Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (5): 301-312.DOI: 10.13745/j.esf.sf.2024.6.33
Previous Articles Next Articles
CAI Zhenzhong1,2,3(), ZHAO Haitao1,2,3, WANG Peng1,2,3, LI Jing4, XU Guojin4
Received:
2023-11-15
Revised:
2024-06-25
Online:
2024-09-25
Published:
2024-10-11
CLC Number:
CAI Zhenzhong, ZHAO Haitao, WANG Peng, LI Jing, XU Guojin. Characterization of Connectivity in Ultra-Deep Fractured-Caveate Reservoirs Considering Fluid-Solid Coupling: A Case Study of the Manfen Block in the Fuman Oil Field of the Tar Basin[J]. Earth Science Frontiers, 2024, 31(5): 301-312.
轴压/MPa | 围压/MPa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | |
5 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | |
10 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | |
15 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | |
20 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | |
25 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
Table 1 Summary of confining stress and axial stress in core permeability tests under tri-axial stress
轴压/MPa | 围压/MPa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | |
5 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | |
10 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | |
15 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | |
20 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | |
25 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
围压/MPa | 渗透率/(10-3 μm2) | |||||
---|---|---|---|---|---|---|
σ=0 MPa | σ=5 MPa | σ=10 MPa | σ=15 MPa | σ=20 MPa | σ=25 MPa | |
5 | 0.620 2 | 0.434 2 | 0.369 9 | 0.300 2 | 0.251 7 | 0.202 5 |
10 | 0.437 8 | 0.344 1 | 0.273 4 | 0.213 0 | 0.167 5 | 0.132 1 |
20 | 0.287 3 | 0.221 2 | 0.182 3 | 0.130 6 | 0.093 2 | 0.065 3 |
30 | 0.201 3 | 0.151 4 | 0.118 0 | 0.084 7 | 0.060 0 | 0.031 5 |
40 | 0.134 3 | 0.106 0 | 0.074 7 | 0.062 5 | 0.039 4 | 0.020 8 |
50 | 0.095 3 | 0.075 9 | 0.060 3 | 0.049 3 | 0.037 0 | 0.020 6 |
60 | 0.079 6 | 0.063 1 | 0.050 9 | 0.041 6 | 0.032 3 | 0.020 5 |
70 | 0.077 9 | 0.063 0 | 0.047 0 | 0.037 7 | 0.030 2 | 0.020 3 |
80 | 0.077 6 | 0.063 0 | 0.048 7 | 0.037 5 | 0.030 0 | 0.020 3 |
Table 2 Core permeability test results under three-way stress
围压/MPa | 渗透率/(10-3 μm2) | |||||
---|---|---|---|---|---|---|
σ=0 MPa | σ=5 MPa | σ=10 MPa | σ=15 MPa | σ=20 MPa | σ=25 MPa | |
5 | 0.620 2 | 0.434 2 | 0.369 9 | 0.300 2 | 0.251 7 | 0.202 5 |
10 | 0.437 8 | 0.344 1 | 0.273 4 | 0.213 0 | 0.167 5 | 0.132 1 |
20 | 0.287 3 | 0.221 2 | 0.182 3 | 0.130 6 | 0.093 2 | 0.065 3 |
30 | 0.201 3 | 0.151 4 | 0.118 0 | 0.084 7 | 0.060 0 | 0.031 5 |
40 | 0.134 3 | 0.106 0 | 0.074 7 | 0.062 5 | 0.039 4 | 0.020 8 |
50 | 0.095 3 | 0.075 9 | 0.060 3 | 0.049 3 | 0.037 0 | 0.020 6 |
60 | 0.079 6 | 0.063 1 | 0.050 9 | 0.041 6 | 0.032 3 | 0.020 5 |
70 | 0.077 9 | 0.063 0 | 0.047 0 | 0.037 7 | 0.030 2 | 0.020 3 |
80 | 0.077 6 | 0.063 0 | 0.048 7 | 0.037 5 | 0.030 0 | 0.020 3 |
参数 | 孔隙度/% | 渗透率/ (10-3μm2) | 泊松比 | 弹性模量/GPa | 基岩密度/ (g·cm-3) | 滑移系数αBJ |
---|---|---|---|---|---|---|
数值 | 4.3 | 0.62 | 0.297 | 34.18 | 2.68 | 1 |
参数 | 流体密度/ (g·cm-3) | 动力黏度/ (mPa·s) | 最大主应力/MPa | 垂向应力/MPa | 最小主应力/MPa | |
数值 | 0.806 | 1.725 | 150 | 140 | 130 |
Table 3 Summary of basic parameters of numerical model
参数 | 孔隙度/% | 渗透率/ (10-3μm2) | 泊松比 | 弹性模量/GPa | 基岩密度/ (g·cm-3) | 滑移系数αBJ |
---|---|---|---|---|---|---|
数值 | 4.3 | 0.62 | 0.297 | 34.18 | 2.68 | 1 |
参数 | 流体密度/ (g·cm-3) | 动力黏度/ (mPa·s) | 最大主应力/MPa | 垂向应力/MPa | 最小主应力/MPa | |
数值 | 0.806 | 1.725 | 150 | 140 | 130 |
[1] |
马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1): 1-17.
DOI |
[2] | 王清华, 杨海军, 汪如军, 等. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新[J]. 中国石油勘探, 2021, 26(4): 58-71. |
[3] |
倪新锋, 杨海军, 沈安江, 等. 塔北地区奥陶系灰岩段裂缝特征及其对岩溶储层的控制[J]. 石油学报, 2010, 31(6): 933-940.
DOI |
[4] | LI J, WANG H S, WU Z P, et al. Mesoscale migration of oil in tight sandstone reservoirs by multi-field coupled two-phase flow[J]. Marine and Petroleum Geology, 2024, 161: 106684. |
[5] | 何治亮, 朱成宏, 徐蔚亚, 等. 深层-超深层碳酸盐岩多类型储集体地震预测[J]. 地球物理学报, 2023, 66(1): 65-82. |
[6] | 王平, 潘文庆, 李世银, 等. 利用单井动态判识缝洞型碳酸盐岩油藏多缝洞体: 以哈拉哈塘油田哈6井区为例[J]. 新疆石油地质, 2017, 38(3): 363-368. |
[7] | 李静, 彭成乐, 周汉国, 等. 基于显微红外光谱技术的岩石微观渗流特性研究[J]. 岩石力学与工程学报, 2017, 36(增刊1): 3184-3191. |
[8] |
耿甜, 吕艳萍, 巫波, 等. 缝洞型油藏储量评价方法及开发对策[J]. 特种油气藏, 2021, 28(6): 129-136.
DOI |
[9] | FADLELMULA F M M, KILLOUGH J, FRAIM M. TiConverter: a training image converting tool for multiple-point geostatistics[J]. Computers and Geosciences, 2016, 96: 47-55. |
[10] | HØYER A S, VIGNOLI G, HANSEN T M, et al. Multiple-point statistical simulation for hydrogeological models: 3-D training image development and conditioning strategies[J]. Hydrology and Earth System Sciences, 2017, 21(12): 6069-6089. |
[11] | 刘军, 廖茂辉, 王来源, 等. 顺北油田顺北4号断裂带中段断控储集体连通性评价[J]. 新疆石油地质, 2023, 44(4): 456-464. |
[12] | PU C S, JING C, HE Y L, et al. Multistage interwell chemical tracing for step-by-step profile control of water channeling and flooding of fractured ultra-low permeability reservoirs[J]. Petroleum Exploration and Development, 2016, 43(4): 679-688. |
[13] | JING C, DONG X W, CUI W H, et al. Artificial neural network-based time-domain interwell tracer testing for ultralow-permeability fractured reservoirs[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107558. |
[14] | YANG H R, GUO K L, ZHU G W, et al. Application of trace substance tracer test method in low permeability reservoir-CQ oilfield[J]. Energy Reports, 2022, 8: 11309-11319. |
[15] | KUMAR A, SETH P, SHRIVASTAVA K, et al. Integrated analysis of tracer and pressure-interference tests to identify well interference[J]. SPE Journal, 2020, 25(4): 1623-1635. |
[16] | MANCHANDA R, SHARMA M M M, HOLZHAUSER S. Time-dependent fracture-interference effects in pad wells[J]. SPE Production and Operations, 2014, 29(4): 274-287. |
[17] | SERRES-PIOLE C, PREUD’HOMME H, MORADI-TEHRANI N, et al. Water tracers in oilfield applications: guidelines[J]. Journal of Petroleum Science and Engineering, 2012, 98: 22-39. |
[18] |
雷裕红, 罗晓容, 张立宽, 等. 东营凹陷南斜坡东段沙河街组砂岩输导层连通性量化表征[J]. 石油学报, 2013, 34(4): 692-700.
DOI |
[19] | 谢昕翰, 闫长辉, 赖思宇, 等. 塔河六区缝洞型碳酸盐岩油藏井间连通类型研究[J]. 科学技术与工程, 2013, 13(34): 10284-10288. |
[20] | 康志宏, 陈琳, 鲁新便, 等. 塔河岩溶型碳酸盐岩缝洞系统流体动态连通性研究[J]. 地学前缘, 2012, 19(2): 110-120. |
[21] |
赵辉, 李伯英, 周玉辉, 等. 基于高速非达西渗流的断溶体油藏连通性预测模型[J]. 石油学报, 2022, 43(7): 1026-1034.
DOI |
[22] | MORENO G A, LAKE L W. On the uncertainty of interwell connectivity estimations from the capacitance-resistance model[J]. Petroleum Science, 2014, 11(2): 265-271. |
[23] | ZENG X J, ZHANG W S, CHEN T, et al. Evaluating interwell connectivity in waterflooding reservoirs with graph-based cooperation-mission neural networks[J]. SPE Journal, 2022, 27(4): 2443-2452. |
[1] | LI Yuntao, DING Wenlong, HAN Jun, HUANG Cheng, WANG Laiyuan, MENG Qingxiu. Fractures in Ordovician carbonate rocks in strike-slip fault zone, Shunbei area: Fracture distribution prediction and fracture controlling factors [J]. Earth Science Frontiers, 2024, 31(5): 263-287. |
[2] | HAN Pengyuan, DING Wenlong, YANG Debin, DENG Guangxiao, WANG Zhen, MA Hailong, LÜ Jing, GENG Tian. Characteristics and main controlling factors of fracture development in the Ordovician carbonate reservoir, Tahe oilfield [J]. Earth Science Frontiers, 2024, 31(5): 209-226. |
[3] | LI Yingtao, DENG Shang, ZHANG Jibiao, LIN Huixi, LIU Yuqing, QIU Huabiao, HUANG Cheng, LIU Dawei, YAO Yili. Fault zone architecture of strike-slip faults in deep, tight carbonates and development of reservoir clusters under fault control: A case study in Shunbei [J]. Earth Science Frontiers, 2023, 30(6): 80-94. |
[4] | YOU Donghua, PENG Shoutao, HE Zhiliang, LIU Yongli, HAN Jun, XIAO Chongyang, LI Yingtao. Scope and mechanism of deep fluid circulation in karst systems, northern Awati-Manjiaer transition zone, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 69-79. |
[5] | ZHANG Yun, KANG Zhijiang, MA Junwei, ZHENG Huan, WU Dawei. A numerical simulation method for deep, discrete fractured reservoirs using a multi-scale fluid-rock coupling model [J]. Earth Science Frontiers, 2023, 30(6): 365-370. |
[6] | MA Yongsheng, CAI Xunyu, LI Huili, ZHU Dongya, ZHANG Juntao, YANG Min, DUAN Jinbao, DENG Shang, YOU Donghua, WU Chongyang, CHEN Senran. New insights into the formation mechanism of deep-ultra-deep carbonate reservoirs and the direction of oil and gas exploration in extra-deep strata [J]. Earth Science Frontiers, 2023, 30(6): 1-13. |
[7] | WANG Genjiu, SONG Xinmin, LIU Bo, SHI Kaibo, LIU Hangyu. High permeability zone of Cretaceous porous carbonate reservoir of A Field, Iraq: Genesis and distribution characteristics [J]. Earth Science Frontiers, 2022, 29(5): 483-496. |
[8] | HE Zhiliang,YUN Lu,YOU Donghua,PENG Shoutao,ZHANG Hong,WANG Kangning,QIAN Yixiong,JIAO Cunli,ZHANG Jibiao. Genesis and distribution prediction of the ultra-deep carbonate reservoirs in the transitional zone between the Awati and Manjiaer depressions, Tarim Basin [J]. Earth Science Frontiers, 2019, 26(1): 13-21. |
[9] | JIAN Yi-Xiong, SHA Xu-Guang, LI Hui-Chi, CHEN Xiang-Cun, LI Yu-Lan, JIA Yong-Chao, LIU Zhong-Bao. An approach to Caledonian unconformities and sequence stratigraphic patterns and distribution of reservoirs of Ordovician carbonate in the western Tazhong area, Tarim Basin. [J]. Earth Science Frontiers, 2013, 20(1): 260-274. |
[10] | KANG Zhi-Hong, CHEN Lin, LU Xin-Bian, YANG Min. Fluid dynamic connectivity of karst carbonate reservoir with fracture & cave system in Tahe Oilfield. [J]. Earth Science Frontiers, 2012, 19(2): 110-120. |
[11] | CHEN Yong GE Yun-Jin ZHOU Yao-Qi LIU Chao-Yang ZHOU Zhen-Zhu MAO Cui. Hydrocarbonbearing inclusions synthesized in carbonate at the temperature and pressure of natural reservoir: Some important implications for the study of petroleum geology [J]. Earth Science Frontiers, 2009, 16(1): 11-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||