Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (2): 163-182.DOI: 10.13745/j.esf.sf.2022.2.63
Previous Articles Next Articles
ZHAO Xiaoyan1(), YANG Zhusen1, YANG Yang2, CAO Yu2, FAN Jianbiao2, ZHAO Miao1
Received:
2021-10-23
Revised:
2022-04-11
Online:
2023-03-25
Published:
2023-01-05
CLC Number:
ZHAO Xiaoyan, YANG Zhusen, YANG Yang, CAO Yu, FAN Jianbiao, ZHAO Miao. Discovery of Early Cretaceous metamorphic basic rock and plagioclase amphibolite in Yalaxiangbo, Tibet and its geological significance[J]. Earth Science Frontiers, 2023, 30(2): 163-182.
Fig.1 Simplified tectonic map of (a) Tibetan Plateau and (b) Himalayan terrane (Fig.a and Fig.b adapted from [13]) and (c) geological map of the Yalaxiangbo dome (Fig.c adapted from [20])
Fig.2 Petrological characteristics of metamorphic basic rocks and amphibolites from Yalaxiangbo. (a) Outcrop of metamorphic basic rocks. (b) Weakly deformed metamorphic basic rocks. (c) Strongly deformed metamorphic basic rocks. (d) Hand specimens of amphibolite. (e-f) Microscopic characteristics of weakly deformed metamorphic basic rocks containing garnet, hornblende and a small amount of epidote. (g) Microscopic characteristics of strongly deformed metamorphic basic rocks composed of epidote and hornblende. (h) Microscopic characteristics of amphibolite composed of hornblende and plagioclase.
Fig.4 Nb/Y-Zr/TiO2 (a, adapted from [23]), Co-Th (b, adapted from [24]), Th/Yb-Zr/Y (c, adapted from [25]) and Zr-Ti (d, adapted from [26]) diagrams for metamorphic basic rocks and plagioclase amphibolites from Yalaxiangbo
Fig.5 Chondrite-normalized REEs (a) and primitive mantle-normalized trace elements (b) variation diagrams for metamorphic basic rock and plagioclase amphibolite from Yalaxiangbo. Chondrite, primitive mantle, OIB, N-MORB and E-MORB data from [27].
样品号 | wB/% | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Na2O | K2O | Cr2O3 | Al2O3 | MgO | CaO | MnO | TiO2 | FeO | P2O5 | NiO | 总和 | ||||||||||||||
YLXB18-1-6 | 37.36 | 0.02 | 0.01 | 0.03 | 20.89 | 0.67 | 10.97 | 3.57 | 0.20 | 26.28 | 0.01 | 0.00 | 99.98 | |||||||||||||
37.26 | 0.01 | 0.01 | 0.00 | 20.77 | 0.55 | 10.17 | 6.46 | 0.15 | 23.70 | 0.02 | 0.01 | 99.11 | ||||||||||||||
36.97 | 0.00 | 0.01 | 0.00 | 20.66 | 0.55 | 10.48 | 5.63 | 0.20 | 24.63 | 0.00 | 0.03 | 99.17 | ||||||||||||||
37.40 | 0.05 | 0.00 | 0.00 | 20.83 | 0.88 | 10.25 | 1.82 | 0.18 | 28.12 | 0.02 | 0.07 | 99.61 | ||||||||||||||
36.69 | 0.00 | 0.00 | 0.00 | 21.02 | 0.64 | 10.49 | 4.27 | 0.18 | 26.81 | 0.00 | 0.04 | 100.14 | ||||||||||||||
37.17 | 0.02 | 0.01 | 0.04 | 20.40 | 0.54 | 10.22 | 5.71 | 0.24 | 24.82 | 0.00 | 0.01 | 99.16 | ||||||||||||||
37.48 | 0.01 | 0.00 | 0.00 | 20.79 | 0.51 | 10.28 | 6.19 | 0.19 | 24.16 | 0.05 | 0.00 | 99.65 | ||||||||||||||
37.62 | 0.02 | 0.00 | 0.00 | 20.75 | 0.75 | 10.35 | 2.89 | 0.19 | 27.46 | 0.02 | 0.00 | 100.04 | ||||||||||||||
样品号 | 以23个氧为基础计算的阳离子数 | |||||||||||||||||||||||||
阳离子应带 电荷Si | 阳离子应带 电荷Ti | 阳离子应带 电荷Al | 阳离子应带 电荷Cr | Fe3+ | Fe2+ | 阳离子应带 电荷Mn | 阳离子应带 电荷Mg | 阳离子应带 电荷Ca | ||||||||||||||||||
YLXB18-1-6 | 2.99 | 0.01 | 1.97 | 0.00 | 0.02 | 1.74 | 0.24 | 0.08 | 0.94 | |||||||||||||||||
3.02 | 0.01 | 1.98 | 0.00 | -0.03 | 1.63 | 0.44 | 0.07 | 0.88 | ||||||||||||||||||
2.99 | 0.01 | 1.97 | 0.00 | 0.02 | 1.64 | 0.39 | 0.07 | 0.91 | ||||||||||||||||||
3.01 | 0.01 | 1.97 | 0.00 | -0.01 | 1.91 | 0.12 | 0.11 | 0.88 | ||||||||||||||||||
2.94 | 0.01 | 1.98 | 0.00 | 0.11 | 1.68 | 0.29 | 0.08 | 0.90 | ||||||||||||||||||
3.01 | 0.01 | 1.95 | 0.00 | 0.00 | 1.68 | 0.39 | 0.06 | 0.89 | ||||||||||||||||||
3.02 | 0.01 | 1.97 | 0.00 | -0.03 | 1.66 | 0.42 | 0.06 | 0.89 | ||||||||||||||||||
3.01 | 0.01 | 1.96 | 0.00 | -0.01 | 1.85 | 0.20 | 0.09 | 0.89 | ||||||||||||||||||
样品号 | 各成分含量/% | |||||||||||||||||||||||||
铁铝榴石 | 钙铝榴石 | 锰铝榴石 | 镁铝榴石 | 钙铁榴石 | 钙铬榴石 | |||||||||||||||||||||
YLXB18-1-6 | 57.95 | 31.01 | 8.05 | 2.66 | 0.30 | 0.02 | ||||||||||||||||||||
54.00 | 29.61 | 14.65 | 2.19 | -0.44 | 0.00 | |||||||||||||||||||||
54.70 | 29.88 | 12.85 | 2.21 | 0.36 | 0.00 | |||||||||||||||||||||
63.13 | 29.47 | 4.11 | 3.50 | -0.21 | 0.00 | |||||||||||||||||||||
57.06 | 28.87 | 9.83 | 2.60 | 1.64 | 0.00 | |||||||||||||||||||||
55.61 | 29.29 | 12.94 | 2.14 | -0.02 | 0.04 | |||||||||||||||||||||
54.79 | 29.77 | 13.93 | 2.01 | -0.50 | 0.00 | |||||||||||||||||||||
61.20 | 29.54 | 6.49 | 2.95 | -0.18 | 0.00 |
Table 3 Electron probe composition of garnet from metamorphic basic rock in Yalaxiangbo
样品号 | wB/% | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Na2O | K2O | Cr2O3 | Al2O3 | MgO | CaO | MnO | TiO2 | FeO | P2O5 | NiO | 总和 | ||||||||||||||
YLXB18-1-6 | 37.36 | 0.02 | 0.01 | 0.03 | 20.89 | 0.67 | 10.97 | 3.57 | 0.20 | 26.28 | 0.01 | 0.00 | 99.98 | |||||||||||||
37.26 | 0.01 | 0.01 | 0.00 | 20.77 | 0.55 | 10.17 | 6.46 | 0.15 | 23.70 | 0.02 | 0.01 | 99.11 | ||||||||||||||
36.97 | 0.00 | 0.01 | 0.00 | 20.66 | 0.55 | 10.48 | 5.63 | 0.20 | 24.63 | 0.00 | 0.03 | 99.17 | ||||||||||||||
37.40 | 0.05 | 0.00 | 0.00 | 20.83 | 0.88 | 10.25 | 1.82 | 0.18 | 28.12 | 0.02 | 0.07 | 99.61 | ||||||||||||||
36.69 | 0.00 | 0.00 | 0.00 | 21.02 | 0.64 | 10.49 | 4.27 | 0.18 | 26.81 | 0.00 | 0.04 | 100.14 | ||||||||||||||
37.17 | 0.02 | 0.01 | 0.04 | 20.40 | 0.54 | 10.22 | 5.71 | 0.24 | 24.82 | 0.00 | 0.01 | 99.16 | ||||||||||||||
37.48 | 0.01 | 0.00 | 0.00 | 20.79 | 0.51 | 10.28 | 6.19 | 0.19 | 24.16 | 0.05 | 0.00 | 99.65 | ||||||||||||||
37.62 | 0.02 | 0.00 | 0.00 | 20.75 | 0.75 | 10.35 | 2.89 | 0.19 | 27.46 | 0.02 | 0.00 | 100.04 | ||||||||||||||
样品号 | 以23个氧为基础计算的阳离子数 | |||||||||||||||||||||||||
阳离子应带 电荷Si | 阳离子应带 电荷Ti | 阳离子应带 电荷Al | 阳离子应带 电荷Cr | Fe3+ | Fe2+ | 阳离子应带 电荷Mn | 阳离子应带 电荷Mg | 阳离子应带 电荷Ca | ||||||||||||||||||
YLXB18-1-6 | 2.99 | 0.01 | 1.97 | 0.00 | 0.02 | 1.74 | 0.24 | 0.08 | 0.94 | |||||||||||||||||
3.02 | 0.01 | 1.98 | 0.00 | -0.03 | 1.63 | 0.44 | 0.07 | 0.88 | ||||||||||||||||||
2.99 | 0.01 | 1.97 | 0.00 | 0.02 | 1.64 | 0.39 | 0.07 | 0.91 | ||||||||||||||||||
3.01 | 0.01 | 1.97 | 0.00 | -0.01 | 1.91 | 0.12 | 0.11 | 0.88 | ||||||||||||||||||
2.94 | 0.01 | 1.98 | 0.00 | 0.11 | 1.68 | 0.29 | 0.08 | 0.90 | ||||||||||||||||||
3.01 | 0.01 | 1.95 | 0.00 | 0.00 | 1.68 | 0.39 | 0.06 | 0.89 | ||||||||||||||||||
3.02 | 0.01 | 1.97 | 0.00 | -0.03 | 1.66 | 0.42 | 0.06 | 0.89 | ||||||||||||||||||
3.01 | 0.01 | 1.96 | 0.00 | -0.01 | 1.85 | 0.20 | 0.09 | 0.89 | ||||||||||||||||||
样品号 | 各成分含量/% | |||||||||||||||||||||||||
铁铝榴石 | 钙铝榴石 | 锰铝榴石 | 镁铝榴石 | 钙铁榴石 | 钙铬榴石 | |||||||||||||||||||||
YLXB18-1-6 | 57.95 | 31.01 | 8.05 | 2.66 | 0.30 | 0.02 | ||||||||||||||||||||
54.00 | 29.61 | 14.65 | 2.19 | -0.44 | 0.00 | |||||||||||||||||||||
54.70 | 29.88 | 12.85 | 2.21 | 0.36 | 0.00 | |||||||||||||||||||||
63.13 | 29.47 | 4.11 | 3.50 | -0.21 | 0.00 | |||||||||||||||||||||
57.06 | 28.87 | 9.83 | 2.60 | 1.64 | 0.00 | |||||||||||||||||||||
55.61 | 29.29 | 12.94 | 2.14 | -0.02 | 0.04 | |||||||||||||||||||||
54.79 | 29.77 | 13.93 | 2.01 | -0.50 | 0.00 | |||||||||||||||||||||
61.20 | 29.54 | 6.49 | 2.95 | -0.18 | 0.00 |
样品号 | wB/% | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Na2O | K2O | Cr2O3 | Al2O3 | MgO | CaO | MnO | TiO2 | FeO | P2O5 | NiO | 总和 | Fe2O3 | XFe | ||
YLXB18-1-6 | 38.22 | 0.03 | 0.01 | 0.03 | 26.28 | 0.01 | 23.53 | 0.03 | 0.09 | 8.22 | 0.01 | 0.01 | 96.46 | 9.13 | 0.26 | |
38.72 | 0.00 | 0.00 | 0.00 | 26.46 | 0.01 | 23.45 | 0.16 | 0.13 | 7.99 | 0.03 | 0.03 | 96.97 | 8.88 | 0.25 | ||
38.54 | 0.01 | 0.01 | 0.04 | 26.23 | 0.01 | 23.55 | 0.09 | 0.07 | 8.32 | 0.04 | 0.00 | 96.90 | 9.25 | 0.26 | ||
38.29 | 0.02 | 0.00 | 0.00 | 25.97 | 0.00 | 23.58 | 0.00 | 0.12 | 8.21 | 0.03 | 0.00 | 96.20 | 9.12 | 0.26 | ||
38.74 | 0.02 | 0.01 | 0.05 | 26.28 | 0.01 | 23.42 | 0.09 | 0.04 | 7.94 | 0.00 | 0.00 | 96.61 | 8.82 | 0.25 | ||
38.70 | 0.00 | 0.00 | 0.05 | 26.55 | 0.01 | 23.27 | 0.07 | 0.12 | 8.08 | 0.01 | 0.00 | 96.85 | 8.98 | 0.25 | ||
38.40 | 0.00 | 0.00 | 0.00 | 26.57 | 0.01 | 23.53 | 0.05 | 0.08 | 7.74 | 0.00 | 0.04 | 96.43 | 8.60 | 0.24 | ||
38.51 | 0.00 | 0.00 | 0.03 | 26.80 | 0.01 | 23.54 | 0.09 | 0.00 | 7.75 | 0.03 | 0.01 | 96.77 | 8.62 | 0.24 | ||
38.36 | 0.03 | 0.01 | 0.02 | 26.61 | 0.00 | 23.44 | 0.16 | 0.07 | 7.92 | 0.06 | 0.06 | 96.73 | 8.80 | 0.25 | ||
38.56 | 0.02 | 0.01 | 0.00 | 26.28 | 0.01 | 23.52 | 0.12 | 0.07 | 8.25 | 0.04 | 0.00 | 96.88 | 9.17 | 0.26 | ||
YLXB18-2-1 | 38.20 | 0.00 | 0.00 | 0.05 | 26.41 | 0.00 | 23.62 | 0.10 | 0.05 | 7.92 | 0.04 | 0.00 | 96.40 | 8.81 | 0.25 | |
38.44 | 0.00 | 0.02 | 0.04 | 26.87 | 0.04 | 23.37 | 0.27 | 0.18 | 7.07 | 0.03 | 0.04 | 96.37 | 7.86 | 0.23 | ||
38.35 | 0.00 | 0.01 | 0.00 | 26.40 | 0.03 | 23.52 | 0.13 | 0.11 | 7.88 | 0.03 | 0.00 | 96.45 | 8.76 | 0.25 | ||
38.67 | 0.01 | 0.01 | 0.04 | 26.40 | 0.00 | 23.63 | 0.06 | 0.03 | 7.68 | 0.02 | 0.01 | 96.56 | 8.53 | 0.24 | ||
38.38 | 0.00 | 0.01 | 0.01 | 26.47 | 0.01 | 23.50 | 0.22 | 0.03 | 7.75 | 0.00 | 0.03 | 96.40 | 8.61 | 0.25 | ||
38.82 | 0.02 | 0.01 | 0.00 | 26.55 | 0.00 | 23.55 | 0.07 | 0.04 | 7.97 | 0.02 | 0.00 | 97.04 | 8.86 | 0.25 | ||
38.62 | 0.00 | 0.01 | 0.09 | 26.53 | 0.02 | 23.47 | 0.10 | 0.04 | 7.81 | 0.01 | 0.00 | 96.68 | 8.68 | 0.25 | ||
38.56 | 0.01 | 0.01 | 0.03 | 26.62 | 0.00 | 23.51 | 0.05 | 0.07 | 7.94 | 0.04 | 0.00 | 96.82 | 8.82 | 0.25 | ||
38.86 | 0.00 | 0.00 | 0.06 | 26.60 | 0.01 | 23.56 | 0.14 | 0.06 | 8.08 | 0.00 | 0.00 | 97.37 | 8.98 | 0.25 | ||
YLXB18-3-1 | 38.84 | 0.00 | 0.00 | 0.02 | 27.12 | 0.02 | 23.63 | 0.01 | 0.03 | 7.47 | 0.01 | 0.04 | 97.18 | 8.30 | 0.23 | |
38.67 | 0.03 | 0.00 | 0.00 | 27.08 | 0.01 | 23.74 | 0.11 | 0.11 | 7.22 | 0.06 | 0.01 | 97.03 | 8.03 | 0.23 | ||
38.66 | 0.00 | 0.01 | 0.00 | 27.87 | 0.01 | 23.38 | 0.15 | 0.06 | 6.42 | 0.12 | 0.03 | 96.68 | 7.13 | 0.20 | ||
38.93 | 0.00 | 0.01 | 0.05 | 27.18 | 0.02 | 23.61 | 0.05 | 0.08 | 6.98 | 0.07 | 0.00 | 96.96 | 7.76 | 0.22 | ||
38.64 | 0.03 | 0.01 | 0.03 | 27.33 | 0.04 | 23.69 | 0.12 | 0.18 | 6.46 | 0.01 | 0.03 | 96.56 | 7.18 | 0.21 | ||
38.71 | 0.00 | 0.01 | 0.04 | 27.42 | 0.03 | 23.42 | 0.11 | 0.04 | 6.65 | 0.03 | 0.02 | 96.48 | 7.39 | 0.21 | ||
38.72 | 0.00 | 0.00 | 0.07 | 27.35 | 0.02 | 23.55 | 0.09 | 0.06 | 6.44 | 0.07 | 0.00 | 96.36 | 7.15 | 0.21 | ||
38.74 | 0.03 | 0.00 | 0.00 | 27.44 | 0.02 | 23.48 | 0.08 | 0.01 | 6.83 | 0.03 | 0.04 | 96.68 | 7.58 | 0.22 | ||
YLXB18-5-1 | 38.27 | 0.03 | 0.00 | 0.00 | 27.01 | 0.02 | 23.28 | 0.14 | 0.14 | 6.99 | 0.03 | 0.00 | 95.89 | 7.76 | 0.22 | |
38.70 | 0.00 | 0.00 | 0.05 | 26.74 | 0.02 | 23.50 | 0.05 | 0.10 | 7.63 | 0.05 | 0.00 | 96.84 | 8.48 | 0.24 | ||
38.67 | 0.02 | 0.01 | 0.01 | 26.95 | 0.03 | 23.53 | 0.09 | 0.08 | 7.39 | 0.00 | 0.00 | 96.76 | 8.21 | 0.23 | ||
38.95 | 0.00 | 0.00 | 0.02 | 28.39 | 0.05 | 23.64 | 0.09 | 0.25 | 5.33 | 0.00 | 0.03 | 96.75 | 5.93 | 0.17 | ||
38.35 | 0.00 | 0.00 | 0.00 | 26.77 | 0.01 | 23.46 | 0.10 | 0.14 | 7.45 | 0.03 | 0.00 | 96.31 | 8.28 | 0.24 | ||
38.40 | 0.02 | 0.00 | 0.02 | 27.03 | 0.04 | 23.48 | 0.07 | 0.07 | 6.44 | 0.02 | 0.05 | 95.65 | 7.15 | 0.21 | ||
38.59 | 0.00 | 0.00 | 0.03 | 27.72 | 0.02 | 23.63 | 0.06 | 0.02 | 6.38 | 0.06 | 0.02 | 96.53 | 7.09 | 0.20 | ||
38.51 | 0.00 | 0.00 | 0.00 | 27.06 | 0.00 | 23.64 | 0.01 | 0.14 | 6.85 | 0.03 | 0.00 | 96.23 | 7.61 | 0.22 |
Table 4 Electron probe composition of epidote from metamorphic basic rock in Yalaxiangbo
样品号 | wB/% | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Na2O | K2O | Cr2O3 | Al2O3 | MgO | CaO | MnO | TiO2 | FeO | P2O5 | NiO | 总和 | Fe2O3 | XFe | ||
YLXB18-1-6 | 38.22 | 0.03 | 0.01 | 0.03 | 26.28 | 0.01 | 23.53 | 0.03 | 0.09 | 8.22 | 0.01 | 0.01 | 96.46 | 9.13 | 0.26 | |
38.72 | 0.00 | 0.00 | 0.00 | 26.46 | 0.01 | 23.45 | 0.16 | 0.13 | 7.99 | 0.03 | 0.03 | 96.97 | 8.88 | 0.25 | ||
38.54 | 0.01 | 0.01 | 0.04 | 26.23 | 0.01 | 23.55 | 0.09 | 0.07 | 8.32 | 0.04 | 0.00 | 96.90 | 9.25 | 0.26 | ||
38.29 | 0.02 | 0.00 | 0.00 | 25.97 | 0.00 | 23.58 | 0.00 | 0.12 | 8.21 | 0.03 | 0.00 | 96.20 | 9.12 | 0.26 | ||
38.74 | 0.02 | 0.01 | 0.05 | 26.28 | 0.01 | 23.42 | 0.09 | 0.04 | 7.94 | 0.00 | 0.00 | 96.61 | 8.82 | 0.25 | ||
38.70 | 0.00 | 0.00 | 0.05 | 26.55 | 0.01 | 23.27 | 0.07 | 0.12 | 8.08 | 0.01 | 0.00 | 96.85 | 8.98 | 0.25 | ||
38.40 | 0.00 | 0.00 | 0.00 | 26.57 | 0.01 | 23.53 | 0.05 | 0.08 | 7.74 | 0.00 | 0.04 | 96.43 | 8.60 | 0.24 | ||
38.51 | 0.00 | 0.00 | 0.03 | 26.80 | 0.01 | 23.54 | 0.09 | 0.00 | 7.75 | 0.03 | 0.01 | 96.77 | 8.62 | 0.24 | ||
38.36 | 0.03 | 0.01 | 0.02 | 26.61 | 0.00 | 23.44 | 0.16 | 0.07 | 7.92 | 0.06 | 0.06 | 96.73 | 8.80 | 0.25 | ||
38.56 | 0.02 | 0.01 | 0.00 | 26.28 | 0.01 | 23.52 | 0.12 | 0.07 | 8.25 | 0.04 | 0.00 | 96.88 | 9.17 | 0.26 | ||
YLXB18-2-1 | 38.20 | 0.00 | 0.00 | 0.05 | 26.41 | 0.00 | 23.62 | 0.10 | 0.05 | 7.92 | 0.04 | 0.00 | 96.40 | 8.81 | 0.25 | |
38.44 | 0.00 | 0.02 | 0.04 | 26.87 | 0.04 | 23.37 | 0.27 | 0.18 | 7.07 | 0.03 | 0.04 | 96.37 | 7.86 | 0.23 | ||
38.35 | 0.00 | 0.01 | 0.00 | 26.40 | 0.03 | 23.52 | 0.13 | 0.11 | 7.88 | 0.03 | 0.00 | 96.45 | 8.76 | 0.25 | ||
38.67 | 0.01 | 0.01 | 0.04 | 26.40 | 0.00 | 23.63 | 0.06 | 0.03 | 7.68 | 0.02 | 0.01 | 96.56 | 8.53 | 0.24 | ||
38.38 | 0.00 | 0.01 | 0.01 | 26.47 | 0.01 | 23.50 | 0.22 | 0.03 | 7.75 | 0.00 | 0.03 | 96.40 | 8.61 | 0.25 | ||
38.82 | 0.02 | 0.01 | 0.00 | 26.55 | 0.00 | 23.55 | 0.07 | 0.04 | 7.97 | 0.02 | 0.00 | 97.04 | 8.86 | 0.25 | ||
38.62 | 0.00 | 0.01 | 0.09 | 26.53 | 0.02 | 23.47 | 0.10 | 0.04 | 7.81 | 0.01 | 0.00 | 96.68 | 8.68 | 0.25 | ||
38.56 | 0.01 | 0.01 | 0.03 | 26.62 | 0.00 | 23.51 | 0.05 | 0.07 | 7.94 | 0.04 | 0.00 | 96.82 | 8.82 | 0.25 | ||
38.86 | 0.00 | 0.00 | 0.06 | 26.60 | 0.01 | 23.56 | 0.14 | 0.06 | 8.08 | 0.00 | 0.00 | 97.37 | 8.98 | 0.25 | ||
YLXB18-3-1 | 38.84 | 0.00 | 0.00 | 0.02 | 27.12 | 0.02 | 23.63 | 0.01 | 0.03 | 7.47 | 0.01 | 0.04 | 97.18 | 8.30 | 0.23 | |
38.67 | 0.03 | 0.00 | 0.00 | 27.08 | 0.01 | 23.74 | 0.11 | 0.11 | 7.22 | 0.06 | 0.01 | 97.03 | 8.03 | 0.23 | ||
38.66 | 0.00 | 0.01 | 0.00 | 27.87 | 0.01 | 23.38 | 0.15 | 0.06 | 6.42 | 0.12 | 0.03 | 96.68 | 7.13 | 0.20 | ||
38.93 | 0.00 | 0.01 | 0.05 | 27.18 | 0.02 | 23.61 | 0.05 | 0.08 | 6.98 | 0.07 | 0.00 | 96.96 | 7.76 | 0.22 | ||
38.64 | 0.03 | 0.01 | 0.03 | 27.33 | 0.04 | 23.69 | 0.12 | 0.18 | 6.46 | 0.01 | 0.03 | 96.56 | 7.18 | 0.21 | ||
38.71 | 0.00 | 0.01 | 0.04 | 27.42 | 0.03 | 23.42 | 0.11 | 0.04 | 6.65 | 0.03 | 0.02 | 96.48 | 7.39 | 0.21 | ||
38.72 | 0.00 | 0.00 | 0.07 | 27.35 | 0.02 | 23.55 | 0.09 | 0.06 | 6.44 | 0.07 | 0.00 | 96.36 | 7.15 | 0.21 | ||
38.74 | 0.03 | 0.00 | 0.00 | 27.44 | 0.02 | 23.48 | 0.08 | 0.01 | 6.83 | 0.03 | 0.04 | 96.68 | 7.58 | 0.22 | ||
YLXB18-5-1 | 38.27 | 0.03 | 0.00 | 0.00 | 27.01 | 0.02 | 23.28 | 0.14 | 0.14 | 6.99 | 0.03 | 0.00 | 95.89 | 7.76 | 0.22 | |
38.70 | 0.00 | 0.00 | 0.05 | 26.74 | 0.02 | 23.50 | 0.05 | 0.10 | 7.63 | 0.05 | 0.00 | 96.84 | 8.48 | 0.24 | ||
38.67 | 0.02 | 0.01 | 0.01 | 26.95 | 0.03 | 23.53 | 0.09 | 0.08 | 7.39 | 0.00 | 0.00 | 96.76 | 8.21 | 0.23 | ||
38.95 | 0.00 | 0.00 | 0.02 | 28.39 | 0.05 | 23.64 | 0.09 | 0.25 | 5.33 | 0.00 | 0.03 | 96.75 | 5.93 | 0.17 | ||
38.35 | 0.00 | 0.00 | 0.00 | 26.77 | 0.01 | 23.46 | 0.10 | 0.14 | 7.45 | 0.03 | 0.00 | 96.31 | 8.28 | 0.24 | ||
38.40 | 0.02 | 0.00 | 0.02 | 27.03 | 0.04 | 23.48 | 0.07 | 0.07 | 6.44 | 0.02 | 0.05 | 95.65 | 7.15 | 0.21 | ||
38.59 | 0.00 | 0.00 | 0.03 | 27.72 | 0.02 | 23.63 | 0.06 | 0.02 | 6.38 | 0.06 | 0.02 | 96.53 | 7.09 | 0.20 | ||
38.51 | 0.00 | 0.00 | 0.00 | 27.06 | 0.00 | 23.64 | 0.01 | 0.14 | 6.85 | 0.03 | 0.00 | 96.23 | 7.61 | 0.22 |
Fig.7 (Th/Nb)PM vs. (La/Nb)PM diagram for metamorphic basic rocks and amphibolites from Yalaxiangbo (adapted from [34]). MC (middle crust) and LC (lower crust) data from [31].
Fig.9 La/Yb-Dy/Yb (a) and La/Sm-Sm/Yb (b) diagrams for metamorphic basic rocks and plagioclase amphibolites from Yalaxiangbo, showing the partial melting curves obtained using the nonmodal batch melting equations. Tick marks on each curve correspond to degrees of partial melting (%) for a given mantle source. Depleted MORB mantle (DMM) and enriched DMM (E-DMM) compositions from [42]; primitive mantle compositions from [27].
Fig.10 Discrimination diagram of tectonic setting for metamorphic basic rocks and plagioclase amphibolites from Yalaxiangbo. (a) Th/Yb-Nb/Yb diagram (adapted from [26]). (b) 2Nb-Zr/4-Y diagram (adapted from [44]). A1—Intraplate alkaline basalt; A2—Intraplate alkaline basalt + Intraplate tholeiite. B—E-MORB; C—Intraplate tholeiite + Volcanic arc basalt; D—Volcanic arc basalt + N-MORB. (c) Hf/3-Th-Ta diagram (adapted from [45]). (d) Hf/3-Th-Nb/16 diagrams (adapted from [45]). A—N-MORB; B—E-MORB/Intraplate tholeiite; C—Intraplate alkaline basalt; D—Island arc tholeiite.
[1] | 童劲松, 刘俊, 钟华明, 等. 藏南洛扎地区基性岩墙群锆石U-Pb定年、 地球化学特征及构造意义[J]. 地质通报, 2007, 26(12): 1654-1664. |
[2] |
JIANG S H, NIE F J, HU P, et al. An important spreading event of the neo-Tethys ocean during the Late Jurassic and Early Cretaceous: evidence from zircon U-Pb SHRIMP dating on diabase in nagarze, southern Tibet[J]. Acta Geologica Sinica, 2006, 80(4): 522-527.
DOI URL |
[3] |
ZHU D C, MO X X, PAN G T, et al. Petrogenesis of the earliest Early Cretaceous mafic rocks from the Cona area of the eastern Tethyan Himalaya in south Tibet: interaction between the incubating Kerguelen plume and the eastern Greater India lithosphere?[J]. Lithos, 2008, 100(1/2/3/4): 147-173.
DOI URL |
[4] | 江思宏, 聂凤军, 胡朋, 等. 藏南基性岩墙群的地球化学特征[J]. 地质学报, 2007, 81(1): 60-71. |
[5] | 裘碧波, 朱弟成, 赵志丹, 等. 藏南措美残余大火成岩省的西延及意义[J]. 岩石学报, 2010, 26(7): 2207-2216. |
[6] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
DOI URL |
[7] |
HOU Z Q, COOK N J. Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue[J]. Ore Geology Reviews, 2009, 36(1/2/3): 2-24.
DOI URL |
[8] |
BURG J P, CHEN G M. Tectonics and structural zonation of southern Tibet, China[J]. Nature, 1984, 311(5983): 219-223.
DOI URL |
[9] |
KIND R, NI J, ZHAO W, et al. Evidence from earthquake data for a partially molten crustal layer in southern Tibet[J]. Science, 1996, 274(5293): 1692-1694.
PMID |
[10] |
MO X X, HOU Z Q, NIU Y L, et al. Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 2007, 96(1/2): 225-242.
DOI URL |
[11] | 莫宣学, 赵志丹, 朱弟成, 等. 西藏南部印度-亚洲碰撞带岩石圈: 岩石学-地球化学约束[J]. 地球科学: 中国地质大学学报, 2009, 34(1): 17-27. |
[12] |
LI G W, LIU X H, ALEX P, et al. In-situ detrital zircon geochronology and Hf isotopic analyses from Upper Triassic Tethys sequence strata[J]. Earth and Planetary Science Letters, 2010, 297(3/4): 461-470.
DOI URL |
[13] | 梁凤华, 许志琴, 巴登珠, 等. 西藏罗布莎-泽当蛇绿岩体的构造产出与侵位机制探讨[J]. 岩石学报, 2011, 27(11): 3255-3268. |
[14] | 钟华明, 夏军, 童劲松, 等. 洛扎县幅地质调查新成果及主要进展[J]. 地质通报, 2004, 23(增刊1): 451-457. |
[15] | DAI J G, YIN A, LIU W C, et al. Nd isotopic compositions of the Tethyan Himalayan sequence in southeastern Tibet[J]. Science in China Series D: Earth Sciences, 2008, 51(9): 1306-1316. |
[16] | 朱弟成, 潘桂棠, 莫宣学, 等. 青藏高原中部中生代OIB型玄武岩的识别: 年代学、 地球化学及其构造环境[J]. 地质学报, 2006, 80(9): 1312-1328. |
[17] |
HAUCK M L, NELSON K D, BROWN L D, et al. Crustal structure of the Himalayan orogen at -90° east longitude from Project INDEPTH deep reflection profiles[J]. Tectonics, 1998, 17(4): 481-500.
DOI URL |
[18] |
LEE J, HACKER B R, DINKLAGE W S, et al. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints[J]. Tectonics, 2000, 19(5): 872-895.
DOI URL |
[19] |
LEE J, HACKER B, WANG Y. Evolution of North Himalayan gneiss domes: structural and metamorphic studies in Mabja Dome, southern Tibet[J]. Journal of Structural Geology, 2004, 26(12): 2297-2316.
DOI URL |
[20] | 吴珍汉, 叶培盛, 吴中海, 等. 特提斯喜马拉雅构造带雅拉香波穹窿构造热事件LA-ICP-MS锆石U-Pb年龄证据[J]. 地质通报, 2014, 33(5): 595-605. |
[21] | 张进江, 郭磊, 张波. 北喜马拉雅穹窿带雅拉香波穹窿的构造组成和运动学特征[J]. 地质科学, 2007, 42(1): 16-30. |
[22] | 曾令森, 陈晶, 高利娥, 等. 藏南北喜马拉雅穹窿高Sr/Y二云母花岗岩中磷灰石地球化学特征及其岩石学意义[J]. 岩石学报, 2012, 28(9): 2981-2993. |
[23] | PEARCE J A. A user’guide to basalt discrimination diagrams[J]. Geological Association of Canada Short Course Notes, 1996, 12: 79-113. |
[24] |
HASTIE A R, KERR A C, PEARCE J A, et al. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-co discrimination diagram[J]. Journal of Petrology, 2007, 48(12): 2341-2357.
DOI URL |
[25] |
ROSS P S, BÉDARD J H. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams[J]. Canadian Journal of Earth Sciences, 2009, 46(11): 823-839.
DOI URL |
[26] |
PEARCE J A, PEATE D W. Tectonic implications of the composition of volcanic ARC magmas[J]. Annual Review of Earth and Planetary Science, 1995, 23(1): 251-285.
DOI URL |
[27] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematlcs of oceanic basalts: implications or mantle composition and processes[J]. Geological Society of London Special Publications, 1989, 42: 313-345.
DOI URL |
[28] |
BECKER H, JOCHUM K P, CARLSON R W. Constraints from high-pressure veins in eclogites on the composition of hydrous fluids in subduction zones[J]. Chemical Geology, 1999, 160(4): 291-308.
DOI URL |
[29] |
ENAMI M, LIOU J G, MATTINSON C G. Epidote minerals in high P/T metamorphic terranes: subduction zone and high- to ultrahigh-pressure metamorphism[J]. Reviews in Mineralogy and Geochemistry, 2004, 56(1): 347-398.
DOI URL |
[30] |
LEAKE B E, WOOLLEY A R, ARPS C E S, et al. Nomenclature of amphiboles report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names[J]. European Journal of Mineralogy, 1997, 9(3): 623-651.
DOI URL |
[31] | RUDNICK R L, GAO S. Composition of the continental crust[M]//HOLLAND H D, TUREKIAN K K. Treatise on geochemistry, Oxford: Elsevier-Pergamon, 2003. |
[32] | THOMPSON R N, MORRISON M A, HENDRY G L, et al. An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach[J]. Philosophical Transactions of the Royal Society A, 1984, 310(1514): 549-590. |
[33] |
FREY F A, WEIS D, BORISOVA A Y, et al. Involvement of continental crust in the formation of the Cretaceous Kerguelen plateau: new perspectives from ODP leg 120 sites[J]. Journal of Petrology, 2002, 43(7): 1207-1239.
DOI URL |
[34] |
NEAL C R, MAHONEY J J, CHAZEY W J. Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen plateau and broken ridge LIP: results from ODP leg 183[J]. Journal of Petrology, 2002, 43(7): 1177-1205.
DOI URL |
[35] |
ALLÈGRE C J, MINSTER J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38(1): 1-25.
DOI URL |
[36] | MYSEN B O. Trace-element partitioning between garnet peridotite minerals and water-rich vapor: experimental data from 5 to 30 kbar[J]. American Mineralogist, 1979, 64(3/4): 274-287. |
[37] |
IRVING A J, FREY F A. Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis[J]. Geochimica et Cosmochimica Acta, 1984, 48(6): 1201-1221.
DOI URL |
[38] | 王亚莹, 高利娥, 曾令森, 等. 藏南特提斯喜马拉雅带内江孜-康马地区白垩纪多期基性岩浆作用[J]. 岩石学报, 2016, 32(12): 3572-3596. |
[39] |
WORKMAN R K, HART S R. Major and trace element composition of the depleted MORB mantle (DMM)[J]. Earth and Planetary Science Letters, 2005, 231(1/2): 53-72.
DOI URL |
[40] |
SHAW D M. Trace element fractionation during anatexis[J]. Geochimica et Cosmochimica Acta, 1970, 34(2): 237-243.
DOI URL |
[41] |
ALDANMAZ E, PEARCE J A, THIRLWALL M F, et al. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 2000, 102(1/2): 67-95.
DOI URL |
[42] | MCKENZIE D, O’NIONS R K. Partial melt distributions from inversion of rare earth element concentrations[J]. Journal pf Petrology, 1991, 32(5): 1021-1091. |
[43] |
FURMAN T, GRAHAM D. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic Province[J]. Lithos, 1999, 48(1/2/3/4): 237-262.
DOI URL |
[44] |
MESCHEDE M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-1bZr-1bY diagram[J]. Chemical Geology, 1986, 56(3/4): 207-218.
DOI URL |
[45] |
WOOD D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50(1): 11-30.
DOI URL |
[46] |
PEARCE J A, LIPPARD S J, ROBERTS S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publications, 1984, 16(1): 77-94.
DOI URL |
[47] |
ZINDLER A, HART S. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences, 1986, 14: 493-571.
DOI URL |
[48] | HOFMANN A W, HÉMOND C. The origin of E-MORB[J]. Geochimica et Cosmochimica Acta, 2006, 70(18): A257. |
[49] |
MICHAEL P. Regionally distinctive sources of depleted MORB: evidence from trace elements and H2O[J]. Earth and Planetary Science Letters, 1995, 131(3/4): 301-320.
DOI URL |
[50] | 肖文交, WINDLEY B F, 阎全人, 等. 北疆地区阿尔曼太蛇绿岩锆石SHRIMP年龄及其大地构造意义[J]. 地质学报, 2006, 80(1): 32-37. |
[51] |
CHOE W H, LEE J I, LEE M J, et al. Origin of E-MORB in a fossil spreading center: the Antarctic-Phoenix Ridge, Drake Passage, Antarctica[J]. Geosciences Journal, 2007, 11(3): 185-199.
DOI URL |
[52] | 刘希军, 许继峰, 王树庆, 等. 新疆西准噶尔达拉布特蛇绿岩E-MORB型镁铁质岩的地球化学、 年代学及其地质意义[J]. 岩石学报, 2009, 25(6): 1373-1389. |
[53] | 王金荣, 陈万峰, 张旗, 等. MORB数据挖掘: 玄武岩判别图反思[J]. 大地构造与成矿学, 2017, 41(2): 420-431. |
[54] |
SCHILLING J G, THOMPSON G, KINGSLEY R, et al. Hotspot—migrating ridge interaction in the South Atlantic[J]. Nature, 1985, 313(5999): 187-191.
DOI URL |
[55] |
DONNELLY K E, GOLDSTEIN S L, LANGMUIR C H, et al. Origin of enriched ocean ridge basalts and implications for mantle dynamics[J]. Earth and Planetary Science Letters, 2004, 226(3/4): 347-366.
DOI URL |
[56] | WORKMAN R K, HART S R, JACKSON M, et al. Recycled metasomatized lithosphere as the origin of the enriched mantleⅡ(EM2) end-member: evidence from the Samoan Volcanic Chain[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(4): 1-44. |
[57] |
NIU Y L, BATIZA R. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle[J]. Earth and Planetary Science Letters, 1997, 148(3/4): 471-483.
DOI URL |
[58] | NIU Y L, COLLERSON K D, BATIZA R, et al. Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: the East Pacific Rise at 11°20'N[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B4): 7067-7087. |
[59] |
ZHU D C, PAN G T, MO X X, et al. Petrogenesis of volcanic rocks in the Sangxiu Formation, central segment of Tethyan Himalaya: a probable example of plume-lithosphere interaction[J]. Journal of Asian Earth Sciences, 2007, 29(2/3): 320-335.
DOI URL |
[60] |
ZHU D C, CHUNG S L, MO X X, et al. The 132 Ma Comei-Bunbury large igneous Province: remnants identified in present-day southeastern Tibet and southwestern Australia[J]. Geology, 2009, 37(7): 583-586.
DOI URL |
[1] | WANG Hua-Qiu, ZHANG Bi-Min, TAO Wen-Sheng, LIU Xue-Min. [J]. Earth Science Frontiers, 20140101, 21(1): 65-74. |
[2] | LIU Lingxia, LU Rui, XIE Wenping, LIU Bo, WANG Yaru, YAO Haihui, LIN Wenjing. Distribution and hydrogeochemical characteristics of hot springs in northeastern Tibetan Plateau [J]. Earth Science Frontiers, 2024, 31(6): 173-195. |
[3] | ZHANG Jiawen, LI Mingchao, HAN Shuai, ZHANG Jingyi. Analysis and discrimination of tectonic settings based on stacking quantum neural networks [J]. Earth Science Frontiers, 2024, 31(3): 511-519. |
[4] | ZHOU Yuxi, SHI Yu, HUANG Chunwen, LIU Xijun, LAN Yuanchun, TANG Yuanyuan, WENG Boyin. Petrogenesis and tectonic significance of Caledonian I-Type granitoids in the Gulong and Liandong plutons in southeastern Guangxi [J]. Earth Science Frontiers, 2024, 31(2): 224-248. |
[5] | LI Haidong, TIAN Shihong, LIU Bin, HU Peng, WU Jianyong, CHEN Zhengle. In-situ microchronology and elemental analysis of pitchblende in the Pajiang uranium deposit, northern Guangdong: Implications for uranium mineralization [J]. Earth Science Frontiers, 2024, 31(2): 270-283. |
[6] | HE Yanbing, LEI Yongchang, QIU Xinwei, XIAO Zhangbo, ZHENG Yangdi, LIU Dongqing. Sedimentary paleoenvironment and main controlling factors of organic enrichment in source rocks of the Wenchang Formation in southern Lufeng, Pearl River Mouth Basin [J]. Earth Science Frontiers, 2024, 31(2): 359-376. |
[7] | WANG Ye, CHEN Yang, CHEN Jun. Petrogenic organic carbon weathering and its controlling factors—a review [J]. Earth Science Frontiers, 2024, 31(2): 402-409. |
[8] | GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi [J]. Earth Science Frontiers, 2024, 31(1): 384-399. |
[9] | YANG Mengfan, QIU Kunfeng, HE Dengyang, HUANG Yaqi, WANG Yuxi, FU Nan, YU Haocheng, XUE Xianfa. Mineralogy and geochemistry of gold-bearing sulfides in the Wanken gold deposit, West Qinling Orogen [J]. Earth Science Frontiers, 2023, 30(6): 371-390. |
[10] | HUANG Xiaoqiang, LIU Qingqi, LI Peng, LIU Xiang, ZENG Le, ZHANG Liping, SHI Weike, HUANG Zhibiao, FAN Pengfei, WAN Haihui, LIN Yue, WANG Xuanmin, CAI Chang. Pegmatites of Shangfu deposits, Lianyunshan, northeastern Hunan: Geochemical characteristics, fluid inclusions, and genetic constraints [J]. Earth Science Frontiers, 2023, 30(5): 298-313. |
[11] | WANG Tao, LI Jiqing, HAN Jie, WANG Taishan, LI Yulong, YUAN Bowu. Geochemistry, geochronology and Hf isotopic characteristics of rare earth-bearing quartz syenite in eastern Dashuigou, East Kunlun [J]. Earth Science Frontiers, 2023, 30(4): 283-298. |
[12] | LUO Niangang, GAO Lianfeng, ZHANG Zhenguo, YIN Zhigang, CUI Jianyu, WU Junfei, XING Jie, DING Kai, GAO Chenyang, WANG Yue. Processes and mechanism of lithospheric thinning in the eastern North China Craton during the Early Cretaceous: Evidence from the Beidashan pluton, Liaoning Province [J]. Earth Science Frontiers, 2023, 30(3): 340-365. |
[13] | WANG Lulin, LIU Xiaohong, ZHANG Zhiguang. Discovery of volcanic rocks in the Pingchau Formation in Tungpingchau, Hong Kong UNESCO Global Geopark: Zircon U-Pb geochronology, geochemistry and geological implications [J]. Earth Science Frontiers, 2023, 30(2): 239-258. |
[14] | ZHU Pingping, LIU Yue, CHENG Qiuming. Quantitative determinations of the dispersion pattern and geological significance of geochemical anomalies in Biguo area, Jiaodong Terrane [J]. Earth Science Frontiers, 2023, 30(2): 440-446. |
[15] | WU Jiawang, YAO Shengnan, Amalia FILIPPIDI, LIU Zhifei, Gert J. DE LANGE. Terrigenous detrital inputs and hydroclimate changes in the Holocene eastern Mediterranean Sea: A basin-wide geochemical view [J]. Earth Science Frontiers, 2022, 29(4): 156-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||