Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (4): 156-167.DOI: 10.13745/j.esf.sf.2022.1.10
Previous Articles Next Articles
WU Jiawang1,2,3(), YAO Shengnan1, Amalia FILIPPIDI2, LIU Zhifei3, Gert J. DE LANGE2,3
Received:
2021-09-15
Revised:
2021-12-15
Online:
2022-07-25
Published:
2022-07-28
CLC Number:
WU Jiawang, YAO Shengnan, Amalia FILIPPIDI, LIU Zhifei, Gert J. DE LANGE. Terrigenous detrital inputs and hydroclimate changes in the Holocene eastern Mediterranean Sea: A basin-wide geochemical view[J]. Earth Science Frontiers, 2022, 29(4): 156-167.
岩心 | 取样方式 | 地理位置 | 站位水深/m | 航次信息 |
---|---|---|---|---|
BC07 | 箱式 | 33°40.0'N, 32°40.0'E | 893 | RV Marion Dufresne 1994 |
SL29 | 箱式 | 33°23.4'N, 32°30.2'E | 1 587 | RV Logachev 1999 |
SL09 | 箱式 | 34°17.2'N, 31°31.4'E | 2 302 | RV Logachev 1999 |
BC19 | 箱式 | 33°47.9'N, 28°36.5'E | 2 750 | RV Marion Dufresne 1991 |
BC03 | 箱式 | 33°22.5'N, 24°46.0'E | 2 180 | RV Marion Dufresne 1994 |
SL125 | 箱式 | 33°39.4'N, 24°33.0'E | 1 946 | RV Logachev 1999 |
SL73 | 箱式 | 39°39.7'N, 24°30.7'E | 339 | RV Logachev 1999 |
SL114 | 箱式 | 35°17.2'N, 21°24.5'E | 3 390 | RV Logachev 1999 |
SL139 | 箱式 | 34°16.1'N, 19°49.8'E | 3 293 | RV Logachev 1999 |
BP15 | 箱式 | 32°46.7'N, 19°52.6'E | 665 | RV Pelagia 2001 |
BP18 | 箱式 | 33°06.0'N, 19°46.4'E | 1 850 | RV Pelagia 2001 |
AP1 | 重力 | 39°13.0'N, 19°06.8'E | 811 | RV Urania 1998 |
MP50 | 活塞 | 39°29.0'N, 18°31.0'E | 775 | RV Pelagia 2009 |
KC01 | 活塞 | 36°15.3'N, 17°44.3'E | 3 643 | RV Marion Dufresne 1991 |
UM42 | 箱式 | 34°57.2'N, 17°51.8'E | 1 375 | RV Urania 1994 |
CP10 | 箱式 | 34°32.7'N, 16°34.0'E | 1 501 | RV Pelagia 2011 |
CP09 | 箱式 | 36°02.2'N, 13°06.6'E | 524 | RV Pelagia 2011 |
MT11 | 重力 | 37°03.5'N, 13°15.4'E | 502 | RV Tyro 1993 |
Table 1 General information of the studied Mediterranean sediment cores
岩心 | 取样方式 | 地理位置 | 站位水深/m | 航次信息 |
---|---|---|---|---|
BC07 | 箱式 | 33°40.0'N, 32°40.0'E | 893 | RV Marion Dufresne 1994 |
SL29 | 箱式 | 33°23.4'N, 32°30.2'E | 1 587 | RV Logachev 1999 |
SL09 | 箱式 | 34°17.2'N, 31°31.4'E | 2 302 | RV Logachev 1999 |
BC19 | 箱式 | 33°47.9'N, 28°36.5'E | 2 750 | RV Marion Dufresne 1991 |
BC03 | 箱式 | 33°22.5'N, 24°46.0'E | 2 180 | RV Marion Dufresne 1994 |
SL125 | 箱式 | 33°39.4'N, 24°33.0'E | 1 946 | RV Logachev 1999 |
SL73 | 箱式 | 39°39.7'N, 24°30.7'E | 339 | RV Logachev 1999 |
SL114 | 箱式 | 35°17.2'N, 21°24.5'E | 3 390 | RV Logachev 1999 |
SL139 | 箱式 | 34°16.1'N, 19°49.8'E | 3 293 | RV Logachev 1999 |
BP15 | 箱式 | 32°46.7'N, 19°52.6'E | 665 | RV Pelagia 2001 |
BP18 | 箱式 | 33°06.0'N, 19°46.4'E | 1 850 | RV Pelagia 2001 |
AP1 | 重力 | 39°13.0'N, 19°06.8'E | 811 | RV Urania 1998 |
MP50 | 活塞 | 39°29.0'N, 18°31.0'E | 775 | RV Pelagia 2009 |
KC01 | 活塞 | 36°15.3'N, 17°44.3'E | 3 643 | RV Marion Dufresne 1991 |
UM42 | 箱式 | 34°57.2'N, 17°51.8'E | 1 375 | RV Urania 1994 |
CP10 | 箱式 | 34°32.7'N, 16°34.0'E | 1 501 | RV Pelagia 2011 |
CP09 | 箱式 | 36°02.2'N, 13°06.6'E | 524 | RV Pelagia 2011 |
MT11 | 重力 | 37°03.5'N, 13°15.4'E | 502 | RV Tyro 1993 |
岩心 | 深度/ cm | 年龄/ (ka cal. BP) | wB/% | wB/10-6 | CIA a | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Fe | Mg | K | Ca | Na | Ti | Zr | Co | Cr | Ni | Sc | Y | ||||
早全新世(腐泥层S1样品) | ||||||||||||||||
BC07 | 24.25 | 9.14 | 8.75 | 9.46 | 1.32 | 1.45 | 0.39 | 0.41 | 0.70 | 216.3 | 23.9 | 150.2 | 85.1 | 19.7 | 20.5 | 80.4 |
SL29 | 27.25 | 8.99 | 8.50 | 9.26 | 1.84 | 1.28 | 0.32 | 0.35 | 0.64 | 197.5 | 29.2 | 136.3 | 80.6 | 19.1 | 18.2 | 82.3 |
SL09 | 37.45 | 8.90 | 7.70 | 8.38 | 1.38 | 1.52 | 0.46 | 0.48 | 0.49 | 136.0 | 37.9 | 161.6 | 111.3 | 20.7 | 14.6 | 76.6 |
BC19 | 25.75 | 9.42 | 8.01 | 9.19 | 1.75 | 1.34 | 0.25 | 0.36 | 0.54 | 173.8 | 62.7 | 155.9 | 117.8 | 17.7 | 14.8 | 81.9 |
BC03 | 21.20 | 9.33 | 8.61 | 6.01 | 1.86 | 2.10 | 0.27 | 0.47 | 0.59 | 179.1 | 27.2 | 185.2 | 108.5 | 18.2 | 20.0 | 77.5 |
SL125 | 21.75 | 9.40 | 8.56 | 7.30 | 1.88 | 2.06 | 0.26 | 0.48 | 0.58 | 187.2 | 18.1 | 196.7 | 108.6 | 17.9 | 20.6 | 77.7 |
SL73 | 22.15 | 9.31 | 9.19 | 4.73 | 1.54 | 2.60 | 0.67 | 1.08 | 0.51 | 101.0 | 14.1 | 213.6 | 116.9 | 18.6 | 15.9 | 68.7 |
SL114 | 32.05 | 9.33 | 7.83 | 8.30 | 1.80 | 2.24 | 0.18 | 0.47 | 0.43 | 111.5 | 54.9 | 178.7 | 122.6 | 17.9 | 12.9 | 76.1 |
SL139 | 28.25 | 9.31 | 9.70 | 6.89 | 1.42 | 2.57 | 0.16 | 0.43 | 0.51 | 153.0 | 26.0 | 181.0 | 98.3 | 18.9 | 17.0 | 78.5 |
BP18 | 27.75 | 9.24 | 8.83 | 4.45 | 2.00 | 2.26 | 0.21 | 0.41 | 0.54 | 165.0 | 24.0 | 136.5 | 66.7 | 18.0 | 20.1 | 78.2 |
AP1 | 30.25 | 9.20 | 9.82 | 5.20 | 1.76 | 2.81 | 0.22 | 0.57 | 0.51 | 150.0 | 19.4 | 220.5 | 123.0 | 18.7 | 17.0 | 76.2 |
MP50 | 44.25 | 8.94 | 9.69 | 4.31 | 1.54 | 2.84 | 0.15 | 0.59 | 0.50 | 137.8 | 13.7 | 220.9 | 93.6 | 18.3 | 16.4 | 76.2 |
UM42 | 26.15 | 9.55 | 9.52 | 5.13 | 1.37 | 2.48 | 0.23 | 0.48 | 0.53 | 149.2 | 11.2 | 147.2 | 56.0 | 17.2 | 18.3 | 77.7 |
KC01 | 100.30 | 8.93 | 8.59 | 5.54 | 1.18 | 2.32 | 0.24 | 0.51 | 0.47 | 124.3 | 42.8 | 142.0 | 72.3 | 16.2 | 14.8 | 76.4 |
CP10 | 33.75 | 9.27 | 9.31 | 4.31 | 1.28 | 2.35 | 0.22 | 0.43 | 0.52 | 138.3 | 15.7 | 130.2 | 53.3 | 16.8 | 18.9 | 78.4 |
MT11 | 286.00 | 9.38 | 10.52 | 4.70 | 0.00 | 2.25 | 0.05 | 0.23 | 0.59 | 158.1 | 8.8 | 149.6 | 35.8 | 15.5 | 20.1 | 84.0 |
晚全新世/现代(岩心表层样品) | ||||||||||||||||
BC07b | 0.25 | 0.86 | 7.56 | 5.37 | 1.10 | 1.28 | 0.38 | 0.39 | 0.65 | 184.6 | 12.9 | 138.8 | 59.7 | 19.1 | 18.0 | 79.4 |
SL29b | 0.25 | 1.65 | 7.68 | 5.31 | 1.42 | 1.36 | 0.41 | 0.44 | 0.68 | 198.1 | 12.5 | 115.2 | 57.5 | 19.4 | 19.0 | 78.3 |
SL09b | 0.35 | ≈0 | 7.54 | 5.18 | 1.25 | 1.41 | 0.39 | 0.41 | 0.58 | 155.5 | 14.5 | 127.9 | 74.5 | 18.5 | 16.3 | 78.3 |
BC19b | 3.75 | 1.65 | 7.70 | 4.58 | 1.69 | 1.84 | 0.27 | 0.44 | 0.58 | 183.8 | 10.7 | 123.7 | 60.7 | 14.9 | 20.2 | 77.2 |
BC03b | 5.60 | 4.85 | 9.09 | 5.28 | 1.80 | 2.33 | 0.30 | 0.54 | 0.64 | 209.3 | 13.1 | 164.4 | 86.7 | 17.3 | 24.2 | 76.4 |
SL125 | 8.75 | 4.04 | 9.60 | 5.43 | 1.29 | 2.32 | 0.28 | 0.50 | 0.67 | 206.1 | 15.1 | 175.1 | 93.4 | 17.9 | 24.3 | 77.9 |
SL73b | 0.45 | 1.20 | 7.60 | 3.85 | 1.17 | 1.96 | 0.60 | 0.95 | 0.40 | 80.9 | 9.8 | 143.6 | 76.5 | 16.6 | 12.7 | 68.7 |
SL114b | 0.25 | ≈0 | 7.32 | 3.93 | 1.32 | 1.83 | 0.19 | 0.52 | 0.49 | 121.7 | 11.5 | 137.6 | 70.5 | 14.7 | 15.6 | 76.5 |
BP15b | 0.25 | ≈0 | 8.71 | 4.67 | 1.12 | 2.31 | 0.33 | 0.52 | 0.60 | 203.0 | 10.6 | 107.2 | 40.3 | 19.8 | 23.6 | 75.7 |
BP18b | 0.25 | 1.89 | 7.98 | 4.35 | 1.49 | 2.14 | 0.33 | 0.65 | 0.58 | 178.0 | 10.3 | 99.0 | 35.6 | 14.9 | 19.5 | 73.8 |
AP1b | 0.25 | ≈0 | 9.28 | 4.42 | 1.27 | 2.42 | 0.16 | 0.62 | 0.54 | 130.6 | 14.3 | 177.0 | 74.1 | 19.6 | 14.6 | 77.0 |
UM42 | 4.65 | 1.38 | 8.84 | 4.55 | 1.24 | 2.25 | 0.31 | 0.52 | 0.57 | 168.7 | 9.9 | 113.9 | 41.1 | 15.6 | 21.0 | 76.3 |
CP10b | 0.25 | 0.76 | 9.82 | 4.64 | 1.10 | 2.44 | 0.35 | 0.54 | 0.60 | 154.0 | 10.0 | 130.6 | 45.5 | 18.9 | 21.1 | 76.9 |
CP09b | 0.25 | ≈0 | 8.72 | 4.18 | 0.77 | 1.92 | 0.17 | 0.32 | 0.54 | 149.7 | 8.0 | 120.7 | 33.9 | 16.6 | 19.2 | 80.9 |
ISE-921(n=4) | 5.72 | 3.28 | 1.14 | 1.97 | 4.49 | 5.67 | 3.62 | 106.9 | 13.7 | 139.7 | 45.1 | 9.6 | 22.4 | |||
MAG-1(n=2) | 8.63 | 4.87 | 1.92 | 1.52 | 1.07 | 2.91 | 0.43 | 92.5 | 19.6 | 110.8 | 65.3 | 16.7 | 22.5 |
Table 2 Geochemical compositions of detrital samples of the Holocene Mediterranean sediments
岩心 | 深度/ cm | 年龄/ (ka cal. BP) | wB/% | wB/10-6 | CIA a | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Fe | Mg | K | Ca | Na | Ti | Zr | Co | Cr | Ni | Sc | Y | ||||
早全新世(腐泥层S1样品) | ||||||||||||||||
BC07 | 24.25 | 9.14 | 8.75 | 9.46 | 1.32 | 1.45 | 0.39 | 0.41 | 0.70 | 216.3 | 23.9 | 150.2 | 85.1 | 19.7 | 20.5 | 80.4 |
SL29 | 27.25 | 8.99 | 8.50 | 9.26 | 1.84 | 1.28 | 0.32 | 0.35 | 0.64 | 197.5 | 29.2 | 136.3 | 80.6 | 19.1 | 18.2 | 82.3 |
SL09 | 37.45 | 8.90 | 7.70 | 8.38 | 1.38 | 1.52 | 0.46 | 0.48 | 0.49 | 136.0 | 37.9 | 161.6 | 111.3 | 20.7 | 14.6 | 76.6 |
BC19 | 25.75 | 9.42 | 8.01 | 9.19 | 1.75 | 1.34 | 0.25 | 0.36 | 0.54 | 173.8 | 62.7 | 155.9 | 117.8 | 17.7 | 14.8 | 81.9 |
BC03 | 21.20 | 9.33 | 8.61 | 6.01 | 1.86 | 2.10 | 0.27 | 0.47 | 0.59 | 179.1 | 27.2 | 185.2 | 108.5 | 18.2 | 20.0 | 77.5 |
SL125 | 21.75 | 9.40 | 8.56 | 7.30 | 1.88 | 2.06 | 0.26 | 0.48 | 0.58 | 187.2 | 18.1 | 196.7 | 108.6 | 17.9 | 20.6 | 77.7 |
SL73 | 22.15 | 9.31 | 9.19 | 4.73 | 1.54 | 2.60 | 0.67 | 1.08 | 0.51 | 101.0 | 14.1 | 213.6 | 116.9 | 18.6 | 15.9 | 68.7 |
SL114 | 32.05 | 9.33 | 7.83 | 8.30 | 1.80 | 2.24 | 0.18 | 0.47 | 0.43 | 111.5 | 54.9 | 178.7 | 122.6 | 17.9 | 12.9 | 76.1 |
SL139 | 28.25 | 9.31 | 9.70 | 6.89 | 1.42 | 2.57 | 0.16 | 0.43 | 0.51 | 153.0 | 26.0 | 181.0 | 98.3 | 18.9 | 17.0 | 78.5 |
BP18 | 27.75 | 9.24 | 8.83 | 4.45 | 2.00 | 2.26 | 0.21 | 0.41 | 0.54 | 165.0 | 24.0 | 136.5 | 66.7 | 18.0 | 20.1 | 78.2 |
AP1 | 30.25 | 9.20 | 9.82 | 5.20 | 1.76 | 2.81 | 0.22 | 0.57 | 0.51 | 150.0 | 19.4 | 220.5 | 123.0 | 18.7 | 17.0 | 76.2 |
MP50 | 44.25 | 8.94 | 9.69 | 4.31 | 1.54 | 2.84 | 0.15 | 0.59 | 0.50 | 137.8 | 13.7 | 220.9 | 93.6 | 18.3 | 16.4 | 76.2 |
UM42 | 26.15 | 9.55 | 9.52 | 5.13 | 1.37 | 2.48 | 0.23 | 0.48 | 0.53 | 149.2 | 11.2 | 147.2 | 56.0 | 17.2 | 18.3 | 77.7 |
KC01 | 100.30 | 8.93 | 8.59 | 5.54 | 1.18 | 2.32 | 0.24 | 0.51 | 0.47 | 124.3 | 42.8 | 142.0 | 72.3 | 16.2 | 14.8 | 76.4 |
CP10 | 33.75 | 9.27 | 9.31 | 4.31 | 1.28 | 2.35 | 0.22 | 0.43 | 0.52 | 138.3 | 15.7 | 130.2 | 53.3 | 16.8 | 18.9 | 78.4 |
MT11 | 286.00 | 9.38 | 10.52 | 4.70 | 0.00 | 2.25 | 0.05 | 0.23 | 0.59 | 158.1 | 8.8 | 149.6 | 35.8 | 15.5 | 20.1 | 84.0 |
晚全新世/现代(岩心表层样品) | ||||||||||||||||
BC07b | 0.25 | 0.86 | 7.56 | 5.37 | 1.10 | 1.28 | 0.38 | 0.39 | 0.65 | 184.6 | 12.9 | 138.8 | 59.7 | 19.1 | 18.0 | 79.4 |
SL29b | 0.25 | 1.65 | 7.68 | 5.31 | 1.42 | 1.36 | 0.41 | 0.44 | 0.68 | 198.1 | 12.5 | 115.2 | 57.5 | 19.4 | 19.0 | 78.3 |
SL09b | 0.35 | ≈0 | 7.54 | 5.18 | 1.25 | 1.41 | 0.39 | 0.41 | 0.58 | 155.5 | 14.5 | 127.9 | 74.5 | 18.5 | 16.3 | 78.3 |
BC19b | 3.75 | 1.65 | 7.70 | 4.58 | 1.69 | 1.84 | 0.27 | 0.44 | 0.58 | 183.8 | 10.7 | 123.7 | 60.7 | 14.9 | 20.2 | 77.2 |
BC03b | 5.60 | 4.85 | 9.09 | 5.28 | 1.80 | 2.33 | 0.30 | 0.54 | 0.64 | 209.3 | 13.1 | 164.4 | 86.7 | 17.3 | 24.2 | 76.4 |
SL125 | 8.75 | 4.04 | 9.60 | 5.43 | 1.29 | 2.32 | 0.28 | 0.50 | 0.67 | 206.1 | 15.1 | 175.1 | 93.4 | 17.9 | 24.3 | 77.9 |
SL73b | 0.45 | 1.20 | 7.60 | 3.85 | 1.17 | 1.96 | 0.60 | 0.95 | 0.40 | 80.9 | 9.8 | 143.6 | 76.5 | 16.6 | 12.7 | 68.7 |
SL114b | 0.25 | ≈0 | 7.32 | 3.93 | 1.32 | 1.83 | 0.19 | 0.52 | 0.49 | 121.7 | 11.5 | 137.6 | 70.5 | 14.7 | 15.6 | 76.5 |
BP15b | 0.25 | ≈0 | 8.71 | 4.67 | 1.12 | 2.31 | 0.33 | 0.52 | 0.60 | 203.0 | 10.6 | 107.2 | 40.3 | 19.8 | 23.6 | 75.7 |
BP18b | 0.25 | 1.89 | 7.98 | 4.35 | 1.49 | 2.14 | 0.33 | 0.65 | 0.58 | 178.0 | 10.3 | 99.0 | 35.6 | 14.9 | 19.5 | 73.8 |
AP1b | 0.25 | ≈0 | 9.28 | 4.42 | 1.27 | 2.42 | 0.16 | 0.62 | 0.54 | 130.6 | 14.3 | 177.0 | 74.1 | 19.6 | 14.6 | 77.0 |
UM42 | 4.65 | 1.38 | 8.84 | 4.55 | 1.24 | 2.25 | 0.31 | 0.52 | 0.57 | 168.7 | 9.9 | 113.9 | 41.1 | 15.6 | 21.0 | 76.3 |
CP10b | 0.25 | 0.76 | 9.82 | 4.64 | 1.10 | 2.44 | 0.35 | 0.54 | 0.60 | 154.0 | 10.0 | 130.6 | 45.5 | 18.9 | 21.1 | 76.9 |
CP09b | 0.25 | ≈0 | 8.72 | 4.18 | 0.77 | 1.92 | 0.17 | 0.32 | 0.54 | 149.7 | 8.0 | 120.7 | 33.9 | 16.6 | 19.2 | 80.9 |
ISE-921(n=4) | 5.72 | 3.28 | 1.14 | 1.97 | 4.49 | 5.67 | 3.62 | 106.9 | 13.7 | 139.7 | 45.1 | 9.6 | 22.4 | |||
MAG-1(n=2) | 8.63 | 4.87 | 1.92 | 1.52 | 1.07 | 2.91 | 0.43 | 92.5 | 19.6 | 110.8 | 65.3 | 16.7 | 22.5 |
[1] | BETHOUX J P, GENTILI B, RAUNET J, et al. Warming trend in the western Mediterranean deep water[J]. Nature, 1990, 347(6294): 660-662. |
[2] | BAR-MATTHEWS M, AYALON A, KAUFMAN A. Timing and hydrological conditions of Sapropel events in the Eastern Mediterranean, as evident from speleothems, Soreq cave, Israel[J]. Chemical Geology, 2000, 169(1): 145-156. |
[3] | TZEDAKIS P C. Seven ambiguities in the Mediterranean palaeoenvironmental narrative[J]. Quaternary Science Reviews, 2007, 26(17): 2042-2066. |
[4] | MAGNY M, COMBOURIEU-NEBOUT N, DE BEAULIEU L, et al. North-south palaeohydrological contrasts in the central Mediterranean during the Holocene: tentative synthesis and working hypotheses[J]. Climate of the Past, 2013, 9: 2043e2071. |
[5] | WAGNER B, VOGEL H, FRANCKE A, et al. Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years[J]. Nature, 2019, 573(7773): 256-260. |
[6] | CRAMP A, O’SULLIVAN G. Neogene sapropels in the Mediterranean: a review[J]. Marine Geology, 1999, 153(1): 11-28. |
[7] | ROHLING E J, MARINO G, GRANT K M. Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels)[J]. Earth-Science Reviews, 2015, 143: 62-97. |
[8] | ROSSIGNOL-STRICK M, NESTEROFF W, OLIVE P, et al. After the deluge: Mediterranean stagnation and sapropel formation[J]. Nature, 1982, 295(5845): 105-110. |
[9] | ZIEGLER M, TUENTER E, LOURENS L J. The precession phase of the boreal summer monsoon as viewed from the eastern Mediterranean (ODP Site 968)[J]. Quaternary Science Reviews, 2010, 29(11): 1481-1490. |
[10] | ZHAO Y, COLIN C, LIU Z, et al. Reconstructing precipitation changes in northeastern Africa during the Quaternary by clay mineralogical and geochemical investigations of Nile deep-sea fan sediments[J]. Quaternary Science Reviews, 2012, 57: 58-70. |
[11] | DE LANGE G J, THOMSON J, REITZ A, et al. Synchronous basin-wide formation and redox-controlled preservation of a Mediterranean sapropel[J]. Nature Geoscience, 2008, 1(9): 606-610. |
[12] | DE LANGE G J, TEN HAVEN H L. Recent sapropel formation in the eastern Mediterranean[J]. Nature, 1983, 305(5937): 797-798. |
[13] | EMEIS K-C, STRUCK U, SCHULZ H-M, et al. Temperature and salinity variations of Mediterranean Sea surface waters over the last 16 000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 158(3): 259-280. |
[14] | SCHMIEDL G, KUHNT T, EHRMANN W, et al. Climatic forcing of eastern Mediterranean deep-water formation and benthic ecosystems during the past 22 000 years[J]. Quaternary Science Reviews, 2010, 29: 3006-3020. |
[15] | TACHIKAWA K, VIDAL L, CORNUAULT M, et al. Eastern Mediterranean Sea circulation inferred from the conditions of S1 sapropel deposition[J]. Climate of the Past, 2015, 11(6): 855-867. |
[16] | FILIPPIDI A, TRIANTAPHYLLOW M V, DE LANGE G J. Eastern-Mediterranean ventilation variability during sapropel S1 formation, evaluated at two sites influenced by deep-water formation from Adriatic and Aegean Seas[J]. Quaternary Science Reviews, 2016, 144: 95-106. |
[17] | MATTHEWS A, AZRIELI-TAL I, BENKOVITZ A, et al. Anoxic development of sapropel S1 in the Nile Fan inferred from redox sensitive proxies, Fe speciation, Fe and Mo isotopes[J]. Chemical Geology, 2017, 475: 24-39. |
[18] | TESI T, ASIOLI A, MINISINI D, et al. Large-scale response of the Eastern Mediterranean thermohaline circulation to African monsoon intensification during sapropel S1 formation[J]. Quaternary Science Reviews, 2017, 159: 139-154. |
[19] | WU J, PAHNKE K, BÖNING P, et al. Divergent Mediterranean seawater circulation during Holocene sapropel formation-Reconstructed using Nd isotopes in fish debris and foraminifera[J]. Earth and Planetary Science Letters, 2019, 511: 141-153. |
[20] | THUNELL R C, WILLIAMS D F. Glacial-Holocene salinity changes in the Mediterranean Sea: hydrographic and depositional effects[J]. Nature, 1989, 338(6215): 493-496. |
[21] | KALLEL N, PATERNE M, DUPLESSY J, et al. Enhanced rainfall in the Mediterranean region during the last Sapropel Event[J]. 1997, 20(5). |
[22] | ROHLING E J, DE RIJK S. Holocene Climate Optimum and Last Glacial Maximum in the Mediterranean: the marine oxygen isotope record[J]. Marine Geology, 1999, 153(1): 57-75. |
[23] | MYERS P G, HAINES K, ROHLING E J. Modeling the paleocirculation of the Mediterranean: the Last Glacial Maximum and the Holocene with emphasis on the formation of sapropel S1[J]. Paleoceanography, 1998, 13(6): 586-606. |
[24] | MYERS P G. Flux-forced simulations of the paleocirculation of the Mediterranean[J]. Paleoceanography, 2002, 17(1): 9-1-9-7. |
[25] | VADSARIA T, RAMSTEIN G, DUTAY J C, et al. Simulating the occurrence of the last sapropel event (S1): Mediterranean basin ocean dynamics simulations using Nd isotopic composition modeling[J]. Paleoceanography and Paleoclimatology, 2019, 34(2): 237-251. |
[26] | STRATFORD K, WILLIAMS R G, MYERS P G. Impact of the circulation on Sapropel Formation in the eastern Mediterranean[J]. Global Biogeochemical Cycles, 2000, 14(2): 683-695. |
[27] | BIANCHI D, ZAVATARELLI M, PINARDI N, et al. Simulations of ecosystem response during the sapropel S1 deposition event[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 235(1): 265-287. |
[28] | GRIMM R, MAIER-REIMER E, MIKOLAJEWICZ U, et al. Late glacial initiation of Holocene eastern Mediterranean sapropel formation[J]. Nature Communication, 2015, 6: 7099. |
[29] | REVEL M, DUCASSOU E, GROUSSET F E, et al. 100 000 Years of African monsoon variability recorded in sediments of the Nile margin[J]. Quaternary Science Reviews, 2010, 29(11): 1342-1362. |
[30] | HENNEKAM R, DONDERS T H, ZWIEP K, et al. Integral view of Holocene precipitation and vegetation changes in the Nile catchment area as inferred from its delta sediments[J]. Quaternary Science Reviews, 2015, 130: 189-199. |
[31] | LIU Q, LARRASOANA J, TORRENT J, et al. New constraints on climate forcing and variability in the circum-Mediterranean region from magnetic and geochemical observations of sapropels S1, S5 and S6.[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 333: 1-12. |
[32] | MILNER A M, COLLIER R E L, ROUCOUX K H, et al. Enhanced seasonality of precipitation in the Mediterranean during the early part of the Last Interglacial[J]. Geology, 2012, 40(10): 919-922. |
[33] | BOSMANS J H C, DRIJFHOUT S S, TUENTER E, et al. Precession and obliquity forcing of the freshwater budget over the Mediterranean[J]. Quaternary Science Reviews, 2015, 123: 16-30. |
[34] | ROHLING E J, CANE T R, COOKE S, et al. African monsoon variability during the previous interglacial maximum[J]. Earth and Planetary Science Letters, 2002, 202(1): 61-75. |
[35] | OSBORNE A H, VANCE D, ROHLING E J, et al. A humid corridor across the Sahara for the migration of early modern humans out of Africa 120 000 years ago[J]. Proceedings of the National Academy of Sciences, 2008, 105(43): 16444. |
[36] | WU J, BÖNING P, PAHNKE K, et al. Unraveling North-African riverine and eolian contributions to central Mediterranean sediments during Holocene sapropel S1 formation[J]. Quaternary Science Reviews, 2016, 152: 31-48. |
[37] | WU J, LIU Z, STUUT J-B W, et al. North-African paleodrainage discharges to the central Mediterranean during the last 18 000 years: a multiproxy characterization[J]. Quaternary Science Reviews, 2017, 163: 95-113. |
[38] | WU J, FILIPPIDI A, DAVIES G R, et al. Riverine supply to the eastern Mediterranean during last interglacial sapropel S5 formation: a basin-wide perspective[J]. Chemical Geology, 2018, 485: 74-89. |
[39] | BLANCHET C L, OSBORNE A H, TJALLINGII R, et al. Drivers of river reactivation in North Africa during the last glacial cycle[J]. Nature Geoscience, 2021, 14(2): 97-103. |
[40] | NESBITT H W, YOUNG G M J N. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. |
[41] | REITZ A, THOMSON J, DE LANGE G J, et al. Source and development of large manganese enrichments above eastern Mediterranean sapropel S1[J]. Paleoceanography, 2006, 21(3): PA 3007. |
[42] | VAN SANTVOORT P J M, DE LANGE G J, THOMSON J, et al. Active post-depositional oxidation of the most recent sapropel (S1) in sediments of the eastern Mediterranean Sea[J]. Geochimica et Cosmochimica Acta, 1996, 60: 4007-4024. |
[43] | GROUSSET F E, BISCAYE P E. Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes[J]. Chemical Geology, 2005, 222: 149-167. |
[44] | BOUT-ROUMAZEILLES V, NEBOUT N C, PEYRON O, et al. Connection between South Mediterranean climate and North African atmospheric circulation during the last 50 000 yr BP North Atlantic cold events[J]. Quaternary Science Reviews, 2007, 26: 3197-3215. |
[45] | VENKATARATHNAM K, RYAN W B F. Dispersal patterns of clay minerals in the sediments of the eastern Mediterranean Sea[J]. Marine Geology, 1971, 11(4): 261-282. |
[46] | KROM M D, CLIFF R A, EIJSINK L M, et al. The characterisation of Saharan dusts and Nile particulate matter in surface sediments from the Levantine basin using Sr isotopes[J]. Marine Geology, 1999, 155(3): 319-330. |
[47] | WELDEAB S, EMEIS K-C, HEMLEBEN C, et al. Provenance of lithogenic surface sediments and pathways of riverine suspended matter in the Eastern Mediterranean Sea: evidence from 143Nd/144Nd and 87Sr/86Sr ratios[J]. Chemical Geology, 2002, 186(1): 139-149. |
[48] | KROM M D, MICHARD A, CLIFF R A, et al. Sources of sediment to the Ionian Sea and western Levantine basin of the Eastern Mediterranean during S-1 sapropel times[J]. Marine Geology, 1999, 160(1): 45-61. |
[49] | WEHAUSEN R, BRUMSACK H-J. Cyclic variations in the chemical composition of eastern Mediterranean Pliocene sediments: a key for understanding sapropel formation[J]. Marine Geology, 1999, 153: 161-176. |
[50] | NIJENHUIS I A, DE LANGE G J. Geochemical constraints on Pliocene sapropel formation in the eastern Mediterranean[J]. Marine Geology, 2000, 163: 41-63. |
[51] | FREYDIER R, MICHARD A, DE LANGE G, et al. Nd isotopic compositions of Eastern Mediterranean sediments: tracers of the Nile influence during sapropel S1 formation?[J]. Marine Geology, 2001, 177(1): 45-62. |
[52] | KLAVER M, DJULY T, DE GRAAF S, et al. Temporal and spatial variations in provenance of Eastern Mediterranean Sea sediments: implications for Aegean and Aeolian arc volcanism[J]. Geochimica et Cosmochimica Acta, 2015, 153: 149-168. |
[53] | MARTINEZ-RUIZ F, KASTNER M, GALLEGO-TORRES D, et al. Paleoclimate and paleoceanography over the past 20 000 yr in the Mediterranean Sea Basins as indicated by sediment elemental proxies[J]. Quaternary Science Reviews, 2015, 107: 25-46. |
[54] | SCHEUVENS D, SCHÜTZ L, KANDLER K, et al. Bulk composition of northern African dust and its source sediments: a compilation[J]. Earth-Science Reviews, 2013, 116: 170-194. |
[55] | WILLIAMS M, ADAMSON D, COCK B, et al. Late Quaternary environments in the White Nile region, Sudan[J]. Global Planetary Change, 2000, 26: 305-316. |
[56] | SHANAHAN T M, MCKAY N P, HUGHEN K A, et al. The time-transgressive termination of the African humid period[J]. Nature Geoscience, 2015, 8: 140-144. |
[1] | XIA Dunsheng, YANG Junhuai, WANG Shuyuan, LIU Xin, CHEN Zixuan, ZHAO Lai, NIU Xiaoyi, JIN Ming, GAO Fuyuan, LING Zhiyong, WANG Fei, LI Zaijun, WANG Xin, JIA Jia, YANG Shengli. Aeolian deposits in the Yarlung Zangbo River basin, southern Tibetan Plateau: Spatial distribution, depositional model and environmental impact [J]. Earth Science Frontiers, 2023, 30(4): 229-244. |
[2] | YAN Qing. Climate change and the associated glacier response in High-Mountain Asia during the mid-Holocene: A modeling study [J]. Earth Science Frontiers, 2022, 29(5): 372-381. |
[3] | TIAN Zhiping, ZHANG Ran, JIANG Dabang. Mid-Holocene climate in China and the East Asian monsoon: Insights from PMIP4 simulations [J]. Earth Science Frontiers, 2022, 29(5): 355-371. |
[4] | SUN Weiyi, LIU Jian, YAN Mi, NING Liang. Centennial to millennial variability of the Asian monsoon during the Holocene: Progress in simulation studies [J]. Earth Science Frontiers, 2022, 29(5): 342-354. |
[5] | GUO Yongqiang, GE Yonggang, CHEN Xiaoqing, LIU Weiming, MAO Peini, LIU Tao. Progress in the reconstruction of palaeoflood events in the mountain canyon valleys around the Tibetan Plateau [J]. Earth Science Frontiers, 2021, 28(2): 168-180. |
[6] | GAO Huahua, TONG Xiaoguang, WEN Zhixin, WANG Zhaoming. Proto-type basin evolution of the East Mediterranean Sea [J]. Earth Science Frontiers, 2020, 27(4): 255-271. |
[7] | . Progress in geochemistry of sandstonetype uranium deposit in North Ordos Basin. [J]. Earth Science Frontiers, 2012, 19(3): 139-146. |
[8] | SHU Cheng, MA Chun-Mei, LI Lan, SUN Zhi-Ban, ZHENG Chao-Gui, BAI Jiu-Jiang, SHU Guang-Yao, HUANG Run. The progress in the study of environmental archaeology during the Holocene in Three Gorges reservoir area of the Yangtze River. [J]. Earth Science Frontiers, 2010, 17(3): 222-232. |
[9] | LI Shi-Jie, Bernd Wünnemann, JIA Wei-Lan, XU Shou-Bing, CHEN De-Fu, JIANG Yong-Jian. A preliminary study of the Holocene lake level changes and their causes derived from the sediment record of Zigetang Lake, Tibetan Plateau. [J]. Earth Science Frontiers, 2009, 16(6): 162-167. |
[10] | TU Ke-Bi, CHEN Te-Gu. Beach sediments from northern South China Sea suggest high and oscillating sea level during the late Holocene. [J]. Earth Science Frontiers, 2009, 16(6): 138-145. |
[11] | SHI Chen-Xi, MO Che-Wen, MAO Long-Jiang, LIU Hui. The impact of middle to late Holocene environmental changes on human activities in the Qujialing region, Jingshan, Hubei Province. [J]. Earth Science Frontiers, 2009, 16(6): 120-128. |
[12] | CHEN Fa-Hu, CHEN Jian-Hui, HUANG Wei. A discussion on the westerlydominated climate model in midlatitude Asia during the modern interglacial period. [J]. Earth Science Frontiers, 2009, 16(6): 23-32. |
[13] | LIU Zai-Hua SUN Hai-Long ZHANG Jin-Liu. Changes in climate and vegetation in Niangziguan Spring Watershed of Shanxi Province since MIS12/11 recorded by the spring tufa. [J]. Earth Science Frontiers, 2009, 16(5): 99-. |
[14] | FANG Jing WU E-Fang LI Rui-Wu ZHOU Jiang KANG Ling-Ling CHAI Dui MA Nan. Discussion on the marine regression event during the EarlyMiddle Holocene in the Liaoning Coast. [J]. Earth Science Frontiers, 2009, 16(2): 396-403. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||