.2.15
Previous Articles Next Articles
LU Pengda1,2(), LI Zeqi1,2, TIAN Tengzhen1,2, WU Juan1,2, SUN Wei1,2, QIAO Zhanfeng3, WANG Yongsheng3, LIU Shugen1,2,4, DENG Bin1,2,*(
)
Received:
2023-01-05
Revised:
2023-02-05
Online:
2023-11-25
Published:
2023-11-25
CLC Number:
LU Pengda, LI Zeqi, TIAN Tengzhen, WU Juan, SUN Wei, QIAO Zhanfeng, WANG Yongsheng, LIU Shugen, DENG Bin. The botryoidal-lace texture and its role in dolomite reservoir control in the 2nd member, Sinian Dengying Formation in Sichuan Basin[J]. Earth Science Frontiers, 2023, 30(6): 14-31.
Fig.1 Distribution map of sediment facies and sampling points in the Sichuan Basin (left, modified from [27]) and simplified column of the Sinian Straight, Nanjiang Liuwan section
样品编号 | 组构 | wB/10-6 | Mn/Sr | Sr/Ba | U/Th | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fe | Mn | Na | Al | Sr | Cu | Ba | |||||
HS1-1-01 | MM | 568.064 | 152.176 | 695.426 | 38.763 | 57.679 | 0.039 | 7.135 | 2.64 | 8.08 | |
LW07-2-01 | MM | 124.155 | 47.450 | 411.877 | 60.336 | 64.932 | 0.180 | 5.557 | 0.73 | 11.68 | 11.36 |
LW07-2-02 | MM | 173.754 | 45.126 | 295.544 | 256.177 | 60.414 | 0.215 | 5.466 | 0.75 | 11.05 | 3.40 |
LW22-1-01 | MM | 184.574 | 46.257 | 233.250 | 157.407 | 48.421 | 0.095 | 2.445 | 0.96 | 19.80 | 8.57 |
LW22-1-02 | MM | 228.746 | 58.893 | 238.730 | 154.367 | 47.847 | 0.078 | 2.592 | 1.23 | 18.46 | 6.91 |
W117-2-01 | MM | 63.234 | 45.137 | 508.155 | 17.561 | 40.442 | 0.049 | 2.124 | 1.12 | 19.04 | |
W117-2-02 | MM | 68.046 | 14.765 | 373.522 | 16.616 | 42.345 | 0.196 | 1.908 | 0.35 | 22.19 | 74.22 |
HS1-1-02 | FSD | 445.739 | 103.593 | 478.481 | 27.245 | 53.776 | 0.373 | 2.625 | 1.93 | 20.48 | |
HS1-1-03 | FSD | 153.186 | 40.270 | 258.367 | 12.993 | 28.281 | 0.541 | 0.872 | 1.42 | 32.44 | |
HS1-1-04 | FSD | 94.141 | 31.175 | 513.783 | 106.729 | 38.036 | 0.241 | 1.234 | 0.82 | 30.81 | 96.28 |
HS1-1-05 | FSD | 163.390 | 70.239 | 373.764 | 22.344 | 29.643 | 0.369 | 1.752 | 2.37 | 16.92 | |
LW07-2-03 | FSD | 42.286 | 10.127 | 326.609 | 28.124 | 47.896 | 0.497 | 2.327 | 0.21 | 20.58 | |
LW07-2-04 | FSD | 118.529 | 21.319 | 511.602 | 29.565 | 50.276 | 0.427 | 3.373 | 0.42 | 14.91 | |
LW-22-1-03 | FSD | 177.480 | 54.402 | 421.109 | 20.773 | 38.616 | 0.034 | 3.989 | 1.41 | 9.68 | |
LW-22-1-04 | FSD | 217.466 | 62.292 | 299.262 | 18.169 | 35.870 | — | 3.128 | 1.74 | 11.47 | 76.64 |
W117-2-03 | FSD | 198.259 | 83.036 | 425.109 | 13.496 | 55.297 | 0.088 | 9.016 | 1.50 | 6.13 | 76.94 |
W117-2-04 | FSD | 127.615 | 110.477 | 304.715 | 19.821 | 49.125 | 0.128 | 7.660 | 2.25 | 6.41 | 90.73 |
LW07-2-05 | RFD | 63.227 | 13.102 | 325.417 | 2.868 | 36.237 | 0.607 | 0.961 | 0.36 | 37.69 | 154.10 |
LW-22-1-05 | RFD | 113.818 | 37.311 | 143.541 | 5.250 | 36.722 | 0.364 | 0.852 | 1.02 | 43.10 | 134.89 |
W117-2-05 | RFD | 51.295 | 23.047 | 257.545 | 29.863 | 33.708 | 0.260 | 1.801 | 0.68 | 18.72 | 130.85 |
W117-2-06 | RFD | 33.880 | 25.407 | 223.919 | 2.693 | 20.681 | 0.043 | 0.896 | 1.23 | 23.08 | |
W117-2-07 | RFD | 54.363 | 34.314 | 336.794 | 5.962 | 27.404 | 0.326 | 2.711 | 1.25 | 10.11 | |
W117-2-06 | FFD | 93.538 | 12.585 | 188.857 | 17.117 | 23.664 | 0.808 | 0.965 | 0.53 | 24.52 | 40.85 |
LW07-2-07 | FFD | 89.000 | 27.620 | 164.485 | 9.175 | 22.197 | 0.710 | 0.520 | 1.24 | 42.68 | 61.52 |
Table 1 Results of in-situ trace elemental characterization of botryoidal-lace dolomite under different dolomite textures
样品编号 | 组构 | wB/10-6 | Mn/Sr | Sr/Ba | U/Th | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fe | Mn | Na | Al | Sr | Cu | Ba | |||||
HS1-1-01 | MM | 568.064 | 152.176 | 695.426 | 38.763 | 57.679 | 0.039 | 7.135 | 2.64 | 8.08 | |
LW07-2-01 | MM | 124.155 | 47.450 | 411.877 | 60.336 | 64.932 | 0.180 | 5.557 | 0.73 | 11.68 | 11.36 |
LW07-2-02 | MM | 173.754 | 45.126 | 295.544 | 256.177 | 60.414 | 0.215 | 5.466 | 0.75 | 11.05 | 3.40 |
LW22-1-01 | MM | 184.574 | 46.257 | 233.250 | 157.407 | 48.421 | 0.095 | 2.445 | 0.96 | 19.80 | 8.57 |
LW22-1-02 | MM | 228.746 | 58.893 | 238.730 | 154.367 | 47.847 | 0.078 | 2.592 | 1.23 | 18.46 | 6.91 |
W117-2-01 | MM | 63.234 | 45.137 | 508.155 | 17.561 | 40.442 | 0.049 | 2.124 | 1.12 | 19.04 | |
W117-2-02 | MM | 68.046 | 14.765 | 373.522 | 16.616 | 42.345 | 0.196 | 1.908 | 0.35 | 22.19 | 74.22 |
HS1-1-02 | FSD | 445.739 | 103.593 | 478.481 | 27.245 | 53.776 | 0.373 | 2.625 | 1.93 | 20.48 | |
HS1-1-03 | FSD | 153.186 | 40.270 | 258.367 | 12.993 | 28.281 | 0.541 | 0.872 | 1.42 | 32.44 | |
HS1-1-04 | FSD | 94.141 | 31.175 | 513.783 | 106.729 | 38.036 | 0.241 | 1.234 | 0.82 | 30.81 | 96.28 |
HS1-1-05 | FSD | 163.390 | 70.239 | 373.764 | 22.344 | 29.643 | 0.369 | 1.752 | 2.37 | 16.92 | |
LW07-2-03 | FSD | 42.286 | 10.127 | 326.609 | 28.124 | 47.896 | 0.497 | 2.327 | 0.21 | 20.58 | |
LW07-2-04 | FSD | 118.529 | 21.319 | 511.602 | 29.565 | 50.276 | 0.427 | 3.373 | 0.42 | 14.91 | |
LW-22-1-03 | FSD | 177.480 | 54.402 | 421.109 | 20.773 | 38.616 | 0.034 | 3.989 | 1.41 | 9.68 | |
LW-22-1-04 | FSD | 217.466 | 62.292 | 299.262 | 18.169 | 35.870 | — | 3.128 | 1.74 | 11.47 | 76.64 |
W117-2-03 | FSD | 198.259 | 83.036 | 425.109 | 13.496 | 55.297 | 0.088 | 9.016 | 1.50 | 6.13 | 76.94 |
W117-2-04 | FSD | 127.615 | 110.477 | 304.715 | 19.821 | 49.125 | 0.128 | 7.660 | 2.25 | 6.41 | 90.73 |
LW07-2-05 | RFD | 63.227 | 13.102 | 325.417 | 2.868 | 36.237 | 0.607 | 0.961 | 0.36 | 37.69 | 154.10 |
LW-22-1-05 | RFD | 113.818 | 37.311 | 143.541 | 5.250 | 36.722 | 0.364 | 0.852 | 1.02 | 43.10 | 134.89 |
W117-2-05 | RFD | 51.295 | 23.047 | 257.545 | 29.863 | 33.708 | 0.260 | 1.801 | 0.68 | 18.72 | 130.85 |
W117-2-06 | RFD | 33.880 | 25.407 | 223.919 | 2.693 | 20.681 | 0.043 | 0.896 | 1.23 | 23.08 | |
W117-2-07 | RFD | 54.363 | 34.314 | 336.794 | 5.962 | 27.404 | 0.326 | 2.711 | 1.25 | 10.11 | |
W117-2-06 | FFD | 93.538 | 12.585 | 188.857 | 17.117 | 23.664 | 0.808 | 0.965 | 0.53 | 24.52 | 40.85 |
LW07-2-07 | FFD | 89.000 | 27.620 | 164.485 | 9.175 | 22.197 | 0.710 | 0.520 | 1.24 | 42.68 | 61.52 |
样品编号 | 组构 | ∑REE含量/ (μg·g-1) | PrN/TbN (LREE/MREE) | TbN/YbN (MREE/HREE) | PrN/YbN (LREE/HREE) | La/La* | Ce/Ce* | Eu/Eu* | Y/Ho | YN/HoN |
---|---|---|---|---|---|---|---|---|---|---|
HS1-1-01 | MM | 1.54 | 1.938 | 0.941 | 1.824 | 0.390 | 0.500 | 48.260 | 0.661 | |
LW07-2-01 | MM | 1.51 | 1.498 | 0.639 | 0.957 | 2.170 | 1.430 | 2.720 | 22.970 | 0.315 |
LW07-2-02 | MM | 1.87 | 0.587 | 1.270 | 0.830 | 1.040 | 32.710 | 0.448 | ||
LW22-1-01 | MM | 1.16 | 1.024 | 3.763 | 3.854 | 0.700 | 0.670 | 6.490 | 69.020 | 0.945 |
W117-2-01 | MM | 0.35 | 0.301 | 1.883 | 0.567 | 4.020 | 1.840 | 0.000 | 203.500 | 2.787 |
HS1-1-02 | FSD | 1.05 | 0.919 | 0.705 | 0.648 | 1.830 | 1.030 | 0.000 | 133.070 | 1.823 |
LW-22-1-04 | FSD | 0.78 | 0.978 | 0.941 | 0.920 | 3.450 | 1.150 | 14.460 | 15.910 | 0.218 |
W117-2-04 | FSD | 0.75 | 0.224 | 1.455 | 0.326 | 1.450 | 0.920 | 0.320 | 93.320 | 1.278 |
W117-2-05 | RFD | 0.34 | 0.164 | 0.942 | 0.155 | 6.240 | 2.160 | 0.000 | 112.780 | 1.545 |
W117-2-07 | RFD | 0.19 | 0.025 | 142.750 | 19.550 | 0.820 | 99.060 | 1.357 | ||
PS4-11T301 | RFD | 0.21 | 0.026 | 0.370 | 62.897 | 43.359 | 0.901 | |||
PS4-11T302 | RFD | 0.29 | 0.000 | 0.120 | 0.100 | 0.825 | ||||
LW07-2-07 | FFD | 0.39 | 0.598 | 3.365 | 0.178 | 1.483 | 0.441 | 2.368 | 29.627 | 0.406 |
LW5-1B301 | FFD | 3.83 | 0.000 | 0.730 | 1.180 | 0.316 | 64.433 | 0.648 | ||
LW5-1B401 | FFD | 1.37 | 0.203 | 0.748 | 0.150 | 0.590 | 0.689 | 18.058 | 26.414 | 0.407 |
LW5-1B403 | FFD | 0.27 | 0.560 | 0.494 | 5.895 | 0.161 |
Table 2 Characteristics of REEs in situ for various botryoidal-lace dolomite types
样品编号 | 组构 | ∑REE含量/ (μg·g-1) | PrN/TbN (LREE/MREE) | TbN/YbN (MREE/HREE) | PrN/YbN (LREE/HREE) | La/La* | Ce/Ce* | Eu/Eu* | Y/Ho | YN/HoN |
---|---|---|---|---|---|---|---|---|---|---|
HS1-1-01 | MM | 1.54 | 1.938 | 0.941 | 1.824 | 0.390 | 0.500 | 48.260 | 0.661 | |
LW07-2-01 | MM | 1.51 | 1.498 | 0.639 | 0.957 | 2.170 | 1.430 | 2.720 | 22.970 | 0.315 |
LW07-2-02 | MM | 1.87 | 0.587 | 1.270 | 0.830 | 1.040 | 32.710 | 0.448 | ||
LW22-1-01 | MM | 1.16 | 1.024 | 3.763 | 3.854 | 0.700 | 0.670 | 6.490 | 69.020 | 0.945 |
W117-2-01 | MM | 0.35 | 0.301 | 1.883 | 0.567 | 4.020 | 1.840 | 0.000 | 203.500 | 2.787 |
HS1-1-02 | FSD | 1.05 | 0.919 | 0.705 | 0.648 | 1.830 | 1.030 | 0.000 | 133.070 | 1.823 |
LW-22-1-04 | FSD | 0.78 | 0.978 | 0.941 | 0.920 | 3.450 | 1.150 | 14.460 | 15.910 | 0.218 |
W117-2-04 | FSD | 0.75 | 0.224 | 1.455 | 0.326 | 1.450 | 0.920 | 0.320 | 93.320 | 1.278 |
W117-2-05 | RFD | 0.34 | 0.164 | 0.942 | 0.155 | 6.240 | 2.160 | 0.000 | 112.780 | 1.545 |
W117-2-07 | RFD | 0.19 | 0.025 | 142.750 | 19.550 | 0.820 | 99.060 | 1.357 | ||
PS4-11T301 | RFD | 0.21 | 0.026 | 0.370 | 62.897 | 43.359 | 0.901 | |||
PS4-11T302 | RFD | 0.29 | 0.000 | 0.120 | 0.100 | 0.825 | ||||
LW07-2-07 | FFD | 0.39 | 0.598 | 3.365 | 0.178 | 1.483 | 0.441 | 2.368 | 29.627 | 0.406 |
LW5-1B301 | FFD | 3.83 | 0.000 | 0.730 | 1.180 | 0.316 | 64.433 | 0.648 | ||
LW5-1B401 | FFD | 1.37 | 0.203 | 0.748 | 0.150 | 0.590 | 0.689 | 18.058 | 26.414 | 0.407 |
LW5-1B403 | FFD | 0.27 | 0.560 | 0.494 | 5.895 | 0.161 |
Fig.9 Stratigraphic cross-section of the Denying Formation in Ebian Xianfeng, wells Wei 117 and Pengtan 1, and Nanjiang Liuwan (cross-section location see Fig.1)
[1] | 张建勇, 倪新峰, 吴兴宁, 等. 中国主要克拉通盆地深层白云岩优质储层发育主控因素及分布[J]. 天然气地球科学, 2017, 28(8): 1165-1175. |
[2] |
杜金虎, 汪泽成, 邹才能, 等. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报, 2016, 37(1): 1-16.
DOI |
[3] |
ZHOU Y, YANG F L, JI Y L, et al. Characteristics and controlling factors of dolomite Karst Reservoirs of the Sinian Dengying Formation, central Sichuan Basin, southwestern China[J]. Precambrian Research, 2020, 343: 105708.
DOI URL |
[4] |
ZHU D Y, LIU Q Y, WANG J B, et al. Transition of seawater conditions favorable for development of microbial hydrocarbon source: reservoir assemblage system in the Precambrian[J]. Precambrian Research, 2022, 374: 106649.
DOI URL |
[5] | 郝毅, 周进高, 陈旭, 等. 四川盆地灯影组“葡萄花边”状白云岩成因及地质意义[J]. 海相油气地质, 2015, 20(4): 57-64. |
[6] | 张荫本. 震旦纪白云岩中的葡萄状构造成因初探[J]. 石油实验地质, 1980, 4: 40-43. |
[7] | 刘树根, 宋金民, 罗平, 等. 四川盆地深层微生物碳酸盐岩储层特征及其油气勘探前景[J]. 成都理工大学学报(自然科学版), 2016, 43(2): 129-152. |
[8] | 宋金民, 刘树根, 李智武, 等. 四川盆地上震旦统灯影组微生物碳酸盐岩储层特征与主控因素[J]. 石油与天然气地质, 2017, 38(4): 741-752. |
[9] | 张杰, 潘立银, 周进高, 等. 四川盆地震旦系灯影组葡萄状白云岩成因[J]. 古地理学报, 2014, 16(5): 715-725. |
[10] | 曹仁关. 川滇震旦系灯影组葡萄石的沉积环境[J]. 云南地质, 2002, 21(2): 208-213. |
[11] | 施泽进, 梁平, 王勇, 等. 川东南地区灯影组葡萄石地球化学特征及成因分析[J]. 岩石学报, 2011, 27(8): 2263-2271. |
[12] | 林孝先, 彭军, 闫建平, 等. 四川盆地震旦系灯影组葡萄状白云岩成因讨论[J]. 古地理学报, 2015, 17(6): 755-770. |
[13] |
WANG J B, HE Z L, ZHU D Y, et al. Petrological and geochemical characteristics of the botryoidal dolomite of Dengying Formation in the Yangtze Craton, South China:constraints on terminal Ediacaran “dolomite seas”[J]. Sedimentary Geology, 2020, 406: 105722.
DOI URL |
[14] | 牟传龙, 王秀平, 梁薇, 等. 上扬子区灯影组白云岩葡萄体特征及成因初探:以南江杨坝地区灯影组一段为例[J]. 沉积学报, 2015, 33(6): 1097-1110. |
[15] | 钱一雄, 冯菊芳, 何治亮, 等. 从岩石学及微区同位素探讨四川盆地灯影组皮壳-葡萄状白云石成因[J]. 石油与天然气地质, 2017, 38(4): 665-676. |
[16] | 王东, 王国芝. 南江地区灯影组储集层次生孔洞充填矿物[J]. 成都理工大学学报(自然科学版), 2012, 39(5): 480-485. |
[17] | 任冠雄. 四川盆地震旦系灯影组葡萄状构造精细研究[D]. 成都: 西南石油大学, 2018. |
[18] | 向芳, 陈洪德, 张锦泉. 资阳地区震旦系灯影组白云岩中葡萄花边的成因研究[J]. 矿物岩石, 1998, 18(增刊1): 150-152. |
[19] |
DING Y, CHEN D Z, ZHOU X Q, et al. Cavity-filling dolomite speleothems and submarine cements in the Ediacaran Dengying microbialites, South China: responses to high-frequency sea-level fluctuations in an ‘aragonite-dolomite sea’[J]. Sedimentology, 2019, 66(6): 2511-2537.
DOI URL |
[20] |
ZHU D Y, LIU Q Y, HE Z L, et al. Early development and late preservation of porosity linked to presence of hydrocarbons in Precambrian microbialite gas reservoirs within the Sichuan Basin, southern China[J]. Precambrian Research, 2020, 342: 105694.
DOI URL |
[21] | 罗平, 王石, 李朋威, 等. 微生物碳酸盐岩油气储层研究现状与展望[J]. 沉积学报, 2013, 31(5): 807-823. |
[22] |
ZHAI X F, LUO P, GU Z D, et al. Microbial mineralization of botryoidal laminations in the Upper Ediacaran dolostones, western Yangtze platform, SW China[J]. Journal of Asian Earth Sciences, 2020, 195: 104334.
DOI URL |
[23] | 李文奇, 刘汇川, 李平平, 等. 四川灯影组白云石化流体多样化特征及白云岩差异性成因[J/OL]. 地球科学: 中国地质大学学报, 2002: 1-34[2022-06-19]. http://kns.cnki.net/kcms/detail/42.1874.P.20220418.1452.012.html. |
[24] |
马奎, 文龙, 张本健, 等. 四川盆地德阳—安岳侵蚀裂陷槽分段性演化分析和油气勘探意义[J]. 石油勘探与开发, 2022, 49(2): 274-284.
DOI |
[25] | 刘树根, 孙玮, 罗志立, 等. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报(自然科学版), 2013, 40(5): 511-520. |
[26] | 周进高, 张建勇, 邓红婴, 等. 四川盆地震旦系灯影组岩相古地理与沉积模式[J]. 天然气工业, 2017, 37(1): 24-31. |
[27] |
汪泽成, 姜华, 陈志勇, 等. 中上扬子地区晚震旦世构造古地理及油气地质意义[J]. 石油勘探与开发, 2020, 47(5): 884-897.
DOI |
[28] | 刘树根, 李泽奇, 邓宾, 等. 四川盆地震旦系灯影组深层碳酸盐岩储层沥青赋存形态及其油气藏示踪作用[J]. 天然气工业, 2021, 41(8): 102-112. |
[29] | 姜华, 李文正, 黄士鹏, 等. 四川盆地震旦系灯影组跨重大构造期油气成藏过程与成藏模式[J]. 天然气工业, 2022, 42(5):11-23. |
[30] |
YAN R J, XU G S, XU F H, et al. The multistage dissolution characteristics and their influence on mound-shoal complex reservoirs from the Sinian Dengying Formation, southeastern Sichuan Basin, China[J]. Marine and Petroleum Geology, 2022, 139: 105596.
DOI URL |
[31] | 李凌, 谭秀成, 曾伟, 等. 四川盆地震旦系灯影组灰泥丘发育特征及储集意义[J]. 石油勘探与开发, 2013, 40(6):666-673. |
[32] | 刘静江, 李伟, 张宝民, 等. 上扬子地区震旦纪沉积古地理[J]. 古地理学报, 2015, 17(6): 735-753. |
[33] | 刘树根, 王一刚, 孙玮, 等. 拉张槽对四川盆地海相油气分布的控制作用[J]. 成都理工大学学报(自然科学版), 2016, 43(1): 1-23. |
[34] | CHANG B, LI C, LIU D, et al. Massive formation of early diagenetic dolomite in the Ediacaran Ocean: constraints on the “dolomite problem”[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25): 14005-14014. |
[35] | 赵彦彦, 李三忠, 李达, 等. 碳酸盐(岩)的稀土元素特征及其古环境指示意义[J]. 大地构造与成矿学, 2019, 43(1): 141-167. |
[36] |
LIU C, XIE Q, WANG G, et al. Rare earth element characteristics of the carboniferous Huanglong Formation Dolomites in eastern Sichuan Basin, Southwest China: implications for origins of dolomitizing and diagenetic fluids[J]. Marine and Petroleum Geology, 2017, 81: 33-49.
DOI URL |
[37] | TAYLOR S R, MCLENNAN S M. The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks[J]. Mathematical and Physical Sciences, 1981, 301(1461): 381-399. |
[38] |
JACOBSEN S B, KAUFMAN A J. The Sr, C and O isotopic evolution of Neoproterozoic seawater[J]. Chemical Geology, 1999, 161(1/2/3): 37-57.
DOI URL |
[39] |
ZHANG P, HUA H, LIU W G. Isotopic and REE evidence for the paleoenvironmental evolution of the late Ediacaran Dengying Section, Ningqiang of Shaanxi Province, China[J]. Precambrian Research, 2014, 242: 96-111.
DOI URL |
[40] |
KEITH M L, WEBER J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28(10/11): 1787-1816.
DOI URL |
[41] | 李进龙, 陈东敬. 古盐度定量研究方法综述[J]. 油气地质与采收率, 2003, 10(5): 1-3, 5. |
[42] | 刘德良, 孙先如, 李振生, 等. 鄂尔多斯盆地奥陶系白云岩碳氧同位素分析[J]. 石油实验地质, 2006, 28(2):155-161. |
[43] | VASCONCELOS C, MCKENZIE J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa vermelha, Rio de Janeiro, Brazil)[J]. SEPM Journal of Sedimentary Research, 1997(3): 378-390. |
[44] | 黄志诚, 陈智娜, 刘燕, 等. 中国南方灯影峡期海洋碳酸盐岩原始δ13C和δ18O组成及海水温度[J]. 古地理学报, 1999, 1(3): 1-7. |
[45] | 夏青松, 黄成刚, 杨雨然, 等. 四川盆地高石梯-磨溪地区震旦系灯影组储层特征及主控因素[J]. 地质论评, 2021, 67(2): 441-458. |
[46] |
沈安江, 胡安平, 程婷, 等. 激光原位U-Pb同位素定年技术及其在碳酸盐岩成岩-孔隙演化中的应用[J]. 石油勘探与开发, 2019, 46(6): 1062-1074.
DOI |
[47] |
HU A P, SHEN A J, WANG Y, et al. The geochemical characteristics and origin analysis of the botryoidal dolomite in the Upper Sinian Dengying Formation in the Sichuan Basin, China[J]. Journal of Natural Gas Geoscience, 2019, 4(2): 93-100.
DOI URL |
[48] |
HOOD A V S, WALLACE M W, DRYSDALE R N. Neoproterozoic aragonite-dolomite seas? Widespread marine dolomite precipitation in Cryogenian reef complexes[J]. Geology, 2011, 39(9): 871-874.
DOI URL |
[49] |
HOOD A V S, WALLACE M W. Synsedimentary diagenesis in a Cryogenian reef complex: ubiquitous marine dolomite precipitation[J]. Sedimentary Geology, 2012, 255/256: 56-71.
DOI URL |
[50] |
SHUSTER A M, WALLACE M W, HOOD A V S, et al. The Tonian Beck Spring dolomite: marine dolomitization in a shallow, anoxic sea[J]. Sedimentary Geology, 2018, 368: 83-104.
DOI URL |
[51] |
ZHAO D F, TAN X C, HU G, et al. Characteristics and primary mineralogy of fibrous marine dolomite cements in the end-Ediacaran Dengying Formation, South China: implications for aragonite-dolomite seas[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 581: 110635.
DOI URL |
[52] |
DICKSON J A D. Graphical modelling of crystal aggregates and its relevance to cement diagnosis[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1983, 309(1509): 465-502.
DOI URL |
[53] |
HU Y J, CAI C F, LIU D W, et al. Formation, diagenesis and palaeoenvironmental significance of Upper Ediacaran fibrous dolomite cements[J]. Sedimentology, 2020, 67(2): 1161-1187.
DOI URL |
[54] | 王兴志, 穆曙光, 方少仙, 等. 四川盆地西南部震旦系白云岩成岩过程中的孔隙演化[J]. 沉积学报, 2000, 18(4): 549-554. |
[55] |
CHEN J B, ALGEO T J, ZHAO L S, et al. Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China[J]. Earth-Science Reviews, 2015, 149: 181-202.
DOI URL |
[56] | MOORE C H, WADE W J. Carbonate reservoirs porosity and diagenesis in a sequence stratigraphic framework[M]. 2nd ed. Burlington: Elsevier Science, 2013. |
[57] | 金之钧, 朱东亚, 胡文瑄, 等. 塔里木盆地热液活动地质地球化学特征及其对储层影响[J]. 地质学报, 2006, 80(2): 245-253. |
[58] | 宋光永, 刘树根, 黄文明, 等. 川东南丁山-林滩场构造灯影组热液白云岩特征[J]. 成都理工大学学报(自然科学版), 2009, 36(6): 706-715. |
[1] | ZHOU Wei, MA Xiao, CHEN Wenyi, GAO Rui, WANG Yan, HU Dawei. Carbonates of the Wumishan Formation, Jixian System in the North China Plain: Mechanical properties under in-situ geothermal conditions [J]. Earth Science Frontiers, 2024, 31(6): 95-103. |
[2] | PAN Lei, DU Hongquan, LI Leitao, LONG Tao, YIN Xuefeng. Fracture development characteristics and main controlling factors of natural fracture in the Upper Triassic Xujiahe Formation in Yuanba area, northeastern Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(5): 156-165. |
[3] | QIAO Hui, ZHANG Yonggui, NIE Haikuan, PENG Yongmin, ZHANG Ke, SU Haikun. Characterization and 3D modeling of multiscale natural fractures in shale gas reservoir: A case study in the Pingqiao structural belt, Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(5): 89-102. |
[4] | HAN Pengyuan, DING Wenlong, YANG Debin, DENG Guangxiao, WANG Zhen, MA Hailong, LÜ Jing, GENG Tian. Characteristics and main controlling factors of fracture development in the Ordovician carbonate reservoir, Tahe oilfield [J]. Earth Science Frontiers, 2024, 31(5): 209-226. |
[5] | LI Yuntao, DING Wenlong, HAN Jun, HUANG Cheng, WANG Laiyuan, MENG Qingxiu. Fractures in Ordovician carbonate rocks in strike-slip fault zone, Shunbei area: Fracture distribution prediction and fracture controlling factors [J]. Earth Science Frontiers, 2024, 31(5): 263-287. |
[6] | CAI Zhenzhong, ZHAO Haitao, WANG Peng, LI Jing, XU Guojin. Characterization of Connectivity in Ultra-Deep Fractured-Caveate Reservoirs Considering Fluid-Solid Coupling: A Case Study of the Manfen Block in the Fuman Oil Field of the Tar Basin [J]. Earth Science Frontiers, 2024, 31(5): 301-312. |
[7] | HUANG Siyu, PU Junbing, PAN Moucheng, LI Jianhong, ZHANG Tao. Effects of algae-derived organic matter source on sediment mineralization in the karst reservoir [J]. Earth Science Frontiers, 2024, 31(5): 387-396. |
[8] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[9] | HE Jianhua, LI Yong, DENG Hucheng, WANG Yuanyuan, MA Ruolong, TANG Jianming. Study on tectonic fracture characteristics and stage evolution of Longmaxi shale reservoir in Yongchuan, southeastern Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(3): 298-311. |
[10] | YANG Zhibo, JI Hancheng, BAO Zhidong, SHI Yanqing, ZHAO Yajing, XIANG Pengfei. Dolomite crystal structure and geochemical characteristics in response to depositional environment: An example of dolomite from the Late Ediacaran Dengying Formation of the Yangzi Plateau [J]. Earth Science Frontiers, 2024, 31(3): 68-79. |
[11] | WANG Jiahao, HU Xiumian, JIANG Jingxin, MA Chao, MA Pengfei. High-resolution reconstruction of carbonate compensation depth in the South China Sea since 27 Ma [J]. Earth Science Frontiers, 2024, 31(1): 500-510. |
[12] | MA Yongsheng, CAI Xunyu, LI Huili, ZHU Dongya, ZHANG Juntao, YANG Min, DUAN Jinbao, DENG Shang, YOU Donghua, WU Chongyang, CHEN Senran. New insights into the formation mechanism of deep-ultra-deep carbonate reservoirs and the direction of oil and gas exploration in extra-deep strata [J]. Earth Science Frontiers, 2023, 30(6): 1-13. |
[13] | WU Chun, LIU Hangyu, LU Feifan, LIU Bo, SHI Kaibo, HE Qing. Storm deposition characteristics and models for the Middle and Upper Cambrian in Xiaweidian, Xishan area, Beijing [J]. Earth Science Frontiers, 2023, 30(6): 110-124. |
[14] | LI Dan, CHANG Jian, QIU Nansheng, XIONG Yujie. Thermal analysis of ultra-deep layers and its influence on reservoir utilization in platform area, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 135-149. |
[15] | QIU Nansheng, CHANG Jian, FENG Qianqian, ZENG Shuai, LIU Xiaoyu, LI Huili, MA Anlai. Maturation history of deep and ultra-deep source rocks, central and western basins, China [J]. Earth Science Frontiers, 2023, 30(6): 199-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||