Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (4): 142-151.DOI: 10.13745/j.esf.sf.2022.10.14
Previous Articles Next Articles
SHI Juye1(), JIN Zhijun2,3,*(
), LIU Quanyou2,3, FAN Tailiang1, GAO Zhiqian1, WANG Hongyu1
Received:
2022-08-14
Revised:
2022-09-20
Online:
2023-07-25
Published:
2023-07-07
CLC Number:
SHI Juye, JIN Zhijun, LIU Quanyou, FAN Tailiang, GAO Zhiqian, WANG Hongyu. Application of astronomical cycles in shale oil exploration and in high-precision stratigraphic isochronous comparison of organic-rich fine-grain sedimentary rocks[J]. Earth Science Frontiers, 2023, 30(4): 142-151.
Fig.2 Comparison of well logs from the upper 4th Chun member (Es4cu) of the Shahejie Formation in the Dongying sag (the shaded part is the section in Fig.5)
Fig.3 Well log spectral analysis results for well Fanye-1. (A) Stratigraphic column, GR curve and orbital cycles. Astronomical timescale adapted from [18]. Spectral filter factors were 0.025±0.015 (long eccentricity) and 0.26±0.05 (obliquity). (B) 2π MTM power spectrum for the GR curve. (C) Evolutive FFT spectrum for the GR curve.
Fig.4 Correlation of eccentricity cycles in well logs from section Es4cu in the Dongying sag. Red lines indicate high-production shale oil formations.
Fig.5 Correlation of obliquity cycles in well logs from section Es4cu in the Dongying sag. Spectral filter factors for obliquity were 0.29±0.05 (Fan120), 0.26±0.05 (Fanye1) and 0.43±0.05 (Liang758).
[1] | 郑荣才, 彭军, 吴朝容. 陆相盆地基准面旋回的级次划分和研究意义[J]. 沉积学报, 2001, 19(2): 249-255. |
[2] | 邓宏文, 王红亮, 祝永军, 等. 高分辨率层序地层学: 原理及应用[M]. 北京: 地质出版社, 2002. |
[3] | 操应长, 姜在兴, 夏斌, 等. 陆相断陷湖盆T-R层序的特点及其控制因素: 以东营凹陷古近系沙河街组三段层序地层为例[J]. 地质科学, 2004, 39(1): 111-122. |
[4] | 梅冥相. 从旋回的有序叠加形式到层序的识别和划分: 层序地层学进展之三[J]. 古地理学报, 2011, 13(1): 37-54. |
[5] | 宋光永, 宫清顺, 庞皓, 等. 柴达木盆地西部斜坡区下干柴沟组下段高精度层序地层及砂体构型分析[J]. 中国地质, 2020, 47(1): 188-200. |
[6] | 马涛, 马青, 王振宇, 等. 库车坳陷古近系原型沉积盆地层序地层格架及沉积演化[J]. 地质科学, 2020, 55(2): 369-381. |
[7] | 林畅松, 张燕梅, 刘景彦, 等. 高精度层序地层学和储层预测[J]. 地学前缘, 2000, 7(3): 111-117. |
[8] | CATUNEANU O. Principles of sequence stratigraphy[M]. Amsterdam:Elsevier, 2006. |
[9] |
SLATT R M, RODRIGUEZ N D. Comparative sequence stratigraphy and organic geochemistry of gas shales: commonality or coincidence?[J]. Journal of Natural Gas Science and Engineering, 2012, 8: 68-84.
DOI URL |
[10] | 吴靖, 姜在兴, 吴明昊. 细粒岩层序地层学研究方法综述[J]. 地质科技情报, 2015, 34(5): 16-20. |
[11] | 杜学斌, 刘辉, 刘惠民, 等. 细粒沉积物层序地层划分方法初探: 以东营凹陷樊页1井沙三下-沙四上亚段泥页岩为例[J]. 地质科技情报, 2016, 35(4): 1-11. |
[12] |
VAN VUGT N, LANGEREIS C G, HILGEN F J. Orbital forcing in Pliocene-Pleistocene Mediterranean lacustrine deposits: dominant expression of eccentricity versus precession[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 172(3/4): 193-205.
DOI URL |
[13] |
SHI J Y, JIN Z J, LIU Q Y, et al. Depositional process and astronomical forcing model of lacustrine fine-grained sedimentary rocks: a case study of the early Paleogene in the Dongying sag, Bohai Bay Basin[J]. Marine and Petroleum Geology, 2020, 113: 103995.
DOI URL |
[14] |
FANG Q, WU H C, WANG X L, et al. An astronomically forced cooling event during the Middle Ordovician[J]. Global and Planetary Change, 2019, 173: 96-108.
DOI |
[15] |
WANG M, CHEN H H, HUANG C J, et al. Astronomical forcing and sedimentary noise modeling of lake-level changes in the Paleogene Dongpu depression of North China[J]. Earth and Planetary Science Letters, 2020, 535: 116116.
DOI URL |
[16] |
ABELS H A, AZIZ H A, CALVO J P, et al. Shallow lacustrine carbonate microfacies document orbitally paced lake-level history in the Miocene Teruel Basin (North-East Spain)[J]. Sedimentology, 2009, 56(2): 399-419.
DOI URL |
[17] |
BOULILA S, GALBRUN B, HINNOV L A, et al. Milankovitch and sub-Milankovitch forcing of the Oxfordian (Late Jurassic) Terres Noires Formation (SE France) and global implications[J]. Basin Research, 2010, 22(5): 717-732.
DOI URL |
[18] |
SHI J Y, JIN Z J, LIU Q Y, et al. Cyclostratigraphy and astronomical tuning of the Middle Eocene terrestrial successions in the Bohai Bay Basin, eastern China[J]. Global and Planetary Change, 2019, 174: 115-126.
DOI URL |
[19] |
ZHANG J G, JIANG Z X, LIANG C, et al. Astronomical forcing of meter-scale organic-rich mudstone-limestone cyclicity in the Eocene Dongying sag, China: implications for shale reservoir exploration[J]. AAPG Bulletin, 2022, 106(8), 1557-1579.
DOI URL |
[20] |
SMITH M E, CARROLL A R, SCOTT J J, et al. Early Eocene carbon isotope excursions and landscape destabilization at eccentricity minima: green River Formation of Wyoming[J]. Earth and Planetary Science Letters, 2014, 403: 393-406.
DOI URL |
[21] | 孙善勇, 刘惠民, 操应长, 等. 湖相深水细粒沉积岩米兰科维奇旋回及其页岩油勘探意义: 以东营凹陷牛页1井沙四上亚段为例[J]. 中国矿业大学学报, 2017, 46(4): 846-858. |
[22] | 彭军, 于乐丹, 许天宇, 等. 湖相泥页岩地层米氏旋回测井识别及环境响应特征: 以渤海湾盆地济阳坳陷东营凹陷樊页1井Es4cs为例[J]. 石油与天然气地质, 2022, 43(4): 957-969. |
[23] | 杜学斌, 陆永潮, 刘惠民, 等. 细粒沉积物中不同级次高频层序划分及其地质意义: 以东营凹陷沙三下-沙四上亚段泥页岩为例[J]. 石油实验地质, 2018, 40(2): 244-252. |
[24] |
栾旭伟, 孔祥鑫, 张金亮, 等. 天文旋回约束下东营凹陷中始新统含碳酸盐细粒沉积岩成因分析[J]. 沉积学报, 2022. DOI:10.14027/j.issn.1000-0550.2022.070.
DOI |
[25] |
雷华蕊, 姜在兴, 周红科. 早古近纪极热时期古气候演化分析: 以东营凹陷为例[J]. 地学前缘, 2018, 25(4): 176-184.
DOI |
[26] | 王健, 彭捷, 操应长, 等. 东营凹陷中晚始新世古气候演化特征及其意义: 以Hk1井为例[J]. 沉积学报, 2022, 40(4): 1059-1072. |
[27] | NIO S D, BROUWER J, SMITH D, et al. Spectral trend attribute analysis: applications in the stratigraphic analysis of wireline logs[J]. First Break, 2005, 23(4): 71-76. |
[28] | 任金锋, 廖远涛, 孙鸣, 等. 基于小波变换的高精度层序地层定量划分研究及其应用[J]. 地球物理学进展, 2013, 28(5): 2651-2658. |
[29] | 石巨业, 金之钧, 刘全有, 等. 基于米兰科维奇理论的湖相细粒沉积岩高频层序定量划分[J]. 石油与天然气地质, 2019, 40(6): 1205-1214. |
[30] | 王茜, 黄永建, 张治锋, 等. 高分辨率化学层序地层学在深水细粒沉积中的应用: 以上扬子地区六塘露头五峰组-龙马溪组下段为例[J]. 现代地质, 2021, 35(1): 281-292. |
[31] | 龚一鸣, 杜远生, 童金南, 等. 旋回地层学: 地层学解读时间的第三里程碑[J]. 地球科学: 中国地质大学学报, 2008, 33(4): 443-457. |
[32] | 伊海生. 地层记录中旋回层序界面的识别方法及原理[J]. 沉积学报, 2012, 30(6): 991-998. |
[33] | 陈书平, 王毅, 周子勇, 等. 塔里木盆地中-下寒武统自然伽马测井曲线周期及其在沉积层序划分中的意义[J]. 地质通报, 2020, 39(7): 943-949. |
[34] | 刘洋. 东海盆地西湖凹陷沉积记录的天文旋回响应[J]. 地质科技通报, 2020(3): 120-128. |
[35] | 田双良, 张立强, 严一鸣, 等. 塔里木盆地塔中-顺北地区柯坪塔格组高分辨率旋回层序地层划分[J]. 天然气地球科学, 2020, 31(10): 1466-1478. |
[36] | 梅冥相, 王龙, 李屹尧, 等. 湖南桃源瓦尔岗剖面层序地层框架下的寒武系第10阶旋回地层学研究[J]. 地层学杂志, 2019, 43(2): 115-132. |
[37] | 汪品先. 编制地球的 “万年历”[J]. 自然杂志, 2006, 28(1): 1-6. |
[38] | GRADSTEIN F M, OGG J G, SCHMITZ M. The geologic time scale 2012[M]. Amsterdam: Elsevier, 2012: 85-113. |
[39] | 吴怀春, 张世红, 冯庆来, 等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学: 中国地质大学学报, 2011, 36(3): 409-428. |
[40] |
黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 2014, 21(2): 48-66.
DOI |
[41] | 汪品先, 田军, 黄恩清. 地球系统与演变[M]. 北京: 科学出版社, 2018. |
[42] | 安芷生, 孙有斌, 蔡演军, 等. 亚洲季风变迁与全球气候的联系[J]. 地球环境学报, 2017, 8(1): 1-5. |
[43] |
LASKAR J, FIENGA A, GASTINEAU M, et al. La2010: a new orbital solution for the long term motion of the Earth[J]. Astronomy and Astrophysics, 2011, 532(2): A89-1-15.
DOI URL |
[44] |
MITCHELL J M. An overview of climatic variability and its causal mechanisms[J]. Quaternary Research, 1976, 6(4): 481-493.
DOI URL |
[45] |
MEYERS S R. Cyclostratigraphy and the problem of astrochronologic testing[J]. Earth-Science Reviews, 2019, 190: 190-223.
DOI |
[46] |
SHI J Y, JIN Z J, LIU Q Y, et al. Sunspot cycles recorded in Eocene lacustrine fine-grained sedimentary rocks in the Bohai Bay Basin, eastern China[J]. Global and Planetary Change, 2021, 205: 103614.
DOI URL |
[47] |
HINNOV L A. Cyclostratigraphy and its revolutionizing applications in the Earth and planetary sciences[J]. Geological Society of America Bulletin, 2013, 125(11/12): 1703-1734.
DOI URL |
[48] |
VLEESCHOUWER D D, RAKOCINSKI M, RACKI G, et al. The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross Mountains, Poland)[J]. Earth and Planetary Science Letters, 2013, 365: 25-37.
DOI URL |
[49] | MEYERS S R. Astrochron: an R package for astrochronology[EB/OL]. (2014-2-01)[2021-2-05]. . |
[50] |
LI M S, HINNOV L A, HUANG C J, et al. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing[J]. Nature Communications, 2018, 9: 1004.
DOI PMID |
[51] |
FLUTEAU F, RAMSTEIN G, BESSE J, et al. Impacts of palaeogeography and sea level changes on Mid-Cretaceous climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(3/4): 357-381.
DOI URL |
[52] | 杨万芹, 王学军, 蒋有录, 等. 湖泊古气候的量化恢复及其对细粒沉积的影响: 以东营凹陷沙四段上亚段-沙三段下亚段为例[J]. 油气地质与采收率, 2018, 25(2):29-36. |
[1] | LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin [J]. Earth Science Frontiers, 2024, 31(5): 103-116. |
[2] | GAO Yuqiao, HUA Caixia, CAI Xiao, BAI Luanxi, LU Jia. Fracture formation mechanism in shale oil reservoirs, Qintong Depression, North Jiangsu Basin and its influence on hydrocarbon occurrence [J]. Earth Science Frontiers, 2024, 31(5): 35-45. |
[3] | SUN Yaxiong, LIANG Bing, QIU Xuming, DUAN Hongliang, FU Qian, ZHOU Jinfeng, LIU Shili, QIU Yongfeng, HU Huiting, GONG Lei. Characteristics of natural fractures and its influence on shale oil enrichment and preservation in Member 2 of Funing Formation in Gaoyou sag, Subei Basin [J]. Earth Science Frontiers, 2024, 31(5): 61-74. |
[4] | DING Wenlong, WANG Yao, WANG Shenghui, LIU Tingfeng, ZHANG Ziyou, GOU Tong, ZHANG Mengyang, HE Xiang. Research progress and insight on non-tectonic fractures in shale reservoirs [J]. Earth Science Frontiers, 2024, 31(1): 297-314. |
[5] | WU Huaichun, LI Shan, WANG Chengshan, CHU Runjian, WANG Pujun, GAO Yuan, WAN Xiaoqiao, HE Huaiyu, DENG Chenglong, YANG Guang, HUANG Yongjian, GAO Youfeng, XI Dangpeng, WANG Tiantian, FANG Qiang, YANG Tianshui, ZHANG Shihong. Integrated chronostratigraphic framework for Cretaceous strata in the Songliao Basin [J]. Earth Science Frontiers, 2024, 31(1): 431-445. |
[6] | YUAN Yuxuan, LI Yifan, FAN Tailiang, DU Wei, CHEN Gege, ZHANG Tan, KUANG Mingzhi, LIU Wangwei. High-resolution sequence-stratigraphic characteristics and filling evolution model of Lower Cambrian fine-grained sedimentary rocks in southwestern Sichuan [J]. Earth Science Frontiers, 2023, 30(6): 162-180. |
[7] | XIANG Xin, HUANG Chuanyan, CAO Lanzhu, CAO Qiang, JIANG Tao, ZHANG Yufei, SONG Yu, XU Jie. Enrichment model and exploration potential for unconventional oil and gas in troughs, Erlian Basin [J]. Earth Science Frontiers, 2023, 30(6): 462-472. |
[8] | PENG Jun, SUN Ningliang, LU Kun, XU Yunlong, CHEN Faliang. Shale oil reservoir of the Palaeogene Shahejie Formation in the Dongpu Sag: Petrology and pore microstructural characteristics [J]. Earth Science Frontiers, 2023, 30(4): 128-141. |
[9] | KUANG Mingzhi, LI Yifan, FAN Tailiang, ZHANG Tan, LIU Wangwei, LIU Nan. Application of high-precision sequence stratigraphy in marine fine-grained sedimentary rocks: A case study of the Doushantuo Formation in northern Sichuan [J]. Earth Science Frontiers, 2023, 30(4): 164-181. |
[10] | YANG Kunkun, LI Haiyan, ZHAO Hanqing, CHU Runjian, LIU Guanghong, WU Huaichun, ZHANG Shihong. Cyclostratigraphic study of the Neoproterozoic Browne-Hussar formations in western Australia [J]. Earth Science Frontiers, 2023, 30(3): 441-451. |
[11] | MU Hansheng, XUE Xinyu, JIANG Zaixing. Shale oil and gas in the Mesozoic Basins, eastern Yanshan Orogenic Belt—exploration status and outlooks [J]. Earth Science Frontiers, 2023, 30(2): 282-295. |
[12] | ZHAO Wenzhi, ZHU Rukai, LIU Wei, BIAN Congsheng, WANG Kun. Lacustrine medium-high maturity shale oil in onshore China: Enrichment conditions and occurrence features [J]. Earth Science Frontiers, 2023, 30(1): 116-127. |
[13] | ZOU Caineng, MA Feng, PAN Songqi, ZHANG Xinshun, WU Songtao, FU Guoyou, WANG Hongjun, YANG Zhi. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China [J]. Earth Science Frontiers, 2023, 30(1): 128-142. |
[14] | LU Shuangfang, WANG Jun, LI Wenbiao, CAO Yixin, CHEN Fangwen, LI Jijun, XUE Haitao, WANG Min. In-situ upgrading and transformation of low-maturity shale: Economic feasibility and efficiency enhancement approaches from the perspective of energy consumption ratio [J]. Earth Science Frontiers, 2023, 30(1): 187-198. |
[15] | CHEN Chen, JIANG Zaixing, KONG Xiangxin, WU Shiqiang, CHEN Fengling, YANG Yepeng. Sedimentary characteristics of intersalt fine-grained sedimentary rocks and their control on oil-bearing ability of shales in the Qianjiang Formation, Qianjiang Sag [J]. Earth Science Frontiers, 2021, 28(5): 421-435. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||