Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1): 431-445.DOI: 10.13745/j.esf.sf.2024.1.22
Previous Articles Next Articles
WU Huaichun1,2,3(), LI Shan1,2,3, WANG Chengshan1,3,4, CHU Runjian1,3,4, WANG Pujun5, GAO Yuan1,3,4, WAN Xiaoqiao1,4, HE Huaiyu6, DENG Chenglong6, YANG Guang7, HUANG Yongjian1,4, GAO Youfeng5, XI Dangpeng1,4, WANG Tiantian1,3, FANG Qiang1,2,3, YANG Tianshui1,3,4, ZHANG Shihong1,3,4
Received:
2023-12-12
Revised:
2024-01-05
Online:
2024-01-25
Published:
2024-01-25
CLC Number:
WU Huaichun, LI Shan, WANG Chengshan, CHU Runjian, WANG Pujun, GAO Yuan, WAN Xiaoqiao, HE Huaiyu, DENG Chenglong, YANG Guang, HUANG Yongjian, GAO Youfeng, XI Dangpeng, WANG Tiantian, FANG Qiang, YANG Tianshui, ZHANG Shihong. Integrated chronostratigraphic framework for Cretaceous strata in the Songliao Basin[J]. Earth Science Frontiers, 2024, 31(1): 431-445.
Fig.2 Integrated Cretaceous chronostratigraphic framework for the Songliao Basin, with major geological events indicated. Modified after [11,39-40,44⇓⇓⇓⇓⇓-50].
统 | 组 | 化石组合 | |||
---|---|---|---|---|---|
介形类 | 孢粉 | 轮藻 | |||
上白垩统 | 四方台组 | Talicypridea amoena-Tumiasevia kaitunensis-Paracandona qiananensis | Ulmipollenites-Ulmoideipites | Atopochara ulanensis | |
嫩江组 | Cypridea squalida-C.anonyma-C.spiniferusa Cypridea gunsulinensis-C.ardua Cypridea ordinata-Ilyocyprimorpha netchaevae Cypridea spongvosa-Strumosia salebrosa Talicypridea augusta-Harbinia hapla | Aquilapollenites | Songliaochara heilongjiangensis-Charites cretacea | ||
姚家组 | Cypridea exornata-Lycopterocypris retractilis Cypridea dorsoangula-Ziziphocypris concta | Borealipollis | Aclistochara songliaoensis | ||
青山口组 | Triangulicypris torsuosus-T.torsuosus Cypridea dekhoinensis-Limnocypridea copiosa Limnocypridea inflata-Sunliavia tumida Cypridea panda-Triangulicypris fusiformis | ||||
泉头组 | Cypridea albidula-C. prognata-Mongolianella palmosa Cypridea ellipitica-Candona curva | Trilobosporites-Cyathidites- Tricolpopollenites Schizaeoisporites- Quantonenpollenites-Tricolporopollenites | Amblyochara quantouensis |
Table 1 Biostratigraphic framework for Upper Cretaceous strata, borehole SK-1. Adapted from [37].
统 | 组 | 化石组合 | |||
---|---|---|---|---|---|
介形类 | 孢粉 | 轮藻 | |||
上白垩统 | 四方台组 | Talicypridea amoena-Tumiasevia kaitunensis-Paracandona qiananensis | Ulmipollenites-Ulmoideipites | Atopochara ulanensis | |
嫩江组 | Cypridea squalida-C.anonyma-C.spiniferusa Cypridea gunsulinensis-C.ardua Cypridea ordinata-Ilyocyprimorpha netchaevae Cypridea spongvosa-Strumosia salebrosa Talicypridea augusta-Harbinia hapla | Aquilapollenites | Songliaochara heilongjiangensis-Charites cretacea | ||
姚家组 | Cypridea exornata-Lycopterocypris retractilis Cypridea dorsoangula-Ziziphocypris concta | Borealipollis | Aclistochara songliaoensis | ||
青山口组 | Triangulicypris torsuosus-T.torsuosus Cypridea dekhoinensis-Limnocypridea copiosa Limnocypridea inflata-Sunliavia tumida Cypridea panda-Triangulicypris fusiformis | ||||
泉头组 | Cypridea albidula-C. prognata-Mongolianella palmosa Cypridea ellipitica-Candona curva | Trilobosporites-Cyathidites- Tricolpopollenites Schizaeoisporites- Quantonenpollenites-Tricolporopollenites | Amblyochara quantouensis |
组 | 研究钻孔 | 深度范围/m | 年龄范围/Ma | 时代划分 |
---|---|---|---|---|
明水组 | SK-1n | 210.7~807.12 | 65.07~72.86 | 坎潘期—古近纪丹麦期 |
四方台组 | SK-1n | 807.12~1021.6 | 72.86~76.08 | 坎潘期 |
嫩江组 | SK-1n | 1 021.6~1 796.75 | 76.08~85.21 | 圣通期—坎潘期 |
SK-1s | 960~1 128.17 | |||
SK-2 | 435.125~1 250.5 | |||
姚家组 | SK-1s | 1 128.17~1 285.91 | 85.21~86.3 | 康尼亚克期—圣通期 |
SK-2 | 1 250.5~1 371 | |||
青山口组 | SK-1s | 1 285.91~1 782.93 | 86.3~91.82 | 土伦期—康尼亚克期 |
SK-2 | 1 371~1 676.5 | |||
SK-3 | 675~757 | |||
泉头组 | SK-1s | 1 782.93~1 915.0 | 91.82~98.83 | 塞诺曼期—土伦期 |
SK-2 | 1 676.5~2 535.5 | |||
SK-3 | 757~1 725 | |||
登娄库组 | SK-3 | 1 725~2 400 | 98.83~102.74 | 阿尔布期—塞诺曼期 |
营城组 | SK-2 | 2 969.21~3 335.99 | 102.74~110.4 | 阿尔布期 |
沙河子组 | SK-2 | 3 335.99~5 960 | 110.4~117.8 | 阿普特期 |
火石岭组 | SK-2 | 5 720.4~6 242.4 |
Table 2 Stratigraphic framework for Cretaceous strata in studied boreholes
组 | 研究钻孔 | 深度范围/m | 年龄范围/Ma | 时代划分 |
---|---|---|---|---|
明水组 | SK-1n | 210.7~807.12 | 65.07~72.86 | 坎潘期—古近纪丹麦期 |
四方台组 | SK-1n | 807.12~1021.6 | 72.86~76.08 | 坎潘期 |
嫩江组 | SK-1n | 1 021.6~1 796.75 | 76.08~85.21 | 圣通期—坎潘期 |
SK-1s | 960~1 128.17 | |||
SK-2 | 435.125~1 250.5 | |||
姚家组 | SK-1s | 1 128.17~1 285.91 | 85.21~86.3 | 康尼亚克期—圣通期 |
SK-2 | 1 250.5~1 371 | |||
青山口组 | SK-1s | 1 285.91~1 782.93 | 86.3~91.82 | 土伦期—康尼亚克期 |
SK-2 | 1 371~1 676.5 | |||
SK-3 | 675~757 | |||
泉头组 | SK-1s | 1 782.93~1 915.0 | 91.82~98.83 | 塞诺曼期—土伦期 |
SK-2 | 1 676.5~2 535.5 | |||
SK-3 | 757~1 725 | |||
登娄库组 | SK-3 | 1 725~2 400 | 98.83~102.74 | 阿尔布期—塞诺曼期 |
营城组 | SK-2 | 2 969.21~3 335.99 | 102.74~110.4 | 阿尔布期 |
沙河子组 | SK-2 | 3 335.99~5 960 | 110.4~117.8 | 阿普特期 |
火石岭组 | SK-2 | 5 720.4~6 242.4 |
[1] | SKELTON P W, SPICER R A, KELLEY S P, et al. The Cretaceous world[M]. Cambridge: Cambridge University, 2003: 15-43. |
[2] | SCHLANGER S O, JENKYNS H C. Cretaceous oceanic anoxic events: causes and consequences[J]. Geologie En Mijnbouw, 1976, 55(3): 179-184. |
[3] | JENKYNS H C. Geochemistry of oceanic anoxic events[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): 1-30. |
[4] | LECKIE R M, BRALOWER T J, CASHMAN R. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous[J]. Paleoceanography, 2002, 17(3): 1-29. |
[5] |
HU X M, JANSA L, WANG C S, et al. Upper Cretaceous oceanic red beds (CORBs) in the Tethys: occurrences, lithofacies, age, and environments[J]. Cretaceous Research, 2005, 26(1): 3-20.
DOI URL |
[6] |
WANG C S, HU X M, SARTI M, et al. Upper Cretaceous oceanic red beds in southern Tibet: a major change from anoxic to oxic, deep-sea environments[J]. Cretaceous Research, 2005, 26(1): 21-32.
DOI URL |
[7] |
LARSON R L, ERBA E. Onset of the Mid-Cretaceous greenhouse in the Barremian-Aptian: igneous events and the biological, sedimentary, and geochemical responses[J]. Paleoceanography, 1999, 14(6): 663-678.
DOI URL |
[8] |
TEJADA M L G, SUZUKI K, KURODA J, et al. Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event[J]. Geology, 2009, 37(9): 855-858.
DOI URL |
[9] |
PICK T, TAUXE L. Geomagnetic palaeointensities during the Cretaceous Normal Superchron measured using submarine basaltic glass[J]. Nature, 1993, 366(6452): 238-242.
DOI |
[10] |
CRONIN M, TAUXE L, CONSTABLE C, et al. Noise in the quiet zone[J]. Earth and Planetary Science Letters, 2001, 190(1): 13-30.
DOI URL |
[11] |
HE H Y, DENG C L, WANG P J, et al. Toward age determination of the termination of the Cretaceous Normal Superchron[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(2): 1-20.
DOI URL |
[12] |
ALVAREZ L W, ALVAREZ W, ASARO F, et al. Extraterrestrial cause for the Cretaceous-Tertiary Extinction[J]. Science, 1980, 208(4448): 1095-1108.
PMID |
[13] |
HENEHAN M J, RIDGWELL A, THOMAS E, et al. Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact[J]. Proceedings of the National Academy of Science, 2019, 116(45):22500-22504.
DOI URL |
[14] |
RENNE P R, SPRAIN C J, RICHARDS M A, et al. State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact[J]. Science, 2015, 350: 76-78.
DOI PMID |
[15] |
SCHOENE B, SAMPERTON K M, EDDY M P, et al. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction[J]. Science, 2015, 347(6218): 182-184.
DOI URL |
[16] |
SCHOENE B, EDDY M P, SAMPERTON K M, et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction[J]. Science, 2019, 363(6429): 862-866.
DOI PMID |
[17] |
HULL P M, BOMEMANN A, PENMAN D E, et al. On impact and volcanism across the Cretaceous-Paleogene boundary[J]. Science, 2020, 367(6475): 266-272.
DOI PMID |
[18] | 席党鹏, 孙立新, 覃祚焕, 等. 中国白垩纪岩石地层划分和对比[J]. 地层学杂志, 2021, 45(3): 375-401. |
[19] | 席党鹏, 万晓樵, 李国彪, 等. 中国白垩纪综合地层和时间框架[J]. 中国科学: 地球科学, 2019, 49(1): 257-288. |
[20] |
O’BRIEN C L, ROBINSON S A, PANCOST R D, et al. Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes[J]. Earth-Science Reviews, 2017, 172: 224-247.
DOI URL |
[21] |
FENG Z Q, JIA C Z, XIE X N, et al. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin, Northeast China[J]. Basin Research, 2010, 22(1): 79-95.
DOI URL |
[22] |
WANG P J, MATTERN F, DIDENKO N A, et al. Tectonics and cycle system of the Cretaceous Songliao Basin: an inverted active continental margin basin[J]. Earth-Science Reviews, 2016, 159: 82-102.
DOI URL |
[23] | LI Z Q, CHEN J L, ZOU H, et al. Mesozoic-Cenozoic tectonic evolution and dynamics of the Songliao Basin, NE Asia: implications for the closure of the Paleo-Asian Ocean and Mongol-Okhotsk Ocean and subduction of the Paleo-Pacific Ocean[J]. Earth-Science Reviews, 2021, 218: 1-26. |
[24] |
ZHANG F Q, DILEK Y, CHEN H L, et al. Structural architecture and stratigraphic record of Late Mesozoic sedimentary basins in NE China: tectonic archives of the Late Cretaceous continental margin evolution in East Asia[J]. Earth-Science Reviews, 2017, 171: 598-620.
DOI URL |
[25] |
SONG T G. Inversion styles in the Songliao basin (northeast China) and estimation of the degree of inversion[J]. Tectonophysics, 1997, 283(1/2/3/4): 173-188.
DOI URL |
[26] | 迟元林, 云金表, 蒙启安, 等. 松辽盆地深部结构及成盆动力学与油气聚集[M]. 北京: 石油工业出版社, 2002: 69-113. |
[27] |
REN J Y, TAMAKI K, LI S T, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas[J]. Tectonophysics, 2002, 344(3/4): 175-205.
DOI URL |
[28] |
SONG Y, REN J Y, STEPASHKO A A, et al. Post-rift geodynamics of the Songliao Basin, NE China: origin and significance of T11 (Coniacian) unconformity[J]. Tectonophysics, 2014, 634: 1-18.
DOI URL |
[29] |
SONG Y, STEPASHKO A, LIU K Y, et al. Post-rift tectonic history of the Songliao Basin, NE China: cooling events and post-rift unconformities driven by orogenic pulses from plate boundaries[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(3): 2363-2395.
DOI URL |
[30] |
SONG Y, STEPASHKO A A, REN J Y. The Cretaceous climax of compression in Eastern Asia: Age 87-89 Ma (late Turonian/Coniacian), Pacific cause, continental consequences[J]. Cretaceous Research, 2015, 55: 262-284.
DOI URL |
[31] | 黄清华, 吴怀春, 万晓樵, 等. 松辽盆地白垩系综合年代地层学研究新进展[J]. 地层学杂志, 2011, 35(03): 250-257. |
[32] | 许志琴. 中国大陆科学钻探工程的科学目标及初步成果[J]. 岩石学报, 2004, 20(1): 1-8. |
[33] | 苏德辰, 杨经绥. 国际大陆科学钻探(ICDP)进展[J]. 地质学报, 2010, 84(6): 873-886. |
[34] |
万晓樵, 王成善, 吴怀春, 等. 从地层到地时[J]. 地学前缘, 2014, 21(2): 1-7.
DOI |
[35] | 孙枢, 王成善. “深时”(Deep Time)研究与沉积学[J]. 沉积学报, 2009, 27(5): 792-810. |
[36] |
王成善, 王天天, 陈曦, 等. 深时古气候对未来气候变化的启示[J]. 地学前缘, 2017, 24(1): 1-16.
DOI |
[37] |
WAN X Q, ZHAO J, SCOTT R W, et al. Late Cretaceous stratigraphy, Songliao Basin, NE China: SK1 cores[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 31-43.
DOI URL |
[38] | 吴怀春, 王成善, 张世红, 等. “地时”(Earthtime)研究计划: “深时”(Deep Time)记录的定年精度与时间分辨率[J]. 现代地质, 2011, 25(3): 419-428. |
[39] |
WANG C S, FENG Z Q, ZHANG L M, et al. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, Northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 17-30.
DOI URL |
[40] |
WU H C, HINNOV L A, ZHANG S H, et al. Continental geological evidence for Solar System chaotic behavior in the Late Cretaceous[J]. Geological Society of America Bulletin, 2023, 135(3/4): 712-724.
DOI URL |
[41] | 侯贺晟, 王成善, 张交东, 等. 松辽盆地大陆深部科学钻探地球科学研究进展[J]. 中国地质, 2018, 45(4): 641-657. |
[42] | 王璞珺, 刘海波, 任延广, 等. 松辽盆地白垩系大陆科学钻探“松科2井”选址[J]. 地学前缘, 2017, 24(1): 216-228. |
[43] |
高航, 王璞珺, 高有峰, 等. 松辽盆地南部上、 下白垩统界线研究: 以松辽盆地国际大陆科学钻探松科3井为例[J]. 地学前缘, 2023, 30(3): 425-440.
DOI |
[44] | LI S, WU H C, FANG Q, et al. Astrochronology of the terrestrial Mid-Cretaceous Quantou and Denglouku Formations in the SK-3 borehole from the Songliao Basin, northeastern China[J]. Cretaceous Research, 2023(in press). |
[45] |
WANG T T, RAMEZANI J, WANG C S, et al. High-precision U-Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China[J]. Earth and Planetary Science Letters, 2016, 446: 37-44.
DOI URL |
[46] |
WANG T T, WANG C S, RAMEZANI J, et al. High-precision geochronology of the Early Cretaceous Yingcheng Formation and its stratigraphic implications for Songliao Basin, China[J]. Geoscience Frontiers, 2022, 13(4): 101386.
DOI URL |
[47] |
COHEN K M, FINNEY S C, GIBBARD P L, et al. The ICS international chronostratigraphic chart 2023/09[J]. Episodes, 2023, 36: 199-204.
DOI URL |
[48] |
DENG C L, HE H Y, PAN Y X, et al. Chronology of the terrestrial Upper Cretaceous in the Songliao Basin, northeast Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 44-54.
DOI URL |
[49] |
YU Z Q, HE H Y, DENG C L, et al. New SIMS U-Pb geochronology for the Shahezi Formation from CCSD-SK-IIe borehole in the Songliao Basin, NE China[J]. Science Bulletin, 2020, 65(13): 1049-1051.
DOI PMID |
[50] |
YU Z Q, HE H Y, DENG C L, et al. New geochronological constraints for the Upper Cretaceous Nenjiang Formation in the Songliao Basin, NE China[J]. Cretaceous Research, 2019, 102: 160-169.
DOI URL |
[51] | 王璞珺, 高有峰, 程日辉, 等. 松辽盆地松科1井上白垩统嫩江组三-五段沉积序列厘米级精细刻画: 岩性·岩相·旋回[J]. 地学前缘, 2011, 18(6): 218-262. |
[52] | 高有峰, 王璞珺, 程日辉, 等. 松辽盆地松科1井上白垩统嫩江组一、二段沉积序列厘米级精细刻画: 岩性·岩相·旋回[J]. 地学前缘, 2011, 18(6): 195-217. |
[53] | 王国栋, 程日辉, 王璞珺, 等. 松辽盆地松科1井上白垩统四方台组沉积序列厘米级精细刻画: 岩性·岩相·旋回[J]. 地学前缘, 2011, 18(6): 263-284. |
[54] | 程日辉, 王国栋, 王璞珺, 等. 松辽盆地松科1井上白垩统-下古新统明水组沉积序列厘米级精细刻画: 岩性·岩相·旋回[J]. 地学前缘, 2011, 18(6): 285-328. |
[55] | 高翔, 高有峰, 瞿雪姣, 等. 松辽盆地松科2井下白垩统营城组火山-沉积序列精细刻画[J]. 地学前缘, 2017, 24(1): 265-275. |
[56] |
王璞珺, 赵然磊, 蒙启安, 等. 白垩纪松辽盆地: 从火山裂谷到陆内拗陷的动力学环境[J]. 地学前缘, 2015, 22(3): 99-117.
DOI |
[57] | 胡丁玉, 邹长春, 彭诚, 等. 松科二井火石岭组地层岩石物理学特征研究[J]. 中国地质, 2019, 46(5): 1161-1173. |
[58] | 李宏浩, 高有峰, 王璞珺, 等. 松辽盆地徐家围子断陷沙河子组顶界面特征研究: 基于松辽盆地大陆科学钻探松科2井[J]. 世界地质, 2018, 37(3): 838-849. |
[59] | 符伟, 侯贺晟, 张交东, 等. 松科二井邻域沙河子组含油气地层结构特征: 基于测井和地震数据的分析[J]. 中国地质, 2019, 46(5): 1052-1060. |
[60] | WANG C S, HUANG Y J, ZHAO X X. Unlocking a Cretaceous geologic and geophysical puzzle: scientific drilling of Songliao Basin in northeast China[J]. Geophysics: The Leading Edge of Exploration, 2009, 28(3): 340-344. |
[61] |
GAO Y F, WANG P J, CHENG R H, et al. Description of Cretaceous sedimentary sequence of the first member of the Qingshankou Formation recovered by CCSD-SK-Is borehole in Songliao Basin: lithostratigraphy, sedimentary facies, and cyclic stratigraphy[J]. Earth Science Frontiers, 2009, 16(2): 314-323.
DOI URL |
[62] | 王璞珺, 高有峰, 程日辉, 等. 松科1井南井白垩系青山口组二, 三段沉积序列精细描述: 岩石地层, 沉积相与旋回地层[J]. 地学前缘, 2009, 16(2): 288-313. |
[63] | 程日辉, 王国栋, 王璞珺, 等. 松科1井南井白垩系姚家组沉积序列精细描述: 岩石地层, 沉积相与旋回地层[J]. 地学前缘, 2009, 16(2): 272-287. |
[64] |
WU H C, ZHANG S H, HINNOV L A, et al. Cyclostratigraphy and orbital tuning of the terrestrial upper Santonian-Lower Danian in Songliao Basin, northeastern China[J]. Earth and Planetary Science Letters, 2014, 407: 82-95.
DOI URL |
[65] | 席党鹏, 万晓樵, 冯志强, 等. 松辽盆地晚白垩世有孔虫的发现: 来自松科1井湖海沟通的证据[J]. 科学通报, 2010, 55(35): 3433-3436. |
[66] | HU J F, PENG P A, LIU M Y, et al. Seawater incursion events in a Cretaceous Paleo-lake revealed by specific marine biological markers[J]. Scientific Reports, 2015, 5(1): 1-6. |
[67] |
孙龙德, 刘合, 何文渊, 等. 大庆古龙页岩油重大科学问题与研究路径探析[J]. 石油勘探与开发, 2021, 48(3): 453-463.
DOI |
[68] | 张天舒, 朱如凯, 蔡毅, 等. 松辽盆地古龙凹陷白垩系青山口组页岩层序等时格架下的有机质分布规律[J]. 石油与天然气地质, 2023, 44(4): 869-886. |
[69] |
瞿雪姣, 王璞珺, 高有峰, 等. 松辽盆地断陷期火石岭组时代归属探讨[J]. 地学前缘, 2014, 21(2): 234-250.
DOI |
[70] | 高瑞祺, 赵传本, 乔秀云, 等. 松辽盆地白垩纪石油地层孢粉学[M]. 北京: 地质出版社, 1999: 60-62. |
[71] | 高瑞祺, 张莹, 崔同翠. 松辽盆地白垩纪石油地层[M]. 北京: 石油工业出版社, 1994: 183-234. |
[72] | 李星学, 周志炎, 蔡重阳, 等. 中国地质时期植物群[M]. 广州: 广东科技出版社, 1995: 321-332. |
[73] | 黎文本, 李建国. 吉林榆树榆-302孔阿尔布期孢粉组合: 兼论松辽盆地登楼库组的地质时代[J]. 古生物学报, 2005, 44(2): 209-228. |
[74] | 黎文本. 从孢粉组合论证松辽盆地泉头组的地质时代及上, 下白垩统界线[J]. 古生物学报, 2001, 40(2): 153-176. |
[75] | 郑月娟, 陈树旺, 张德军, 等. 松科二井早白垩世沙河子组上部孢粉组合特征[J]. 中国地质, 2019, 46(5): 1245-1246. |
[76] |
XI D P, LI S, WAN X Q, et al. Late Cretaceous biostratigraphy and paleoenvironmental reconstruction based on non-marine ostracodes from well SK1 (south), Songliao Basin, Northeast China[J]. Hydrobiologia, 2011, 688(1): 113-123.
DOI URL |
[77] |
XI D P, WAN X Q, FENG Z Q, et al. Discovery of Late Cretaceous foraminifera in the Songliao Basin: evidence from SK-1 and implications for identifying seawater incursions[J]. Chinese Science Bulletin, 2011, 56(3): 253-256.
DOI URL |
[78] | 叶得泉, 黄清华, 张莹. 松辽盆地白垩纪介形类生物地层学[M]. 北京: 石油工业出版社, 2002: 11-162. |
[79] |
LI J G, BATTEN D J, ZHANG Y Y. Palynological record from a composite core through Late Cretaceous-early Paleocene deposits in the Songliao Basin, Northeast China and its biostratigraphic implications[J]. Cretaceous Research, 2011, 32(1): 1-12.
DOI URL |
[80] | 裴福萍, 许文良, 杨德彬, 等. 松辽盆地南部中生代火山岩: 锆石U-Pb年代学及其对基底性质的制约[J]. 地球科学:中国地质大学学报, 2008, 33(5): 603-617. |
[81] | 袁伟, 徐旭辉, 陆建林, 等. 松辽盆地长岭断陷晚中生代火山岩SHRIMP锆石U-Pb测年、Hf同位素组成及其地质意义[J]. 地质通报, 2014, 33(10): 1473-1481. |
[82] | 闫全人, 高山林, 王宗起, 等. 松辽盆地火山岩的同位素年代、地球化学特征及意义[J]. 地球化学, 2002, 31(2): 169-179. |
[83] | 丁日新, 舒萍, 纪学雁, 等. 松辽盆地庆深气田储层火山岩锆石U-Pb同位素年龄及其地质意义[J]. 吉林大学学报(地球科学版), 2007, 37(3): 525-530. |
[84] | 贾军涛, 王璞珺, 邵锐, 等. 松辽盆地东南缘营城组地层序列的划分与区域对比[J]. 吉林大学学报(地球科学版), 2007, 37(6): 1110-1123. |
[85] | 舒萍, 丁日新, 纪学雁, 等. 松辽盆地庆深气田储层火山岩锆石地质年代学研究[J]. 岩石矿物学杂志, 2007(3): 239-246. |
[86] | 章凤奇, 陈汉林, 董传万, 等. 松辽盆地北部火山岩锆石SHRIMP测年与营城组时代探讨[J]. 地层学杂志, 2008, 32(1): 15-20. |
[87] | 金鑫, 葛文春, 薛云飞, 等. 松辽盆地林深3井火山岩的锆石U-Pb年龄与Hf同位素组成[J]. 世界地质, 2011, 30(1): 7-17. |
[88] | 王璞珺, 杜小弟, 王俊, 等. 松辽盆地白垩纪年代地层研究及地层时代划分[J]. 地质学报, 1995(4): 372-381. |
[89] | XI D P, HE H Y, YU Z Q, et al. New SIMS U-Pb age constraints on the largest lake transgression event in the Songliao Basin, NE China[J]. PLoS One, 2018, 13(6): 1-11. |
[90] |
LIU H B, WANG P J, GAO Y F, et al. New data from ICDP borehole SK2 and its constraint on the beginning of the Lower Cretaceous Shahezi Formation in the Songliao Basin, NE China[J]. Science Bulletin, 2021, 66(5): 411-413.
DOI PMID |
[91] | 方大钧, 王兆樑, 金国海, 等. 中国松辽盆地白垩系磁性地层[J]. 中国科学B辑: 化学生命科学地学, 1989(10): 1084-1091. |
[92] | CANDE S C, KENT D V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B4): 6093-6095. |
[93] |
SHEN Z, YU Z, YE H, et al. Magnetostratigraphy of the Upper Cretaceous Nenjiang Formation in the Songliao Basin, northeast China: implications for age constraints on terminating the Cretaceous Normal Superchron[J]. Cretaceous Research, 2022, 135: 105213.
DOI URL |
[94] |
FIET N, BEAUDOIN B, PARIZE O. Lithostratigraphic analysis of Milankovitch cyclicity in pelagic Albian deposits of central Italy: implications for the duration of the stage and substages[J]. Cretaceous Research, 2001, 22(3): 265-275.
DOI URL |
[95] |
HUANG C J, HINNOV L, FISCHER A G, et al. Astronomical tuning of the Aptian Stage from Italian reference sections[J]. Geology, 2010, 38(10): 899-902.
DOI URL |
[96] | SPROVIERI M, COCCIONI R, LIRER F, et al. Orbital tuning of a lower Cretaceous composite record (Maiolica Formation, central Italy)[J]. Paleoceanography, 2006, 21(4): 1-19. |
[97] |
FIET N, QUIDELLEUR X, PARIZE O, et al. Lower Cretaceous stage durations combining radiometric data and orbital chronology: towards a more stable relative time scale?[J]. Earth and Planetary Science Letters, 2006, 246(3/4): 407-417.
DOI URL |
[98] |
GIRAUD F, BEAUFORT L, COTILLON P. Periodicities of carbonate cycles in the Valanginian of the Vocontian Trough: a strong obliquity control[J]. Geological Society, London, Special Publications, 2017, 85(1): 143-164.
DOI URL |
[99] |
HUANG Z, OGG J G, GRADSTEIN F M. A quantitative study of Lower Cretaceous cyclic sequences from the Atlantic-Ocean and the Vocontian Basin (Se France)[J]. Paleoceanography, 1993, 8(2): 275-291.
DOI URL |
[100] |
ELDRETT J S, MA C, BERGMAN S C, et al. An astronomically calibrated stratigraphy of the Cenomanian, Turonian and earliest Coniacian from the Cretaceous Western Interior Seaway, USA: implications for global chronostratigraphy[J]. Cretaceous Research, 2015, 56: 316-344.
DOI URL |
[101] |
HUSSON D, GALBRUN B, LASKAR J, et al. Astronomical calibration of the Maastrichtian (Late Cretaceous)[J]. Earth and Planetary Science Letters, 2011, 305(3/4): 328-340.
DOI URL |
[102] | LOCKLAIR R E, SAGEMAN B B. Cyclostratigraphy of the Upper Cretaceous Niobrara Formation, Western Interior, USA: a Coniacian-Santonian orbital timescale[J]. Earth and Planetary Science Letters, 2008, 269(3/4): 539-552. |
[103] |
MA C, MEYERS S R, SAGEMAN B B, et al. Testing the astronomical time scale for oceanic anoxic event 2, and its extension into Cenomanian strata of the Western Interior Basin (USA)[J]. Geological Society of America Bulletin, 2014, 126(7/8): 974-989.
DOI URL |
[104] |
MEYERS S R, SIEWERT S E, SINGER B S, et al. Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian-Turonian boundary interval, Western Interior Basin, USA[J]. Geology, 2012, 40(1): 7-10.
DOI URL |
[105] | 麻晓娟, 李山, 褚润健, 等. 松辽盆地松科 2 井早白平世沙河子组天文年代标尺[J]. 第四纪研究, 2023, 43(6): 1573-1583. |
[106] |
MA X J, WU H C, FANG Q, et al. A floating astronomical time scale for the Early Late Cretaceous continental strata in the Songliao Basin, Northeastern China[J]. Acta Geologica Sinica (English Edition), 2020, 94(1): 27-37.
DOI URL |
[107] |
WU H C, ZHANG S H, JIANG G Q, et al. Astrochronology of the Early Turonian-Early Campanian terrestrial succession in the Songliao Basin, northeastern China and its implication for long-period behavior of the Solar System[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 55-70.
DOI URL |
[108] | LIU W, WU H C, HINNOV L A, et al. An 11 million-year-long record of astronomically forced fluvial-alluvial deposition and paleoclimate change in the Early Cretaceous Songliao synrift basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 541: 1-13. |
[109] |
WALTHAM D. Milankovitch period uncertainties and their impact on cyclostratigraphy[J]. Journal of Sedimentary Research, 2015, 85(8): 990-998.
DOI URL |
[110] | LASKAR J, FIENGA A, GASTINEAU M, et al. La2010: a new orbital solution for the long-term motion of the Earth[J]. Astronomy and Astrophysics, 2011, 532(2): 784-785. |
[111] |
LASKAR J, ROBUTEL P, JOUTEL F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy and Astrophysics, 2004, 428(1): 261-285.
DOI URL |
[112] | 何文渊, 柳波, 张金友, 等. 松辽盆地古龙页岩油地质特征及关键科学问题探索[J]. 地球科学, 2023, 48(1): 49-62. |
[113] | 何文渊, 蒙启安, 付秀丽, 等. 松辽盆地古龙凹陷青山口组页岩沉积环境特征及其有机质富集机理[J/OL]. 沉积学报, 2023: 1-21. (2022-11-10)[2023-04-05]. https://doi.org/10.14027/j.issn.1000-0550.2022.128. |
[114] | HUANG H, GAO Y, MA C, et al. Organic carbon burial is paced by a 173-ka obliquity cycle in the middle to high latitudes[J]. Science Advances, 2021, 7(28): 1-10. |
[1] | WANG Chengshan, GAO Yuan, WANG Pujun, WU Huaichun, LÜ Qingtian, ZHU Yongyi, WAN Xiaoqiao, ZOU Changchun, HUANG Yongjian, GAO Youfeng, XI Dangpeng, WANG Wenshi, HE Huaiyu, FENG Zihui, YANG Guang, DENG Chenglong, ZHANG Laiming, WANG Tiantian, HU Bin, CUI Liwei, PENG Cheng, YU Enxiao, HUANG He, YANG Liu, WU Zhengxuan. International Continental Scientific Drilling Project of the Songliao Basin: Terrestrial Geological Records of the Cretaceous Dinosaur Age [J]. Earth Science Frontiers, 2024, 31(1): 412-430. |
[2] | LI Ruilei, YANG Liying, ZHU Jianfeng, LIU Yuhu, XU Wen, LI Zhongbo, FAN Xuepei, LENG Qinglei, ZHANG Tingting. Volcanic reservoir characteristics and hydrocarbon accumulation control factors of rift depressions in southern Songliao Basin [J]. Earth Science Frontiers, 2023, 30(4): 100-111. |
[3] | SHI Juye, JIN Zhijun, LIU Quanyou, FAN Tailiang, GAO Zhiqian, WANG Hongyu. Application of astronomical cycles in shale oil exploration and in high-precision stratigraphic isochronous comparison of organic-rich fine-grain sedimentary rocks [J]. Earth Science Frontiers, 2023, 30(4): 142-151. |
[4] | DU Lintao, BI Wenjun, LI Yalin, ZHANG Jiawei, ZHANG Shaowen, YIN Xuwei, WANG Chengxiu. Sedimentary environment, provenance analysis and tectonic significance of the Upper-Cretaceous Abushan Formation in 114 Daoban, Anduo area, Qiangtang Basin [J]. Earth Science Frontiers, 2023, 30(4): 245-259. |
[5] | NEUPANE Bhupati, ZHAO Junmeng, LIU Chunru, PEI Shunping, MAHARJAN Bishal, DHAKAL Sanjev. Electron spin resonance dating for the Central Churia Thrust of the Nepal Himalaya [J]. Earth Science Frontiers, 2023, 30(4): 260-269. |
[6] | LUO Niangang, GAO Lianfeng, ZHANG Zhenguo, YIN Zhigang, CUI Jianyu, WU Junfei, XING Jie, DING Kai, GAO Chenyang, WANG Yue. Processes and mechanism of lithospheric thinning in the eastern North China Craton during the Early Cretaceous: Evidence from the Beidashan pluton, Liaoning Province [J]. Earth Science Frontiers, 2023, 30(3): 340-365. |
[7] | GAO Hang, WANG Pujun, GAO Youfeng, WAN Xiaoqiao, YANG Guang, HU Jingsong, WU Huaichun. The Upper-Lower Cretaceous boundary in the southern Songliao Basin: A case study of ICDP borehole SK-3 [J]. Earth Science Frontiers, 2023, 30(3): 425-440. |
[8] | YANG Kunkun, LI Haiyan, ZHAO Hanqing, CHU Runjian, LIU Guanghong, WU Huaichun, ZHANG Shihong. Cyclostratigraphic study of the Neoproterozoic Browne-Hussar formations in western Australia [J]. Earth Science Frontiers, 2023, 30(3): 441-451. |
[9] | HAN Haiying, GUO Rui, WANG Jun, QIN Guosheng, SUN Xiaowei, YU Yichang, SU Haiyang, GAO Yang. Sequence stratigraphic framework and sedimentary evolution of the Cretaceous in southern Iraq [J]. Earth Science Frontiers, 2023, 30(2): 122-138. |
[10] | ZHAO Xiaoyan, YANG Zhusen, YANG Yang, CAO Yu, FAN Jianbiao, ZHAO Miao. Discovery of Early Cretaceous metamorphic basic rock and plagioclase amphibolite in Yalaxiangbo, Tibet and its geological significance [J]. Earth Science Frontiers, 2023, 30(2): 163-182. |
[11] | WANG Lulin, LIU Xiaohong, ZHANG Zhiguang. Discovery of volcanic rocks in the Pingchau Formation in Tungpingchau, Hong Kong UNESCO Global Geopark: Zircon U-Pb geochronology, geochemistry and geological implications [J]. Earth Science Frontiers, 2023, 30(2): 239-258. |
[12] | WANG Genjiu, SONG Xinmin, LIU Bo, SHI Kaibo, LIU Hangyu. High permeability zone of Cretaceous porous carbonate reservoir of A Field, Iraq: Genesis and distribution characteristics [J]. Earth Science Frontiers, 2022, 29(5): 483-496. |
[13] | LI Wangpeng, LI Huili, WANG Yi, LIU Shaofeng, ZHANG Zhongpei, YANG Weili, CAI Xiyao, QIAN Tao, LI Xiaojian. Neoproterozoic glaciations in Yecheng area, southwestern margin of the Tarim Basin [J]. Earth Science Frontiers, 2022, 29(3): 356-380. |
[14] | ZHU Xiaohui, CHEN Danling, FENG Yimin, REN Yunfei, ZHANG Xin. Granitic magmatism and tectonic evolution in the Qilian Mountain Range in NW China: A review [J]. Earth Science Frontiers, 2022, 29(2): 241-260. |
[15] | FU Shun, ZHAO Yingquan, WANG Jinjun, YU Yu, ZHU Yingtang, FU Xingzhe. Continent-continent collision at the southwestern margin of the Cretaceous Qiangtang terrane: Constraints from granite in the western Bangong-Nujiang Suture Zone [J]. Earth Science Frontiers, 2022, 29(2): 416-430. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||