Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (6): 1-13.DOI: 10.13745/j.esf.sf.2023.2.35
Previous Articles Next Articles
MA Yongsheng1(), CAI Xunyu1, LI Huili2, ZHU Dongya2, ZHANG Juntao2, YANG Min3, DUAN Jinbao4, DENG Shang2, YOU Donghua5, WU Chongyang2, CHEN Senran6
Received:
2023-01-30
Revised:
2023-02-27
Online:
2023-11-25
Published:
2023-11-25
CLC Number:
MA Yongsheng, CAI Xunyu, LI Huili, ZHU Dongya, ZHANG Juntao, YANG Min, DUAN Jinbao, DENG Shang, YOU Donghua, WU Chongyang, CHEN Senran. New insights into the formation mechanism of deep-ultra-deep carbonate reservoirs and the direction of oil and gas exploration in extra-deep strata[J]. Earth Science Frontiers, 2023, 30(6): 1-13.
[1] | SCHMOKER J W, HALLY R B. Carbonate porosity versus depth: a predictable relation for South Florida[J]. AAPG Bulletin, 1982, 66(12): 2561-2570. |
[2] |
EHRENBERG S N, NADEAU P H, STEEN O. Petroleum reservoir porosity versus depth: influence of geological age[J]. AAPG Bulletin, 2009, 93(10): 1281-1296.
DOI URL |
[3] | 马永生, 黎茂稳, 蔡勋育, 等. 海相深层油气富集机理与关键工程技术基础研究进展[J]. 石油实验地质, 2021, 43(5): 737-748. |
[4] | 马永生, 蔡勋育, 赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘, 2011, 18(4): 181-192. |
[5] | ZHU D Y, LIU Q Y, ZHANG J T, et al. Types of fluid alteration and developing mechanism of deep marine carbonate reservoirs[J]. Geofluids, 2019, 2019(1/2): 1-18. |
[6] |
ZHAO W Z, SHEN A J, QIAO Z F, et al. Carbonate karst reservoirs of the Tarim Basin, Northwest China: types, features, origins, and implications for hydrocarbon exploration[J]. Interpretation, 2014, 2(3): SF65-SF90.
DOI URL |
[7] |
SHEN A J, ZHAO W Z, HU A P, et al. Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2015, 42(5): 597-608.
DOI URL |
[8] |
MA Y S, GUO X S, GUO T L, et al. The Puguang gas field: new giant discovery in the mature Sichuan Basin, Southwest China[J]. AAPG Bulletin, 2007, 91(5): 627-643.
DOI URL |
[9] |
马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1): 1-17.
DOI |
[10] |
ZHU D Y, MENG Q Q, JIN Z J, et al. Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim Basin, northwestern China[J]. Marine and Petroleum Geology, 2015, 59: 232-244.
DOI URL |
[11] |
杨海军, 陈永权, 田军, 等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2): 62-72.
DOI |
[12] |
EHRENBERG S N, WALDERHAUG O, BJØRLYKKE K. Carbonate porosity creation by mesogenetic dissolution: reality or illusion?[J]. AAPG Bulletin, 2012, 96(2): 217-233.
DOI URL |
[13] | 翟晓先, 云露. 塔里木盆地塔河大型油田地质特征及勘探思路回顾[J]. 石油与天然气地质, 2008, 29(5): 565-573. |
[14] | 马永生, 蔡勋育, 赵培荣, 等. 深层超深层碳酸盐岩优质储层发育机理和 “三元控储” 模式: 以四川普光气田为例[J]. 地质学报, 2010, 84(8): 1087-1094. |
[15] | 赵文智, 沈安江, 胡素云, 等. 中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J]. 石油勘探与开发, 2012, 39(1): 1-12. |
[16] | 何治亮, 张军涛, 丁茜, 等. 深层-超深层优质碳酸盐岩储层形成控制因素[J]. 石油与天然气地质, 2017, 38(4): 633-644, 763. |
[17] |
马永生, 何治亮, 赵培荣, 等. 深层-超深层碳酸盐岩储层形成机理新进展[J]. 石油学报, 2019, 40(12): 1415-1425.
DOI |
[18] |
张煜, 毛庆言, 李海英, 等. 顺北中部超深层断控缝洞型油气藏储集体特征与实践应用[J]. 中国石油勘探, 2023, 28(1): 1-13.
DOI |
[19] | 李映涛, 邓尚, 张继标, 等. 深层致密碳酸盐岩走滑断裂带核带结构与断控储集体簇状发育模式: 以塔里木盆地顺北4号断裂带为例[J]. 地学前缘, 2023, 30(6): 80-94. |
[20] |
YOU D H, HAN J, HU W X, et al. Characteristics and formation mechanisms of silicified carbonate reservoirs in well SN4 of the Tarim Basin[J]. Energy Exploration and Exploitation, 2018, 36(4): 820-849.
DOI URL |
[21] | 尤东华, 韩俊, 胡文瑄, 等. 塔里木盆地顺南501井鹰山组白云岩储层特征与成因[J]. 沉积学报, 2018, 36(6): 1206-1217. |
[22] |
QIU N S, CHANG J, ZHU C Q, et al. Thermal regime of sedimentary basins in the Tarim, Upper Yangtze and North China Cratons, China[J]. Earth-Science Reviews, 2022, 224: 103884.
DOI URL |
[23] |
ZOU Y, YOU D H, CHEN B, et al. Carbonate U-Pb geochronology and clumped isotope constraints on the origin of hydrothermal Dolomites: a case study in the middle Permian Qixia Formation, Sichuan Basin, South China[J]. Minerals, 2023, 13(2): 223.
DOI URL |
[24] |
YANG T B, AZMY K, HE Z L, et al. Fault-controlled hydrothermal dolomitization of Middle Permian in southeastern Sichuan Basin, SW China, and its temporal relationship with the Emeishan Large Igneous Province: new insights from multi-geochemical proxies and carbonate U-Pb dating[J]. Sedimentary Geology, 2022, 439: 106215.
DOI URL |
[25] | 韩月卿, 张军涛, 潘磊. 川东南中二叠统茅口组白云岩特征与成因机理[J]. 地学前缘, 2023, 30(6): 45-56. |
[26] |
RIDING R. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47: 179-214.
DOI URL |
[27] |
GROTZINGER J, AL-RAWAHI Z. Depositional facies and platform architecture of microbialite-dominated carbonate reservoirs, Ediacaran-Cambrian Ara Group, Sultante of Om[J]. AAPG Bulletin, 2014, 98(8): 1453-1494.
DOI URL |
[28] |
MANCINI E A, MORGAN W A, HARRIS P M M, et al. Introduction: AAPG Hedberg research conference on microbial carbonate reservoir characterization: conference summary and selected papers[J]. AAPG Bulletin, 2013, 97(11): 1835-1847.
DOI URL |
[29] |
BELL E A, BOEHNKE P, HARRISON T M, et al. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14518-14521.
DOI PMID |
[30] |
NUTMAN A P, BENNETT V C, FRIEND C R L, et al. Rapid emergence of life shown by discovery of 3700-million-year-old microbial structures[J]. Nature, 2016, 537(7621): 535-538.
DOI |
[31] |
PETRASH D A, BIALIK O M, BONTOGNALI T R R, et al. Microbially catalyzed dolomite formation: from near-surface to burial[J]. Earth-Science Reviews, 2017, 171: 558-582.
DOI URL |
[32] |
WANG J B, HE Z L, ZHU D Y, et al. Petrological and geochemical characteristics of the botryoidal dolomite of Dengying Formation in the Yangtze Craton, South China: constraints on terminal Ediacaran “dolomite seas”[J]. Sedimentary Geology, 2020, 406: 105722.
DOI URL |
[33] |
ZHU D Y, LIU Q Y, WANG J B, et al. Transition of seawater conditions favorable for development of microbial hydrocarbon source - reservoir assemblage system in the Precambrian[J]. Precambrian Research, 2022, 374: 106649.
DOI URL |
[34] |
HOOD A V S, WALLACE M W, REED C P, et al. Enigmatic carbonates of the Ombombo Subgroup, Otavi Fold Belt, Namibia: a prelude to extreme Cryogenian anoxia?[J]. Sedimentary Geology, 2015, 324: 12-31.
DOI URL |
[35] |
SHUSTER A M, WALLACE M W, HOOD A V, et al. The tonian beck spring dolomite: marine dolomitization in a shallow, anoxic sea[J]. Sedimentary Geology, 2018, 368: 83-104.
DOI URL |
[36] |
HOOD A V, WALLACE M W. Synsedimentary diagenesis in a Cryogenian reef complex: ubiquitous marine dolomite precipitation[J]. Sedimentary Geology, 2012, 255/256: 56-71.
DOI URL |
[37] |
HOOD A V S, WALLACE M W, DRYSDALE R N. Neoproterozoic aragonite-dolomite seas? Widespread marine dolomite precipitation in Cryogenian reef complexes[J]. Geology, 2011, 39(9): 871-874.
DOI URL |
[38] |
ZHU D Y, LIU Q Y, WANG J B, et al. Stable carbon and oxygen isotope data of Late Ediacaran stromatolites from a hypersaline environment in the Tarim Basin (NW China) and their reservoir potential[J]. Facies, 2021, 67(3): 1-25.
DOI |
[39] |
ZHU D Y, LIU Q Y, HE Z L, et al. Early development and late preservation of porosity linked to presence of hydrocarbons in Precambrian microbialite gas reservoirs within the Sichuan Basin, southern China[J]. Precambrian Research, 2020, 342: 105694.
DOI URL |
[40] | CROIZÉ D, RENARD F, GRATIER J P. Compaction and porosity reduction in carbonates: a review of observations, theory, and experiments[M]//Advances in geophysics. Amsterdam: Elsevier, 2013: 181-238. |
[41] |
LEACH D L, PLUMLEE G S, HOFSTRA A H, et al. Origin of late dolomite cement by CO2-saturated deep basin brines: evidence from the Ozark region, central United States[J]. Geology, 1991, 19(4): 348-351.
DOI URL |
[42] |
BEHAR F, VANDENBROUCKE M, TEERMANN S C, et al. Experimental simulation of gas generation from coals and a marine kerogen[J]. Chemical Geology, 1995, 126(3/4): 247-260.
DOI URL |
[43] |
HAO F, ZHANG X F, WANG C W, et al. The fate of CO2 derived from thermochemical sulfate reduction (TSR) and effect of TSR on carbonate porosity and permeability, Sichuan Basin, China[J]. Earth-Science Reviews, 2015, 141: 154-177.
DOI URL |
[44] |
WARREN J. Dolomite: occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/2/3): 1-81.
DOI URL |
[45] | 周进高, 徐春春, 姚根顺, 等. 四川盆地下寒武统龙王庙组储集层形成与演化[J]. 石油勘探与开发, 2015, 42(2): 158-166. |
[46] | 付金华, 吴兴宁, 孙六一, 等. 鄂尔多斯盆地马家沟组中组合岩相古地理新认识及油气勘探意义[J]. 天然气工业, 2017, 37(3): 9-16. |
[47] | 张军涛, 金晓辉, 谷宁, 等. 鄂尔多斯盆地北部地区马家沟组岩溶储层的差异性和发育模式[J]. 石油与天然气地质, 2021, 42(5): 1159-1168, 1242. |
[48] | 段金宝, 潘磊, 石司宇, 等. 川东涪陵地区15号走滑断裂带几何学、运动学特征及演化过程研究[J]. 地学前缘, 2023, 30(6): 57-68. |
[1] | LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin [J]. Earth Science Frontiers, 2024, 31(5): 103-116. |
[2] | WU Zhonghu, MENG Xiangrui, LAN Baofeng, LIU Jingshou, GONG Lei, YANG Yuhan. Mechanical behavior of calcite vein-bearing shale of the Niutitang Formation in Fenggang area, northern Guizhou based on CT tests [J]. Earth Science Frontiers, 2024, 31(5): 117-129. |
[3] | DONG Shaoqun, ZENG Lianbo, JI Chunqiu, ZHANG Yanbing, HAO Jingru, XU Xiaotong, HAN Gaosong, XU Hui, LI Haiming, LI Xinqi. A deep kernel method for fracture identification in ultra-deep tight sandstones using well logs [J]. Earth Science Frontiers, 2024, 31(5): 166-176. |
[4] | HAN Pengyuan, DING Wenlong, YANG Debin, DENG Guangxiao, WANG Zhen, MA Hailong, LÜ Jing, GENG Tian. Characteristics and main controlling factors of fracture development in the Ordovician carbonate reservoir, Tahe oilfield [J]. Earth Science Frontiers, 2024, 31(5): 209-226. |
[5] | GONG Lei, QIN Xinnan, GAO Shuai, FU Xiaofei, SU Xiaocen, WANG Jie. Multi-scale fracture development characteristics and fracture network patterns of buried-hill in metamorphic rocks: A case study of the Bozhong Z metamorphic buried-hill [J]. Earth Science Frontiers, 2024, 31(5): 332-343. |
[6] | WANG Junpeng, ZENG Lianbo, XU Zhenping, WANG Ke, ZENG Qinglu, ZHANG Zhiyuan, ZHANG Ronghu, JIANG Jun. The impact of diagenetic fluids on the structural fracture filling and dissolution alteration of ultra-deep tight sandstone reservoirs: a case study of the Kelasu oil and gas field in the Tarim Basin [J]. Earth Science Frontiers, 2024, 31(3): 312-323. |
[7] | LU Pengda, LI Zeqi, TIAN Tengzhen, WU Juan, SUN Wei, QIAO Zhanfeng, WANG Yongsheng, LIU Shugen, DENG Bin. The botryoidal-lace texture and its role in dolomite reservoir control in the 2nd member, Sinian Dengying Formation in Sichuan Basin [J]. Earth Science Frontiers, 2023, 30(6): 14-31. |
[8] | ZENG Shuai, QIU Nansheng, LI Huili, MA Anlai, ZHU Xiuxiang, JIA Jingkun, ZHANG Mengfei. Differential overpressure distribution in Ordovician carbonates, Shuntuoguole area, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 305-315. |
[9] | LIU Zhen, ZHU Maolin, PAN Gaofeng, XIA Lu, LU Chaojin, LIU Mingjie, LIU Jingjing, HOU Yingjie. A dissolution porosity increase model for sandstone reservoir in the Yanchang Formation in central and southern Ordos Basin—model building and model applications [J]. Earth Science Frontiers, 2023, 30(2): 96-108. |
[10] | TANG Huafeng, WANG Hanfei, Ben KENNEDY, ZHANG Xinyu, Marcos ROSSETTI, Alan Patrick BISCHOFF, Andrew NICOL. Characteristics and controlling factors of volcanic reservoirs of subaqueous pyroclastic rocks: An analysis of the Miocene Kora Volcano in the Taranaki Basin, New Zealand [J]. Earth Science Frontiers, 2021, 28(1): 375-387. |
[11] | PAN Rong,ZHU Xiaomin,TAN Mingxuan,ZHANG Jianfeng,LI Yong,DI Hongli. Quantitative research on porosity evolution of deep tight reservoir in the Bashijiqike Formation in Kelasu structure zone, Kuqa Depression.#br# [J]. Earth Science Frontiers, 2018, 25(2): 159-169. |
[12] | WEI Wei,ZHU Xiaomin,ZHU Shifa,SUN Shuyang,WU Jianping,WANG Mingwei,L Sihan. Petrologic and diagenetic characteristics of the lacustrine volcanicsiliciclastic tight reservoir: an example from the first member of the Tenggeer Formation in the Lower Cretaceous, Anan Sag, [J]. Earth Science Frontiers, 2018, 25(2): 147-158. |
[13] | ZHANG Liqiang,YAN Yiming,LUO Xiaorong,WANG Zhenbiao,ZHANG Haizu. Diagenetic differences of tight sandstone of the Lower Jurassic Ahe Formation in the Yiqikelike Area of the Kuqa Depression, Tarim Basin. [J]. Earth Science Frontiers, 2018, 25(2): 170-178. |
[14] | SHI Zhensheng,LI Xizhe,DONG Dazhong,QIU Zhen,LU Bin,LIANG Pingping. Diagenesis and pore evolution of tight sandstone reservoir: a case study from the Upper Triassic reservoir of the southwest Sichuan Basin, China. [J]. Earth Science Frontiers, 2018, 25(2): 179-190. |
[15] | WU Songtao,ZHU Rukai,LI Xun,JIN Xu,YANG Zhi,MAO Zhiguo. Evaluation and application of porous structure characterization technologies in unconventional tight reservoirs. [J]. Earth Science Frontiers, 2018, 25(2): 191-203. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||