Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (4): 168-178.DOI: 10.13745/j.esf.sf.2022.1.5
Previous Articles Next Articles
ZHANG Yang1(), XU Jishang2,3,*(
), LI Guangxue1,2,3, LIU Yong2,3
Received:
2021-09-08
Revised:
2021-11-12
Online:
2022-07-25
Published:
2022-07-28
Contact:
XU Jishang
CLC Number:
ZHANG Yang, XU Jishang, LI Guangxue, LIU Yong. ENSO-like patterns and its driving mechanism in Western Pacific Warm Pool during the glacial cycles[J]. Earth Science Frontiers, 2022, 29(4): 168-178.
深度 /cm | 14C年龄 /a | 转折点年龄 /a | 定年方法 | 氧同位素 分期 |
---|---|---|---|---|
0 | ||||
8 | 8 462 | 放射性碳同位素 | ||
14 | 15 054 | 放射性碳同位素 | ||
32 | 31 614 | 放射性碳同位素 | ||
48 | 57 000 | 浮游有孔虫-LR04 | MIS4/3 | |
62 | 71 000 | 浮游有孔虫-LR04 | MIS5/4 | |
74 | 82 000 | 浮游有孔虫-LR04 | MIS5.1 | |
106 | 123 000 | 浮游有孔虫-LR04 | MIS5.5 | |
110 | 130 000 | 浮游有孔虫-LR04 | MIS6/5 | |
156 | 191 000 | 浮游有孔虫-LR04 | MIS7/6 | |
208 | 240 000 | 浮游有孔虫-LR04 | MIS8/7 | |
250 | 287 000 | 浮游有孔虫-LR04 |
Table 1 Age control points and oxygen isotope staging of core B10
深度 /cm | 14C年龄 /a | 转折点年龄 /a | 定年方法 | 氧同位素 分期 |
---|---|---|---|---|
0 | ||||
8 | 8 462 | 放射性碳同位素 | ||
14 | 15 054 | 放射性碳同位素 | ||
32 | 31 614 | 放射性碳同位素 | ||
48 | 57 000 | 浮游有孔虫-LR04 | MIS4/3 | |
62 | 71 000 | 浮游有孔虫-LR04 | MIS5/4 | |
74 | 82 000 | 浮游有孔虫-LR04 | MIS5.1 | |
106 | 123 000 | 浮游有孔虫-LR04 | MIS5.5 | |
110 | 130 000 | 浮游有孔虫-LR04 | MIS6/5 | |
156 | 191 000 | 浮游有孔虫-LR04 | MIS7/6 | |
208 | 240 000 | 浮游有孔虫-LR04 | MIS8/7 | |
250 | 287 000 | 浮游有孔虫-LR04 |
[1] | JIAN Z, WANG Y, DANG H, et al. Half-precessional cycle of thermocline temperature in the western equatorial Pacific and its bihemispheric dynamic[J]. Proceedings of the National Academy of Sciences, 2020, 117: 7044-7051. |
[2] | JIA Q, LI T, XIONG Z, et al. Thermocline dynamics in the northwestern tropical Pacific over the past 700 kyr[J]. Quaternary Science Reviews, 2020, 244. |
[3] | YAN X H, HO C R, ZHENG Q, et al. Temperature and size variabilities of the Western Pacific Warm Pool[J]. Science, 1992, 258: 1643-1645. |
[4] | GAGAN M K, HENDY E J, HABERLE S G, et al. Post-glacial evolution of the Indo-Pacific Warm Pool and El Niño-Southern oscillation[J]. Quaternary International, 2004, 118-119: 127-143. |
[5] | WEBSTER P J. The role of hydrological processes in ocean-atmosphere interactions[J]. Reviews of Geophysics, 1994, 32: 427-476. |
[6] | DANSGAARD W, JOHNSEN S, CLAUSEN H, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364: 218-220. |
[7] | SUN Y, CLEMENS S C, MORRILL C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2011, 5: 46-49. |
[8] | EMANUEL K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436: 686-688. |
[9] | CANE M A. A role for the tropical Pacific[J]. Science, 1998, 282: 59-61. |
[10] | PIERREHUMBERT R T. Climate change and the tropical Pacific: the sleeping dragon wakes[J]. Proceedings of the National Academy of Sciences, 2000, 97: 1355-1358. |
[11] | ZHANG Y G, PAGANI M, LIU Z. A 12-Million-Year temperature history of the tropical Pacific Ocean[J]. Science, 2014, 344: 84-87. |
[12] | BRIERLEY C M, FEDOROV A V, LIU Z, et al. Greatly expanded tropical warm pool and weakened Hadley circulation in the Early Pliocene[J]. Science, 2009, 323: 1714-1718. |
[13] | DANG H, JIAN Z, WANG Y, et al. Pacific warm pool subsurface heat sequestration modulated Walker circulation and ENSO activity during the Holocene[J]. Science Advances, 2020, 6: eabc0402. |
[14] | BEAUFORT L, DE GARIDEL-THORON T, MIX A C, et al. ENSO-like forcing on oceanic primary production during the late Pleistocene[J]. Science, 2001, 293: 2440-2444. |
[15] | KOUTAVAS A, LYNCH-STIEGLITZ J, MARCHITTO T M, et al. El Nino-like pattern in ice age tropical Pacific sea surface temperature[J]. Science, 2002, 297: 226-230. |
[16] | KOUTAVAS A, JOANIDES S. El Niño-Southern oscillation extrema in the holocene and last glacial maximum[J]. Paleoceanography, 2012, 27. |
[17] | ZHAO K, WANG Y, EDWARDS R L, et al. Contribution of ENSO variability to the East Asian summer monsoon in the late Holocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 510-519. |
[18] | TAN M. Circulation effect: response of precipitation δ18O to the ENSO cycle in monsoon regions of China[J]. Climate Dynamics, 2014, 42: 1067-1077. |
[19] | WEISSEL J K, ANDERSON R N. Is there a Caroline plate?[J]. Earth and Planetary Science Letters, 1978, 41: 143-158. |
[20] | GAINA C, MÜLLER D. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins[J]. Earth-Science Reviews, 2007, 83: 177-203. |
[21] | LIU Y, LO L, SHI Z, et al. Obliquity pacing of the western Pacific Intertropical Convergence Zone over the past 282 000 years[J]. Nature Communication, 2015, 6: 10018. |
[22] | 王海霞. 360 ka 以来西太平洋暖池核心区古环境演化[D]. 青岛: 中国科学院研究生院 (海洋研究所), 2011. |
[23] | ALLEN M R, INGRAM W J. Constraints on future changes in climate and the hydrologic cycle[J]. Nature, 2002, 419: 228-232. |
[24] | STOTT L, POULSEN C, LUND S, et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science, 2002, 297: 222-226. |
[25] | HU D, WU L, CAI W, et al. Pacific western boundary currents and their roles in climate[J]. Nature, 2015, 522: 299-308. |
[26] | LUKAS R, YAMAGATA T, MCCREARY J P. Pacific low-latitude western boundary currents and the Indonesian throughflow[J]. Journal of Geophysical Research: Oceans, 1996, 101: 12209-12216. |
[27] | DANG H, JIAN Z, WU J, et al. The calcification depth and Mg/Ca thermometry of Pulleniatina obliquiloculata in the tropical Indo-Pacific: a core-top study[J]. Marine Micropaleontology, 2018, 145: 28-40. |
[28] | HOLLSTEIN M, MOHTADI M, ROSENTHAL Y, et al. Stable oxygen isotopes and Mg/Ca in planktic foraminifera from modern surface sediments of the Western Pacific Warm Pool: implications for thermocline reconstructions[J]. Paleoceanography, 2017, 32: 1174-1194. |
[29] | LISIECKI L E, RAYMO M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20, https://doi.org/10.1029/2004PA001071. |
[30] |
常凤鸣, 李铁刚. 西太平洋暖池区古海洋学研究[J]. 地球科学进展, 2013, 28: 847-858.
DOI |
[31] | ASAHARA Y, TANAKA T, KAMIOKA H, et al. Provenance of the North Pacific sediments and process of source material transport as derived from Rb-Sr isotopic systematics[J]. Chemical Geology, 1999, 158: 271-291. |
[32] | XU Z, LI T, WAN S, et al. Evolution of East Asian monsoon: clay mineral evidence in the western Philippine Sea over the past 700 kyr[J]. Journal of Asian Earth Sciences, 2012, 60: 188-196. |
[33] | WU J, LIU Z, ZHOU C. Late quaternary glacial cycle and precessional period of clay mineral assemblages in the western pacific warm pool[J]. Chinese Science Bulletin, 2012, 57: 3748-3760. |
[34] | MASUDA H, Fryer P. Geochemical characteristics of active back arc basin volcanism at the southern end of the Mariana Trough[M]//Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo: Springer, 2015: 261-273. |
[35] | SEO I, LEE Y I, YOO C M, et al. Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: implications for the transport mechanism of Asian dust[J]. Journal of Geophysical Research: Atmospheres, 2014, 119: 11, 492-411, 504. |
[36] | LIU Z, ZHAO Y, COLIN C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments[J]. Applied Geochemistry, 2009, 24: 2195-2205. |
[37] | LIU J, YAN W, XU W, et al. Sediment provenance in the western Pacific warm pool from the last glacial maximum to the Early Holocene: implications for ocean circulation and climatic change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 493: 55-63. |
[38] | KALM V, RUTTER N, ROKOSH C. Clay minerals and their paleoenvironmental interpretation in the Baoji loess section, southern Loess Plateau, China[J]. Catena, 1996, 27: 49-61. |
[39] | GINGELE F, DE DECKKER P. Fingerprinting Australia’s rivers with clay minerals and the application for the marine record of climate change[J]. Australian Journal of Earth Sciences, 2004, 51: 339-348. |
[40] | GINGELE F X, DE DECKKER P, HILLENBRAND C D. Clay mineral distribution in surface sediments between Indonesia and NW Australia: source and transport by ocean currents[J]. Marine Geology, 2001, 179: 135-146. |
[41] | REA D K. The paleoclimatic record provided by eolian deposition in the deep sea: the geologic history of wind[J]. Reviews of Geophysics, 1994, 32: 159-195. |
[42] | MAHONEY J B. Nd and Sr isotopic signatures of fine-grained clastic sediments: a case study of western Pacific marginal basins[J]. Sedimentary Geology, 2005, 182: 183-199. |
[43] | YU Z, WAN S, COLIN C, et al. Co-evolution of monsoonal precipitation in East Asia and the tropical Pacific ENSO system since 2.36 Ma: new insights from high-resolution clay mineral records in the West Philippine Sea[J]. Earth and Planetary Science Letters, 2016, 446: 45-55. |
[44] | WAN S, LI A, CLIFT P D, et al. Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 561-582. |
[45] | LEA D W, PAK D K, BELANGER C L, et al. Paleoclimate history of Galápagos surface waters over the last 135 000 yr[J]. Quaternary Science Reviews, 2006, 25: 1152-1167. |
[46] | CHENG H, EDWARDS R L, SINHA A, et al. The Asian monsoon over the past 640 000 years and ice age terminations[J]. Nature, 2016, 534: 640-646. |
[47] | CLARK P U, PISIAS N G, STOCKER T F, et al. The role of the thermohaline circulation in abrupt climate change[J]. Nature, 2002, 415: 863-869. |
[48] | TIMMERMANN A, OBERHUBER J, BACHER A, et al. Increased El Niño frequency in a climate model forced by future greenhouse warming[J]. Nature, 1999, 398: 694-697. |
[49] | 丁仲礼. 米兰科维奇冰期旋回理论: 挑战与机遇[J]. 第四纪研究, 2006: 710-717. |
[50] | CLEMENT A C, SEAGER R, CANE M. Orbital controls on the El Niño-Southern Oscillation and the tropical climate[J]. Paleoceanography, 1999, 14: 441-456. |
[51] | SADEKOV A Y, GANESHRAM R, PICHEVIN L, et al. Palaeoclimate reconstructions reveal a strong link between El Niño-Southern Oscillation and Tropical Pacific mean state[J]. Nat Commun, 2013, 4: 2692. |
[52] | TUDHOPE A W, CHILCOTT C P, MCCULLOCH M T, et al. Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle[J]. Science, 2001, 291: 1511-1517. |
[53] | MCGREGOR H V, FISCHER M J, GAGAN M K, et al. A weak El Niño-Southern Oscillation with delayed seasonal growth around 4 300 years ago[J]. Nature Geoscience, 2013, 6: 949-953. |
[54] | BOLLIET T, HOLBOURN A, KUHNT W, et al. Mindanao Dome variability over the last 160 kyr: episodic glacial cooling of the West Pacific Warm Pool[J]. Paleoceanography, 2011, 26. |
[55] | PAHNKE K, ZAHN R, ELDERFIELD H, et al. 340000-year centennial-scale marine record of southern hemisphere climatic oscillation[J]. Science, 2003, 301: 948-952. |
[56] | BERGER A. Long-term variations of caloric insolation resulting from the earth’s orbital elements[J]. Quaternary Research, 1978, 9: 139-167. |
[57] | SUN D Z. A Possible Effect of an Increase in the Warm-Pool SST on the Magnitude of El Niño Warming[J]. Journal of climate, 2003, 16: 185-205. |
[58] | WANG Y, CHENG H, EDWARDS R L, et al. The Holocene Asian Monsoon: links to Solar Changes and North Atlantic Climate[J]. Science, 2005, 308: 854-857. |
[59] | BOND G, KROMER B, BEER J, et al. Persistent solar influence on North Atlantic climate during the Holocene[J]. Science, 2001, 294: 2130-2136. |
[60] | SCHMITZ W J. On the world ocean circulation, volume I, some global features/North Atlantic circulation[J]. Woods Hole Oceanographic Institution Technical Report, 1996, https://doi.org/10.1575/1912/355. |
[61] | WU L, LIU Z, LI C, et al. Extratropical control of recent tropical Pacific decadal climate variability: a relay teleconnection[J]. Climate Dynamics, 2007, 28: 99-112. |
[1] | TIAN Zhiping, ZHANG Ran, JIANG Dabang. Mid-Holocene climate in China and the East Asian monsoon: Insights from PMIP4 simulations [J]. Earth Science Frontiers, 2022, 29(5): 355-371. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||