Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (5): 117-129.DOI: 10.13745/j.esf.sf.2024.6.15
Previous Articles Next Articles
WU Zhonghu1(), MENG Xiangrui1, LAN Baofeng2,3, LIU Jingshou4,5,6, GONG Lei7,8, YANG Yuhan1
Received:
2023-11-15
Revised:
2024-04-18
Online:
2024-09-25
Published:
2024-10-11
CLC Number:
WU Zhonghu, MENG Xiangrui, LAN Baofeng, LIU Jingshou, GONG Lei, YANG Yuhan. Mechanical behavior of calcite vein-bearing shale of the Niutitang Formation in Fenggang area, northern Guizhou based on CT tests[J]. Earth Science Frontiers, 2024, 31(5): 117-129.
材料 | 弹性模量/GPa | 抗压强度/MPa | 泊松比 | 拉压比 | 内摩擦角/(°) |
---|---|---|---|---|---|
页岩 | 51.6 | 145 | 0.22 | 14 | 35 |
方解石 | 80.5 | 101 | 0.30 | 11 | 30 |
石英 | 96.0 | 373 | 0.08 | 15 | 60 |
Table 1 Material parameters for rock samples
材料 | 弹性模量/GPa | 抗压强度/MPa | 泊松比 | 拉压比 | 内摩擦角/(°) |
---|---|---|---|---|---|
页岩 | 51.6 | 145 | 0.22 | 14 | 35 |
方解石 | 80.5 | 101 | 0.30 | 11 | 30 |
石英 | 96.0 | 373 | 0.08 | 15 | 60 |
Fig.13 Results of uniaxial compression acoustic emission tests for calcite vein-bearing shales with different vein inclinations a—θ=15°;b—θ=30°;c—θ=45°;d—θ=60°;e—θ=75°;f—θ=90°。
[1] |
张同伟, 罗欢, 孟康. 我国南方不同地区寒武系页岩含气性差异主控因素探讨[J]. 地学前缘, 2023, 30(3): 1-13.
DOI |
[2] | 聂海宽, 李沛, 党伟, 等. 深层页岩气富集特征与攻关方向: 以四川盆地及其周缘奥陶系五峰组—志留系龙马溪组页岩为例[J]. 石油勘探与开发, 2022, 49(4): 1-12. |
[3] |
马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574.
DOI |
[4] | 王濡岳, 丁文龙, 龚大建, 等. 黔北地区海相页岩气保存条件: 以贵州岑巩区块下寒武统牛蹄塘组为例[J]. 石油与天然气地质, 2016, 37(1): 45-55. |
[5] |
丁文龙, 曾维特, 王濡岳, 等. 页岩储层构造应力场模拟与裂缝分布预测方法及应用[J]. 地学前缘, 2016, 23(2): 63-74.
DOI |
[6] |
邱振, 邹才能, 王红岩, 等. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 2020, 31(2): 163-175.
DOI |
[7] | LAI J, LIU B C, LI H B, et al. Bedding parallel fractures in fine-grained sedimentary rocks: recognition, formation mechanisms, and prediction using well log[J]. Petroleum Science, 2022, 19(2): 554-569. |
[8] | LI C B, ZOU B B, ZHOU H W, et al. Experimental investigation on failure behaviors and mechanism of an anisotropic shale in direct tension[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(4): 98. |
[9] | WANG J, XIE H P, LI C B. Anisotropic failure behaviour and breakdown pressure interpretation of hydraulic fracturing experiments on shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142: 104748. |
[10] | ZHAI H Y, CHANG X, ZHU W, et al. Study on anisotropy of Longmaxi shale using hydraulic fracturing experiment[J]. Science China Earth Sciences, 2021, 64(2): 260-277. |
[11] | GUO P, LI X, LI S D, et al. Quantitative analysis of anisotropy effect on hydrofracturing efficiency and process in shale using X-ray computed tomography and acoustic emission[J]. Rock Mechanics and Rock Engineering, 2021, 54(11): 5715-5730. |
[12] | GUPTA N, MISHRA B. Experimental investigation of the influence of bedding planes and differential stress on microcrack propagation in shale using X-ray CT scan[J]. Geotechnical and Geological Engineering, 2021, 39(1): 213-236. |
[13] | LEI B, ZUO J P, LIU H Y, et al. Experimental and numerical investigation on shale fracture behavior with different bedding properties[J]. Engineering Fracture Mechanics, 2021, 247: 107639. |
[14] | LUO N, FAN X R, CAO X L, et al. Dynamic mechanical properties and constitutive model of shale with different bedding under triaxial impact test[J]. Journal of Petroleum Science and Engineering, 2022, 216: 110758. |
[15] | 王兴渝, 朱哲明, 邱豪, 等. 冲击荷载下层理对页岩内裂纹扩展行为影响规律的研究[J]. 岩石力学与工程学报, 2019, 38(8): 1542-1556. |
[16] |
杜佰松, 朱光有, 刘舒飞, 等. 浅析影响方解石生长和溶解的动力学因素及机制[J]. 地学前缘, 2023, 30(4): 335-351.
DOI |
[17] |
崔悦, 李熙喆, 郭伟, 等. 川南深层奥陶系五峰组: 志留系龙马溪组页岩裂缝方解石脉对页岩气运移富集的启示[J]. 石油勘探与开发, 2023, 50(6): 1199-1208.
DOI |
[18] | 刘力, 何生, 翟刚毅, 等. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存[J]. 地球科学, 2019, 44(11): 3583-3597. |
[19] | ZHANG J G, JIANG Z X, WANG S Q, et al. Bedding-parallel calcite veins as a proxy for shale reservoir quality[J]. Marine and Petroleum Geology, 2021, 127: 104975. |
[20] | TANG M T, WU Z H, WANG A L, et al. Study on the microscopic fracture process and acoustic emission of shale based on digital image[J]. Geofluids, 2021, 2021: 8874918. |
[21] | 宋怀雷, 邬忠虎, 李利平, 等. 基于数字图像的微观尺度下方解石脉对页岩各向异性的影响[J]. 山东大学学报(工学版), 2021, 51(5): 91-99, 106. |
[22] | WANG G, QIN X J, HAN D Y, et al. Study on seepage and deformation characteristics of coal microstructure by 3D reconstruction of CT images at high temperatures[J]. International Journal of Mining Science and Technology, 2021, 31(2): 175-185. |
[23] | CHEN X C, WANG G, CHEN H, et al. Analysis of the effects of coal facture shape factor on water seepage based on computerized tomography (CT) 3D reconstructed artificial fractures[J]. Fuel, 2023, 348: 128571. |
[24] | WANG G, CHEN X C, WANG S B, et al. Influence of fracture connectivity and shape on water seepage of low-rank coal based on CT 3D reconstruction[J]. Journal of Natural Gas Science and Engineering, 2022, 102: 104584. |
[25] | 郎颖娴, 梁正召, 段东, 等. 基于CT试验的岩石细观孔隙模型重构与并行模拟[J]. 岩土力学, 2019, 40(3): 1204-1212. |
[26] | 储超群, 吴顺川, 张诗淮, 等. 层状砂岩力学行为各向异性与破裂特征[J]. 中南大学学报(自然科学版), 2020, 51(8): 2232-2246. |
[27] | ZUO Y J, HAO Z B, LIU H, et al. Mesoscopic damage evolution characteristics of sandstone with original defects based on micro-ct image and fractal theory[J]. Arabian Journal of Geosciences, 2022, 15(22): 1673. |
[28] | 周辉, 程广坦, 朱勇, 等. 基于三维扫描和三维雕刻技术的岩石结构面原状重构方法及其力学特性[J]. 岩土力学, 2018, 39(2): 417-425. |
[29] | 李英杰, 张亮, 王炳乾, 等. 基于CT扫描和数字体相关法的页岩各向异性三维变形场特征研究[J]. 岩土力学, 2023, 44(增刊1): 134-144. |
[30] | WU Z H, ZUO Y J, WANG S Y, et al. Numerical simulation and fractal analysis of mesoscopic scale failure in shale using digital images[J]. Journal of Petroleum Science and Engineering, 2016, 145: 592-599. |
[31] | 殷鹏飞, 杨圣奇, 高峰, 等. 不同节理模型在层状复合岩石离散元模拟中的应用[J]. 采矿与安全工程学报, 2023, 40(1): 164-173, 183. |
[32] |
马新仿, 李宁, 尹丛彬, 等. 页岩水力裂缝扩展形态与声发射解释: 以四川盆地志留系龙马溪组页岩为例[J]. 石油勘探与开发, 2017, 44(6): 974-981.
DOI |
[33] | 侯鹏, 高峰, 杨玉贵, 等. 考虑层理影响页岩巴西劈裂及声发射试验研究[J]. 岩土力学, 2016, 37(6): 1603-1612. |
[34] | 张树文, 鲜学福, 周军平, 等. 基于巴西劈裂试验的页岩声发射与能量分布特征研究[J]. 煤炭学报, 2017, 42(增刊2): 346-353. |
[35] | LU J, HUANG G, GAO H, et al. Mechanical properties of layered composite coal-rock subjected to true triaxial stress[J]. Rock Mechanics and Rock Engineering, 2020, 53(9): 4117-4138. |
[36] | HENG S, LI X Z, LIU X, et al. Experimental study on the mechanical properties of bedding planes in shale - ScienceDirect[J]. Journal of Natural Gas Science and Engineering, 2020, 76: 103161. |
[37] | 崔恒涛, 邬忠虎, 娄义黎, 等. 基于微观尺度的页岩损伤破裂数值试验[J]. 煤田地质与勘探, 2020, 48(5): 137-143. |
[1] | DING Wenlong, WANG Yao, ZHANG Ziyou, LIU Tianshun, CHENG Xiaoyun, GOU Tong, WANG Shenghui, LIU Tingfeng. Tectonic fracturing and fracture initiation in shale reservoirs—research progress and outlooks [J]. Earth Science Frontiers, 2024, 31(5): 1-16. |
[2] | LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin [J]. Earth Science Frontiers, 2024, 31(5): 103-116. |
[3] | HE Jianhua, CAO Hongxiu, DENG Hucheng, YIN Changhai, ZHU Yanping, LI Chang, LI Yong, YIN Shuai. Nature fractures in shales of the Lianggaoshan Formation in northern Sichuan Basin: Fracture development characteristics and fracture formation and evolution model [J]. Earth Science Frontiers, 2024, 31(5): 17-34. |
[4] | GAO Yuqiao, HUA Caixia, CAI Xiao, BAI Luanxi, LU Jia. Fracture formation mechanism in shale oil reservoirs, Qintong Depression, North Jiangsu Basin and its influence on hydrocarbon occurrence [J]. Earth Science Frontiers, 2024, 31(5): 35-45. |
[5] | CHEN Rubiao, WANG Yuman, HUANG Zhengliang, LI Weiling, YAN Wei, LIANG Feng, GUO Wei. Fracture pore characteristics and gas accumulation model of marine shales in the northwestern Ordos Basin: A case study of the Ordovician Wulalike Formation [J]. Earth Science Frontiers, 2024, 31(5): 46-60. |
[6] | SUN Yaxiong, LIANG Bing, QIU Xuming, DUAN Hongliang, FU Qian, ZHOU Jinfeng, LIU Shili, QIU Yongfeng, HU Huiting, GONG Lei. Characteristics of natural fractures and its influence on shale oil enrichment and preservation in Member 2 of Funing Formation in Gaoyou sag, Subei Basin [J]. Earth Science Frontiers, 2024, 31(5): 61-74. |
[7] | QIAO Hui, ZHANG Yonggui, NIE Haikuan, PENG Yongmin, ZHANG Ke, SU Haikun. Characterization and 3D modeling of multiscale natural fractures in shale gas reservoir: A case study in the Pingqiao structural belt, Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(5): 89-102. |
[8] | DOU Lirong, HUANG Wensong, KONG Xiangwen, WANG Ping, ZHAO Zibin. Hydrocarbon enrichment mechanism of Duvernay marine shale in the Western Canada Basin [J]. Earth Science Frontiers, 2024, 31(4): 191-205. |
[9] | HE Jianhua, LI Yong, DENG Hucheng, WANG Yuanyuan, MA Ruolong, TANG Jianming. Study on tectonic fracture characteristics and stage evolution of Longmaxi shale reservoir in Yongchuan, southeastern Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(3): 298-311. |
[10] | DING Wenlong, WANG Yao, WANG Shenghui, LIU Tingfeng, ZHANG Ziyou, GOU Tong, ZHANG Mengyang, HE Xiang. Research progress and insight on non-tectonic fractures in shale reservoirs [J]. Earth Science Frontiers, 2024, 31(1): 297-314. |
[11] | ZHANG Jinchuan, WANG Xiangzeng, LI Zhongming, LIU Shugen, NIU Jialiang, YUAN Tianshu, LI Xingqi, TANG Xuan. Technological progress and trend in shale gas on-site testing—a critical review [J]. Earth Science Frontiers, 2024, 31(1): 315-326. |
[12] | LI Huili, GAO Jian, CAO Zicheng, ZHU Xiuxiang, GUO Xiaowen, ZENG Shuai. Spatial-temporal distribution of fluid activities and its significance for hydrocarbon accumulation in the strike-slip fault zones, Shuntuoguole low-uplift, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 316-328. |
[13] | XIANG Xin, HUANG Chuanyan, CAO Lanzhu, CAO Qiang, JIANG Tao, ZHANG Yufei, SONG Yu, XU Jie. Enrichment model and exploration potential for unconventional oil and gas in troughs, Erlian Basin [J]. Earth Science Frontiers, 2023, 30(6): 462-472. |
[14] | PENG Jun, SUN Ningliang, LU Kun, XU Yunlong, CHEN Faliang. Shale oil reservoir of the Palaeogene Shahejie Formation in the Dongpu Sag: Petrology and pore microstructural characteristics [J]. Earth Science Frontiers, 2023, 30(4): 128-141. |
[15] | SHI Juye, JIN Zhijun, LIU Quanyou, FAN Tailiang, GAO Zhiqian, WANG Hongyu. Application of astronomical cycles in shale oil exploration and in high-precision stratigraphic isochronous comparison of organic-rich fine-grain sedimentary rocks [J]. Earth Science Frontiers, 2023, 30(4): 142-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||