Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (3): 340-365.DOI: 10.13745/j.esf.sf.2022.9.2
Previous Articles Next Articles
LUO Niangang1,2(), GAO Lianfeng1,*(
), ZHANG Zhenguo1, YIN Zhigang1, CUI Jianyu2, WU Junfei3, XING Jie1, DING Kai1, GAO Chenyang1, WANG Yue1
Received:
2022-04-12
Revised:
2022-07-13
Online:
2023-05-25
Published:
2023-04-27
CLC Number:
LUO Niangang, GAO Lianfeng, ZHANG Zhenguo, YIN Zhigang, CUI Jianyu, WU Junfei, XING Jie, DING Kai, GAO Chenyang, WANG Yue. Processes and mechanism of lithospheric thinning in the eastern North China Craton during the Early Cretaceous: Evidence from the Beidashan pluton, Liaoning Province[J]. Earth Science Frontiers, 2023, 30(3): 340-365.
Fig.1 Tectonic sketch map of the North China Craton showing Early Cretaceous extensional structures (a) and distribution map of Mesozoic intrusions in the Liaodong Peninsula (b). a modified after [57].
样品号 | wB/10-2 | ||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Fe2O3 | FeO | CaO | MgO | MnO | K2O | Na2O | P2O5 | LOI | Total | |||||||||||||||||||||||||||
BDS-1 | 69.15 | 0.39 | 15.39 | 1.09 | 1.35 | 2.04 | 0.9 | 0.04 | 4.19 | 4.48 | 0.149 9 | 0.43 | 99.75 | ||||||||||||||||||||||||||
BDS-2 | 69.19 | 0.39 | 15.38 | 1.08 | 1.35 | 2.04 | 0.89 | 0.04 | 4.2 | 4.46 | 0.148 2 | 0.44 | 99.76 | ||||||||||||||||||||||||||
BDS-3 | 69.43 | 0.39 | 15.38 | 0.96 | 1.35 | 2.03 | 0.85 | 0.04 | 4.14 | 4.45 | 0.146 1 | 0.44 | 99.75 | ||||||||||||||||||||||||||
BDS-4 | 69.5 | 0.38 | 15.35 | 0.94 | 1.35 | 2.03 | 0.84 | 0.04 | 4.13 | 4.45 | 0.145 7 | 0.44 | 99.75 | ||||||||||||||||||||||||||
BDS-5 | 69.87 | 0.38 | 15.17 | 0.91 | 1.35 | 2.04 | 0.8 | 0.04 | 4.02 | 4.44 | 0.147 5 | 0.44 | 99.76 | ||||||||||||||||||||||||||
样品号 | wB/10-2 | Mg# | AR | σ | A/NK | A/CNK | DI | SI | TZr/℃ | ||||||||||||||||||||||||||||||
TFeO | K2O+Na2O | ||||||||||||||||||||||||||||||||||||||
BDS-1 | 2.33 | 8.66 | 22.88 | 2.98 | 2.86 | 1.294 | 0.986 | 84.63 | 7.48 | 767.19 | |||||||||||||||||||||||||||||
BDS-2 | 2.32 | 8.65 | 22.73 | 2.97 | 2.85 | 1.296 | 0.987 | 84.65 | 7.42 | 768.87 | |||||||||||||||||||||||||||||
BDS-3 | 2.22 | 8.59 | 22.71 | 2.95 | 2.78 | 1.303 | 0.992 | 84.77 | 7.2 | 763.14 | |||||||||||||||||||||||||||||
BDS-4 | 2.2 | 8.58 | 22.65 | 2.95 | 2.77 | 1.302 | 0.991 | 84.85 | 7.14 | 767.19 | |||||||||||||||||||||||||||||
BDS-5 | 2.17 | 8.46 | 22.16 | 2.93 | 2.65 | 1.301 | 0.988 | 85.08 | 6.97 | 765.47 | |||||||||||||||||||||||||||||
样品号 | wB/10-6 | ||||||||||||||||||||||||||||||||||||||
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | |||||||||||||||||||||||||||
BDS-1 | 32.9 | 58.8 | 6.37 | 22.5 | 3.33 | 0.98 | 2.67 | 0.36 | 1.5 | 0.26 | 0.75 | 0.13 | 0.74 | ||||||||||||||||||||||||||
BDS-2 | 36.4 | 63.5 | 7.13 | 24.3 | 3.57 | 1.04 | 2.86 | 0.37 | 1.52 | 0.27 | 0.77 | 0.13 | 0.75 | ||||||||||||||||||||||||||
BDS-3 | 27.1 | 49.2 | 5.57 | 19.6 | 3.03 | 0.88 | 2.3 | 0.32 | 1.31 | 0.23 | 0.64 | 0.11 | 0.64 | ||||||||||||||||||||||||||
BDS-4 | 31.2 | 53.8 | 6.25 | 21.8 | 3.29 | 0.96 | 2.58 | 0.35 | 1.45 | 0.25 | 0.7 | 0.12 | 0.68 | ||||||||||||||||||||||||||
BDS-5 | 32.7 | 56.8 | 6.52 | 22.8 | 3.41 | 1.01 | 2.71 | 0.37 | 1.52 | 0.26 | 0.73 | 0.12 | 0.69 | ||||||||||||||||||||||||||
样品号 | wB/10-6 | LREE/HREE | (La/Yb)N | δEu | |||||||||||||||||||||||||||||||||||
Lu | Y | ΣREE | LREE | HREE | |||||||||||||||||||||||||||||||||||
BDS-1 | 0.11 | 8.51 | 131.32 | 124.78 | 6.53 | 19.1 | 31.9 | 1 | |||||||||||||||||||||||||||||||
BDS-2 | 0.11 | 8.79 | 142.71 | 135.93 | 6.78 | 20.06 | 34.99 | 1 | |||||||||||||||||||||||||||||||
BDS-3 | 0.1 | 6.98 | 110.93 | 105.29 | 5.64 | 18.68 | 30.48 | 1.03 | |||||||||||||||||||||||||||||||
BDS-4 | 0.1 | 7.94 | 123.61 | 117.37 | 6.24 | 18.82 | 32.81 | 1.01 | |||||||||||||||||||||||||||||||
BDS-5 | 0.1 | 8.28 | 129.74 | 123.22 | 6.52 | 18.91 | 33.9 | 1.01 | |||||||||||||||||||||||||||||||
样品号 | wB/10-6 | ||||||||||||||||||||||||||||||||||||||
Cu | Pb | Zn | Cr | Ni | Co | Rb | Cs | Sr | Ba | V | Sc | Nb | |||||||||||||||||||||||||||
BDS-1 | 3.63 | 1.68 | 42 | 6.84 | 4.65 | 4.77 | 108 | 1.25 | 569 | 950 | 44 | 2.93 | 11.5 | ||||||||||||||||||||||||||
BDS-2 | 3.47 | 1.3 | 44.1 | 6.96 | 5.02 | 5.06 | 113 | 1.26 | 622 | 1 031 | 47.3 | 3.55 | 12.8 | ||||||||||||||||||||||||||
BDS-3 | 2.38 | 0.42 | 33 | 9.14 | 3.86 | 4.18 | 92.9 | 1 | 523 | 907 | 39 | 4.4 | 10.4 | ||||||||||||||||||||||||||
BDS-4 | 3.16 | 0.35 | 38.1 | 5.99 | 3.97 | 4.44 | 97.1 | 1.05 | 578 | 989 | 41 | 3.77 | 12 | ||||||||||||||||||||||||||
BDS-5 | 3.25 | 0.75 | 37 | 6.07 | 4.13 | 4.33 | 92.5 | 1.03 | 557 | 918 | 41.6 | 3.46 | 12.2 | ||||||||||||||||||||||||||
样品号 | wB/10-6 | 104 Ga/Al | Nb/Ta | Zr/Hf | La/Nb | Th/Nb | |||||||||||||||||||||||||||||||||
Ta | Zr | Hf | Ga | U | Th | ||||||||||||||||||||||||||||||||||
BDS-1 | 1.31 | 137 | 4.3 | 19.1 | 1.4 | 10.3 | 2.43 | 8.78 | 31.9 | 2.86 | 0.9 | ||||||||||||||||||||||||||||
BDS-2 | 1.59 | 125 | 3.77 | 20.7 | 1.25 | 10.3 | 2.64 | 8.03 | 33.14 | 2.85 | 0.8 | ||||||||||||||||||||||||||||
BDS-3 | 1.34 | 120 | 3.88 | 17.4 | 1.13 | 8.67 | 2.22 | 7.75 | 31 | 2.61 | 0.84 | ||||||||||||||||||||||||||||
BDS-4 | 1.25 | 124 | 3.85 | 18.9 | 1.3 | 10.3 | 2.41 | 9.63 | 32.32 | 2.59 | 0.86 | ||||||||||||||||||||||||||||
BDS-5 | 1.43 | 122 | 3.82 | 18.8 | 1.24 | 9.85 | 2.43 | 8.52 | 32.07 | 2.69 | 0.81 |
Table 2 Major and trace element compositions of granite samples
样品号 | wB/10-2 | ||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Fe2O3 | FeO | CaO | MgO | MnO | K2O | Na2O | P2O5 | LOI | Total | |||||||||||||||||||||||||||
BDS-1 | 69.15 | 0.39 | 15.39 | 1.09 | 1.35 | 2.04 | 0.9 | 0.04 | 4.19 | 4.48 | 0.149 9 | 0.43 | 99.75 | ||||||||||||||||||||||||||
BDS-2 | 69.19 | 0.39 | 15.38 | 1.08 | 1.35 | 2.04 | 0.89 | 0.04 | 4.2 | 4.46 | 0.148 2 | 0.44 | 99.76 | ||||||||||||||||||||||||||
BDS-3 | 69.43 | 0.39 | 15.38 | 0.96 | 1.35 | 2.03 | 0.85 | 0.04 | 4.14 | 4.45 | 0.146 1 | 0.44 | 99.75 | ||||||||||||||||||||||||||
BDS-4 | 69.5 | 0.38 | 15.35 | 0.94 | 1.35 | 2.03 | 0.84 | 0.04 | 4.13 | 4.45 | 0.145 7 | 0.44 | 99.75 | ||||||||||||||||||||||||||
BDS-5 | 69.87 | 0.38 | 15.17 | 0.91 | 1.35 | 2.04 | 0.8 | 0.04 | 4.02 | 4.44 | 0.147 5 | 0.44 | 99.76 | ||||||||||||||||||||||||||
样品号 | wB/10-2 | Mg# | AR | σ | A/NK | A/CNK | DI | SI | TZr/℃ | ||||||||||||||||||||||||||||||
TFeO | K2O+Na2O | ||||||||||||||||||||||||||||||||||||||
BDS-1 | 2.33 | 8.66 | 22.88 | 2.98 | 2.86 | 1.294 | 0.986 | 84.63 | 7.48 | 767.19 | |||||||||||||||||||||||||||||
BDS-2 | 2.32 | 8.65 | 22.73 | 2.97 | 2.85 | 1.296 | 0.987 | 84.65 | 7.42 | 768.87 | |||||||||||||||||||||||||||||
BDS-3 | 2.22 | 8.59 | 22.71 | 2.95 | 2.78 | 1.303 | 0.992 | 84.77 | 7.2 | 763.14 | |||||||||||||||||||||||||||||
BDS-4 | 2.2 | 8.58 | 22.65 | 2.95 | 2.77 | 1.302 | 0.991 | 84.85 | 7.14 | 767.19 | |||||||||||||||||||||||||||||
BDS-5 | 2.17 | 8.46 | 22.16 | 2.93 | 2.65 | 1.301 | 0.988 | 85.08 | 6.97 | 765.47 | |||||||||||||||||||||||||||||
样品号 | wB/10-6 | ||||||||||||||||||||||||||||||||||||||
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | |||||||||||||||||||||||||||
BDS-1 | 32.9 | 58.8 | 6.37 | 22.5 | 3.33 | 0.98 | 2.67 | 0.36 | 1.5 | 0.26 | 0.75 | 0.13 | 0.74 | ||||||||||||||||||||||||||
BDS-2 | 36.4 | 63.5 | 7.13 | 24.3 | 3.57 | 1.04 | 2.86 | 0.37 | 1.52 | 0.27 | 0.77 | 0.13 | 0.75 | ||||||||||||||||||||||||||
BDS-3 | 27.1 | 49.2 | 5.57 | 19.6 | 3.03 | 0.88 | 2.3 | 0.32 | 1.31 | 0.23 | 0.64 | 0.11 | 0.64 | ||||||||||||||||||||||||||
BDS-4 | 31.2 | 53.8 | 6.25 | 21.8 | 3.29 | 0.96 | 2.58 | 0.35 | 1.45 | 0.25 | 0.7 | 0.12 | 0.68 | ||||||||||||||||||||||||||
BDS-5 | 32.7 | 56.8 | 6.52 | 22.8 | 3.41 | 1.01 | 2.71 | 0.37 | 1.52 | 0.26 | 0.73 | 0.12 | 0.69 | ||||||||||||||||||||||||||
样品号 | wB/10-6 | LREE/HREE | (La/Yb)N | δEu | |||||||||||||||||||||||||||||||||||
Lu | Y | ΣREE | LREE | HREE | |||||||||||||||||||||||||||||||||||
BDS-1 | 0.11 | 8.51 | 131.32 | 124.78 | 6.53 | 19.1 | 31.9 | 1 | |||||||||||||||||||||||||||||||
BDS-2 | 0.11 | 8.79 | 142.71 | 135.93 | 6.78 | 20.06 | 34.99 | 1 | |||||||||||||||||||||||||||||||
BDS-3 | 0.1 | 6.98 | 110.93 | 105.29 | 5.64 | 18.68 | 30.48 | 1.03 | |||||||||||||||||||||||||||||||
BDS-4 | 0.1 | 7.94 | 123.61 | 117.37 | 6.24 | 18.82 | 32.81 | 1.01 | |||||||||||||||||||||||||||||||
BDS-5 | 0.1 | 8.28 | 129.74 | 123.22 | 6.52 | 18.91 | 33.9 | 1.01 | |||||||||||||||||||||||||||||||
样品号 | wB/10-6 | ||||||||||||||||||||||||||||||||||||||
Cu | Pb | Zn | Cr | Ni | Co | Rb | Cs | Sr | Ba | V | Sc | Nb | |||||||||||||||||||||||||||
BDS-1 | 3.63 | 1.68 | 42 | 6.84 | 4.65 | 4.77 | 108 | 1.25 | 569 | 950 | 44 | 2.93 | 11.5 | ||||||||||||||||||||||||||
BDS-2 | 3.47 | 1.3 | 44.1 | 6.96 | 5.02 | 5.06 | 113 | 1.26 | 622 | 1 031 | 47.3 | 3.55 | 12.8 | ||||||||||||||||||||||||||
BDS-3 | 2.38 | 0.42 | 33 | 9.14 | 3.86 | 4.18 | 92.9 | 1 | 523 | 907 | 39 | 4.4 | 10.4 | ||||||||||||||||||||||||||
BDS-4 | 3.16 | 0.35 | 38.1 | 5.99 | 3.97 | 4.44 | 97.1 | 1.05 | 578 | 989 | 41 | 3.77 | 12 | ||||||||||||||||||||||||||
BDS-5 | 3.25 | 0.75 | 37 | 6.07 | 4.13 | 4.33 | 92.5 | 1.03 | 557 | 918 | 41.6 | 3.46 | 12.2 | ||||||||||||||||||||||||||
样品号 | wB/10-6 | 104 Ga/Al | Nb/Ta | Zr/Hf | La/Nb | Th/Nb | |||||||||||||||||||||||||||||||||
Ta | Zr | Hf | Ga | U | Th | ||||||||||||||||||||||||||||||||||
BDS-1 | 1.31 | 137 | 4.3 | 19.1 | 1.4 | 10.3 | 2.43 | 8.78 | 31.9 | 2.86 | 0.9 | ||||||||||||||||||||||||||||
BDS-2 | 1.59 | 125 | 3.77 | 20.7 | 1.25 | 10.3 | 2.64 | 8.03 | 33.14 | 2.85 | 0.8 | ||||||||||||||||||||||||||||
BDS-3 | 1.34 | 120 | 3.88 | 17.4 | 1.13 | 8.67 | 2.22 | 7.75 | 31 | 2.61 | 0.84 | ||||||||||||||||||||||||||||
BDS-4 | 1.25 | 124 | 3.85 | 18.9 | 1.3 | 10.3 | 2.41 | 9.63 | 32.32 | 2.59 | 0.86 | ||||||||||||||||||||||||||||
BDS-5 | 1.43 | 122 | 3.82 | 18.8 | 1.24 | 9.85 | 2.43 | 8.52 | 32.07 | 2.69 | 0.81 |
Fig.6 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagrams (b) for granite samples. Normalization values after [87]; published data from [52⇓-54,82⇓⇓⇓-86].
测点 | 年龄/ Ma | 176Yb/177Hf | 2σ | 176Lu/177Hf | 2σ | 176Hf/177Hf | 2σ | εHf(0) | εHf(t) | TDM | fLu/Hf | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BDSTW1.02 | 119 | 0.019 636 | 0.000 109 | 0.000 818 | 0.000 003 | 0.282 108 | 0.000 014 | -23.49 | -20.95 | 1 603 | 2 503 | -0.98 |
BDSTW1.03 | 118 | 0.022 720 | 0.000 731 | 0.000 924 | 0.000 031 | 0.282 125 | 0.000 015 | -22.88 | -20.36 | 1 584 | 2 466 | -0.97 |
BDSTW1.05 | 117 | 0.015 277 | 0.000 067 | 0.000 688 | 0.000 002 | 0.282 147 | 0.000 014 | -22.1 | -19.59 | 1 544 | 2 417 | -0.98 |
BDSTW1.06 | 119 | 0.024 648 | 0.000 207 | 0.001 017 | 0.000 004 | 0.282 144 | 0.000 015 | -22.22 | -19.67 | 1 562 | 2 424 | -0.97 |
BDSTW1.07 | 119 | 0.020 766 | 0.000 081 | 0.000 924 | 0.000 004 | 0.282 097 | 0.000 014 | -23.88 | -21.35 | 1 623 | 2 528 | -0.97 |
BDSTW1.08 | 116 | 0.021 552 | 0.000 136 | 0.000 874 | 0.000 005 | 0.282 139 | 0.000 016 | -22.39 | -19.92 | 1 563 | 2 437 | -0.97 |
BDSTW1.09 | 119 | 0.015 243 | 0.000 302 | 0.000 642 | 0.000 011 | 0.282 162 | 0.000 015 | -21.58 | -19.04 | 1 522 | 2 383 | -0.98 |
BDSTW1.11 | 115 | 0.012 191 | 0.000 173 | 0.000 518 | 0.000 006 | 0.282 116 | 0.000 013 | -23.2 | -20.72 | 1 580 | 2 487 | -0.98 |
BDSTW1.12 | 118 | 0.018 153 | 0.000 171 | 0.000 752 | 0.000 010 | 0.282 105 | 0.000 015 | -23.6 | -21.07 | 1 605 | 2 510 | -0.98 |
BDSTW1.16 | 117 | 0.021 592 | 0.000 231 | 0.000 959 | 0.000 012 | 0.282 107 | 0.000 014 | -23.5 | -21.02 | 1 610 | 2 506 | -0.97 |
BDSTW1.20 | 117 | 0.034 206 | 0.000 476 | 0.001 271 | 0.000 018 | 0.282 144 | 0.000 017 | -22.21 | -19.74 | 1 572 | 2 425 | -0.96 |
BDSTW1.22 | 118 | 0.019 158 | 0.000 155 | 0.000 829 | 0.000 012 | 0.282 093 | 0.000 013 | -24 | -21.49 | 1 624 | 2 536 | -0.98 |
BDSTW1.24 | 118 | 0.022 206 | 0.000 236 | 0.000 984 | 0.000 005 | 0.282 104 | 0.000 014 | -23.62 | -21.12 | 1 616 | 2 513 | -0.97 |
Table 3 Results of Hf isotopic analysis of granite samples
测点 | 年龄/ Ma | 176Yb/177Hf | 2σ | 176Lu/177Hf | 2σ | 176Hf/177Hf | 2σ | εHf(0) | εHf(t) | TDM | fLu/Hf | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BDSTW1.02 | 119 | 0.019 636 | 0.000 109 | 0.000 818 | 0.000 003 | 0.282 108 | 0.000 014 | -23.49 | -20.95 | 1 603 | 2 503 | -0.98 |
BDSTW1.03 | 118 | 0.022 720 | 0.000 731 | 0.000 924 | 0.000 031 | 0.282 125 | 0.000 015 | -22.88 | -20.36 | 1 584 | 2 466 | -0.97 |
BDSTW1.05 | 117 | 0.015 277 | 0.000 067 | 0.000 688 | 0.000 002 | 0.282 147 | 0.000 014 | -22.1 | -19.59 | 1 544 | 2 417 | -0.98 |
BDSTW1.06 | 119 | 0.024 648 | 0.000 207 | 0.001 017 | 0.000 004 | 0.282 144 | 0.000 015 | -22.22 | -19.67 | 1 562 | 2 424 | -0.97 |
BDSTW1.07 | 119 | 0.020 766 | 0.000 081 | 0.000 924 | 0.000 004 | 0.282 097 | 0.000 014 | -23.88 | -21.35 | 1 623 | 2 528 | -0.97 |
BDSTW1.08 | 116 | 0.021 552 | 0.000 136 | 0.000 874 | 0.000 005 | 0.282 139 | 0.000 016 | -22.39 | -19.92 | 1 563 | 2 437 | -0.97 |
BDSTW1.09 | 119 | 0.015 243 | 0.000 302 | 0.000 642 | 0.000 011 | 0.282 162 | 0.000 015 | -21.58 | -19.04 | 1 522 | 2 383 | -0.98 |
BDSTW1.11 | 115 | 0.012 191 | 0.000 173 | 0.000 518 | 0.000 006 | 0.282 116 | 0.000 013 | -23.2 | -20.72 | 1 580 | 2 487 | -0.98 |
BDSTW1.12 | 118 | 0.018 153 | 0.000 171 | 0.000 752 | 0.000 010 | 0.282 105 | 0.000 015 | -23.6 | -21.07 | 1 605 | 2 510 | -0.98 |
BDSTW1.16 | 117 | 0.021 592 | 0.000 231 | 0.000 959 | 0.000 012 | 0.282 107 | 0.000 014 | -23.5 | -21.02 | 1 610 | 2 506 | -0.97 |
BDSTW1.20 | 117 | 0.034 206 | 0.000 476 | 0.001 271 | 0.000 018 | 0.282 144 | 0.000 017 | -22.21 | -19.74 | 1 572 | 2 425 | -0.96 |
BDSTW1.22 | 118 | 0.019 158 | 0.000 155 | 0.000 829 | 0.000 012 | 0.282 093 | 0.000 013 | -24 | -21.49 | 1 624 | 2 536 | -0.98 |
BDSTW1.24 | 118 | 0.022 206 | 0.000 236 | 0.000 984 | 0.000 005 | 0.282 104 | 0.000 014 | -23.62 | -21.12 | 1 616 | 2 513 | -0.97 |
序号 | 岩体 | 岩性 | 采样位置 | 测试方法 | 年龄/Ma | 资料来源 | |
---|---|---|---|---|---|---|---|
1 | 北大山 | 似斑状黑云二长花岗岩 | 41°03'35″N | 123°52'12″E | LA-ICPMS | 117.1±1.4 | 本文 |
2 | 千山 | 正长花岗岩 | 41°01'14″N | 123°04'08″E | LA-ICPMS | 127±2 | [ |
3 | 赵屯 | 细粒二长花岗岩 | 39°11'45″N | 121°50'19″E | LA-ICPMS | 130±5 | [ |
4 | 饮马湾山 | 二长花岗岩 | 39°03'21″N | 122°17'58″E | LA-ICPMS | 124±4 | [ |
5 | 饮马湾山 | 二长花岗岩 | 39°37'57″N | 122°22'10″E | LA-ICPMS | 122±6 | [ |
6 | 古道岭 | 似斑状花岗岩 | 40°02'46″N | 122°12'31″E | LA-ICPMS | 118±3 | [ |
7 | 古道岭 | 二长花岗岩 | 40°14'46″N | 122°24'53″E | LA-ICPMS | 121±2 | [ |
8 | 双塔 | 似斑状二长花岗岩 | 39°48'47″N | 122°23'48″E | LA-ICPMS | 129±2 | [ |
9 | 洼子店 | 细粒二长花岗岩 | 39°21'15″N | 122°09'57″E | LA-ICPMS | 120±4 | [ |
10 | 鞍子山 | 似斑状花岗岩 | 39°50'48″N | 122°20'50″E | LA-ICPMS | 124±2 | [ |
11 | 韭菜顶子 | 二长花岗岩 | 41°10'49″N | 124°47'45″E | LA-ICPMS | 121±2 | [ |
12 | 帽盔山 | 二长花岗岩 | 40°30'20″N | 120°40'53″E | LA-ICPMS | 137±1 | [ |
13 | 荒地 | 花岗闪长岩 | 40°30'50″N | 123°40'00″E | LA-ICPMS | 139±1 | [ |
14 | 朝阳 | 二长岩 | 40°28'54″N | 123°21'44″E | LA-ICPMS | 139±1 | [ |
15 | 三股流 | 似斑状花岗岩 | 40°06'15″N | 124°15'29″E | LA-ICPMS | 120±2 | [ |
16 | 三股流 | 二长花岗岩 | 40°08'11″N | 124°16'56″E | SHRIMP | 123±2 | [ |
17 | 三股流 | 花岗闪长岩 | 40°06'39″N | 124°15'43″E | SHRIMP | 123±1 | [ |
18 | 凤凰山 | 碱长花岗岩 | 40°25'01″N | 124°03'40″E | LA-ICPMS | 130±2 | [ |
19 | 石柱子 | 二长花岗岩 | 40°46'13″N | 125°24'17″E | LA-ICPMS | 124±1 | [ |
20 | 太平哨 | 碱长花岗岩 | 40°47'11″N | 125°02'24″E | LA-ICPMS | 129±1 | [ |
21 | 灌水 | 花岗闪长岩 | 40°52'09″N | 124°35'51″E | LA-ICPMS | 131±1 | [ |
22 | 四平街 | 碱性花岗岩 | 41°06'54″N | 124°43'56″E | TIMS | 130±1 | [ |
23 | 大金山 | 二长花岗岩 | 40°13'20″N | 124°18'11″E | SHRIMP | 124±2 | [ |
24 | 丁岐山 | 碱长花岗岩 | 40°17'29″N | 124°21'49″E | LA-ICPMS | 124±2 | [ |
25 | 黄岭 | 二长闪长岩 | 39°22'15″N | 123°21'53″E | LA-ICPMS | 127.4±1.9 | [ |
26 | 关门山 | 花岗斑岩 | 41°02'45″N | 124°20'04″E | LA-ICPMS | 126±2 | [ |
27 | 关门山 | 碱长花岗岩 | 41°03'22″N | 124°20'47″E | LA-ICPMS | 126±2 | [ |
28 | 三股流 | 二长花岗岩 | 40°06'08″N | 124°15'30″E | SHRIMP | 125.1±1.2 | [ |
29 | 三股流 | 二长花岗岩 | 40°06'30″N | 124°11'41″E | SHRIMP | 128.7±2.2 | [ |
30 | 三股流 | 黑云母花岗岩 | LA-ICPMS | 123.8±1.2 | [ | ||
31 | 帽盔山 | 二长花岗岩 | LA-ICPMS | 127.2±0.6 | [ | ||
32 | 清凉山 | 二长花岗岩 | LA-ICPMS | 129.0±0.8 | [ | ||
33 | 石庙沟 | 花岗斑岩 | 40°27'54″N | 123°25'20″E | LA-ICPMS | 123.0±1.6 | [ |
34 | 袁家堡 | 石英二长斑岩 | 40°28'37″N | 123°54'53″E | LA-ICPMS | 129±1 | [ |
Table 4 LA-ICPMS/SHRIMP dating results for selected Early-Cretaceous granitoids in Liaodong
序号 | 岩体 | 岩性 | 采样位置 | 测试方法 | 年龄/Ma | 资料来源 | |
---|---|---|---|---|---|---|---|
1 | 北大山 | 似斑状黑云二长花岗岩 | 41°03'35″N | 123°52'12″E | LA-ICPMS | 117.1±1.4 | 本文 |
2 | 千山 | 正长花岗岩 | 41°01'14″N | 123°04'08″E | LA-ICPMS | 127±2 | [ |
3 | 赵屯 | 细粒二长花岗岩 | 39°11'45″N | 121°50'19″E | LA-ICPMS | 130±5 | [ |
4 | 饮马湾山 | 二长花岗岩 | 39°03'21″N | 122°17'58″E | LA-ICPMS | 124±4 | [ |
5 | 饮马湾山 | 二长花岗岩 | 39°37'57″N | 122°22'10″E | LA-ICPMS | 122±6 | [ |
6 | 古道岭 | 似斑状花岗岩 | 40°02'46″N | 122°12'31″E | LA-ICPMS | 118±3 | [ |
7 | 古道岭 | 二长花岗岩 | 40°14'46″N | 122°24'53″E | LA-ICPMS | 121±2 | [ |
8 | 双塔 | 似斑状二长花岗岩 | 39°48'47″N | 122°23'48″E | LA-ICPMS | 129±2 | [ |
9 | 洼子店 | 细粒二长花岗岩 | 39°21'15″N | 122°09'57″E | LA-ICPMS | 120±4 | [ |
10 | 鞍子山 | 似斑状花岗岩 | 39°50'48″N | 122°20'50″E | LA-ICPMS | 124±2 | [ |
11 | 韭菜顶子 | 二长花岗岩 | 41°10'49″N | 124°47'45″E | LA-ICPMS | 121±2 | [ |
12 | 帽盔山 | 二长花岗岩 | 40°30'20″N | 120°40'53″E | LA-ICPMS | 137±1 | [ |
13 | 荒地 | 花岗闪长岩 | 40°30'50″N | 123°40'00″E | LA-ICPMS | 139±1 | [ |
14 | 朝阳 | 二长岩 | 40°28'54″N | 123°21'44″E | LA-ICPMS | 139±1 | [ |
15 | 三股流 | 似斑状花岗岩 | 40°06'15″N | 124°15'29″E | LA-ICPMS | 120±2 | [ |
16 | 三股流 | 二长花岗岩 | 40°08'11″N | 124°16'56″E | SHRIMP | 123±2 | [ |
17 | 三股流 | 花岗闪长岩 | 40°06'39″N | 124°15'43″E | SHRIMP | 123±1 | [ |
18 | 凤凰山 | 碱长花岗岩 | 40°25'01″N | 124°03'40″E | LA-ICPMS | 130±2 | [ |
19 | 石柱子 | 二长花岗岩 | 40°46'13″N | 125°24'17″E | LA-ICPMS | 124±1 | [ |
20 | 太平哨 | 碱长花岗岩 | 40°47'11″N | 125°02'24″E | LA-ICPMS | 129±1 | [ |
21 | 灌水 | 花岗闪长岩 | 40°52'09″N | 124°35'51″E | LA-ICPMS | 131±1 | [ |
22 | 四平街 | 碱性花岗岩 | 41°06'54″N | 124°43'56″E | TIMS | 130±1 | [ |
23 | 大金山 | 二长花岗岩 | 40°13'20″N | 124°18'11″E | SHRIMP | 124±2 | [ |
24 | 丁岐山 | 碱长花岗岩 | 40°17'29″N | 124°21'49″E | LA-ICPMS | 124±2 | [ |
25 | 黄岭 | 二长闪长岩 | 39°22'15″N | 123°21'53″E | LA-ICPMS | 127.4±1.9 | [ |
26 | 关门山 | 花岗斑岩 | 41°02'45″N | 124°20'04″E | LA-ICPMS | 126±2 | [ |
27 | 关门山 | 碱长花岗岩 | 41°03'22″N | 124°20'47″E | LA-ICPMS | 126±2 | [ |
28 | 三股流 | 二长花岗岩 | 40°06'08″N | 124°15'30″E | SHRIMP | 125.1±1.2 | [ |
29 | 三股流 | 二长花岗岩 | 40°06'30″N | 124°11'41″E | SHRIMP | 128.7±2.2 | [ |
30 | 三股流 | 黑云母花岗岩 | LA-ICPMS | 123.8±1.2 | [ | ||
31 | 帽盔山 | 二长花岗岩 | LA-ICPMS | 127.2±0.6 | [ | ||
32 | 清凉山 | 二长花岗岩 | LA-ICPMS | 129.0±0.8 | [ | ||
33 | 石庙沟 | 花岗斑岩 | 40°27'54″N | 123°25'20″E | LA-ICPMS | 123.0±1.6 | [ |
34 | 袁家堡 | 石英二长斑岩 | 40°28'37″N | 123°54'53″E | LA-ICPMS | 129±1 | [ |
Fig.12 Scatter plots showing covariances between major elements/trace elements in granite samples. Basemap in (a) adapted from [133]; basemap in (b) adapted from [105].
Fig.13 Temporal and spatial migration patterns of Mesozoic magmatism in the East Asian continental margin of the eastern North China Craton (basemap after [42,140])
Fig.14 R1-R2 (a, basemap after [161]), Rb-Y+Nb (b, basemap from [162]) and Nb-Y (c, basemap after [162]) diagrams for granite samples. Published data from [52⇓-54,82⇓⇓⇓-86]
Fig.15 Simplified tectonic evolution and petrogenetic model of the eastern North China Craton between the Middle Jurassic and Early Cretaceous (basemap after [86])
[1] |
PESLIER A H, WOODLAND A B, BELL D R, et al. Olivine water contents in the continental lithosphere and the longevity of cratons[J]. Nature, 2010, 467(7311): 78-81.
DOI |
[2] |
LEE C T A, LUFFI P, CHIN E J. Building and destroying continental mantle[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 59-90.
DOI URL |
[3] | ZHAO Y, XU G, ZHANG S H, et al. Yanshanian Movement and conversion of tectonic regimes in East Asia[J]. Earth Science Frontiers, 2004, 11(3): 319-328. |
[4] |
ZHAI M G, GUO J H, LIU W J. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review[J]. Journal of Asian Earth Sciences, 2005, 24(5): 547-561.
DOI URL |
[5] | 吴福元, 杨进辉, 柳小明. 辽东半岛中生代花岗质岩浆作用的年代学格架[J]. 高校地质学报, 2005, 11(3): 305-317. |
[6] |
ZHENG J P, GRIFFIN W L, O’REILLY S Y, et al. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis[J]. Geochimica et Cosmochimica Acta, 2007, 71(21): 5203-5225.
DOI URL |
[7] |
XU Y G. Thermo-tectonic destruction of the archaean lithospheric keel beneath the Sino-Korean craton in China: evidence, timing and mechanism[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(9/10): 747-757.
DOI URL |
[8] |
ZHAO T, ZHU G, LIN S Z, et al. Indentation-induced tearing of a subducting continent: evidence from the Tan-Lu fault zone, East China[J]. Earth-Science Reviews, 2016, 152: 14-36.
DOI URL |
[9] | DAI L Q, ZHENG Y F, ZHAO Z F. Termination time of peak decratonization in North China: geochemical evidence from mafic igneous rocks[J]. Lithos, 2016, 240/241/242/243: 327-336. |
[10] |
LI Y J, ZHU G, SU N, et al. The Xiaoqinling metamorphic core complex: a record of Early Cretaceous backarc extension along the southern part of the North China Craton[J]. Geological Society of America Bulletin, 2020, 132(3/4): 617-637.
DOI URL |
[11] |
LIU J L, DAVIS G A, LIN Z Y, et al. The Liaonan metamorphic core complex, southeastern Liaoning Province, North China: a likely contributor to Cretaceous rotation of eastern Liaoning, Korea and contiguous areas[J]. Tectonophysics, 2005, 407(1/2): 65-80.
DOI URL |
[12] | ZHANG B L, ZHU G, JIANG D Z, et al. Evolution of the Yiwulushan metamorphic core complex from distributed to localized deformation and its tectonic implications[J]. Tectonics, 2012, 31(4): TC4018.1-TC4018.22. |
[13] |
ZHU G, JIANG D Z, ZHANG B L, et al. Destruction of the eastern North China Craton in a backarc setting: evidence from crustal deformation kinematics[J]. Gondwana Research, 2012, 22(1): 86-103.
DOI URL |
[14] | 林伟, 王军, 刘飞, 等. 华北克拉通及邻区晚中生代伸展构造及其动力学背景的讨论[J]. 岩石学报, 2013, 29(5): 1791-1810. |
[15] |
DAVIS G A, DARBY B J. Early Cretaceous overprinting of the Mesozoic Daqing Shan fold-and-thrust belt by the Hohhot metamorphic core complex, Inner Mongolia, China[J]. Geoscience Frontiers, 2010, 1(1): 1-20.
DOI URL |
[16] |
MENG Q R. What drove late Mesozoic extension of the northern China-Mongolia tract?[J]. Tectonophysics, 2003, 369(3/4): 155-174.
DOI URL |
[17] |
YANG J H, WU F Y, CHUNG S L, et al. Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-pressure orogenic belt, East China and their relationship to lithospheric thinning[J]. Chemical Geology, 2005, 222(3/4): 200-231.
DOI URL |
[18] | 吴福元, 杨进辉, 张艳斌, 等. 辽西东南部中生代花岗岩时代[J]. 岩石学报, 2006, 22(2): 315-325. |
[19] |
ZHANG H F, SUN M, ZHOU X H, et al. Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications[J]. Lithos, 2005, 81(1/2/3/4): 297-317.
DOI URL |
[20] | 杨进辉, 吴福元. 华北东部三叠纪岩浆作用与克拉通破坏[J]. 中国科学D辑: 地球科学, 2009, 39(7): 910-921. |
[21] |
XU Y G, MA J L, HUANG X L, et al. Early Cretaceous gabbroic complex from Yinan, Shandong Province: petrogenesis and mantle domains beneath the North China Craton[J]. International Journal of Earth Sciences, 2004, 93(6): 1025-1041.
DOI URL |
[22] |
ZHANG H F, SUN M, ZHOU M F, et al. Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton: evidence from Sr-Nd-Pb isotopic systematics of mafic igneous rocks[J]. Geological Magazine, 2004, 141(1): 55-62.
DOI URL |
[23] |
GAO S, LING W L, QIU Y M, et al. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 1999, 63(13/14): 2071-2088.
DOI URL |
[24] |
GAO S, RUDNICK R L, CARLSON R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton[J]. Earth and Planetary Science Letters, 2002, 198(3/4): 307-322.
DOI URL |
[25] |
GAO S, RUDNICK R L, YUAN H L, et al. Recycling lower continental crust in the North China Craton[J]. Nature, 2004, 432(7019): 892-897.
DOI |
[26] | 邓晋福, 赵国春, 赵海玲, 等. 中国东部燕山期火成岩构造组合与造山-深部过程[J]. 地质论评, 2000, 46(1): 41-48. |
[27] | 邓晋福, 苏尚国, 赵海玲, 等. 华北地区燕山期岩石圈减薄的深部过程[J]. 地学前缘, 2003, 10(3): 41-50. |
[28] | 邓晋福, 苏尚国, 刘翠, 等. 关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论: 是拆沉, 还是热侵蚀和化学交代?[J]. 地学前缘, 2006, 13(2): 105-119. |
[29] | 邓晋福, 冯艳芳, 刘翠, 等. 太行—燕辽地区燕山期造山过程、岩浆源区与成矿作用[J]. 中国地质, 2009, 36(3): 623-633. |
[30] | 高山, 金振民. 拆沉作用(delamination)及其壳-幔演化动力学意义[J]. 地质科技情报, 1997, 16(1): 1-9. |
[31] | 吴福元, 孙德有. 中国东部中生代岩浆作用与岩石圈减薄[J]. 长春科技大学学报, 1999, 29(4): 313-318. |
[32] | 吴福元, 葛文春, 孙德有, 等. 中国东部岩石圈减薄研究中的几个问题[J]. 地学前缘, 2003, 10(3): 51-60. |
[33] | 许文良, 王清海, 王冬艳, 等. 华北克拉通东部中生代岩石圈减薄的过程与机制: 中生代火成岩和深源捕虏体证据[J]. 地学前缘, 2004, 11(3): 309-317. |
[34] | 许文良, 杨承海, 杨德彬, 等. 华北克拉通东部中生代高Mg闪长岩: 对岩石圈减薄机制的制约[J]. 地学前缘, 2006, 13(2): 120-129. |
[35] | 许文良, 杨德彬, 裴福萍, 等. 华北克拉通中生代拆沉陆壳物质对岩石圈地幔的改造: 来自橄榄岩捕虏体中角闪石的成分制约[J]. 吉林大学学报(地球科学版), 2009, 39(4): 606-617. |
[36] | FAN W, MENZIES M. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China[J]. Geotectonica et Metallogenia, 1992, 16(2): 171-180. |
[37] | 徐义刚, 李洪颜, 庞崇进, 等. 论华北克拉通破坏的时限[J]. 科学通报, 2009, 54(14): 1974-1989. |
[38] |
XU Y G, HUANG X L, MA J L, et al. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton: constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong[J]. Contributions to Mineralogy and Petrology, 2004, 147(6): 750-767.
DOI URL |
[39] |
XU Y G, BLUSZTAJN J, MA J L, et al. Late Archean to Early Proterozoic lithospheric mantle beneath the western North China Craton: Sr-Nd-Os isotopes of peridotite xenoliths from Yangyuan and Fansi[J]. Lithos, 2008, 102(1/2): 25-42.
DOI URL |
[40] | LI C, VAN DER HILST R D. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography[J]. Journal of Geophysical Research, 2010, 115(B7): B07308. |
[41] |
ZHU R X, XU Y G, ZHU G, et al. Destruction of the North China Craton[J]. Science China (Earth Sciences), 2012, 55(10): 1565-1587.
DOI URL |
[42] |
NIU Y L. Geological understanding of plate tectonics: basic concepts, illustrations, examples and new perspectives[J]. Global Tectonics and Metallogeny, 2018, 10(1): 23-46.
DOI URL |
[43] | 吴福元, 徐义刚, 朱日祥, 等. 克拉通岩石圈减薄与破坏[J]. 中国科学: 地球科学, 2014, 44(11): 2358-2372. |
[44] | DONG S W, ZHANG Y Q, ZHANG F Q, et al. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: asynthesis of the Yanshan revolution[J]. Journal of Asia Earth Sciences, 2015, 114: 750-770. |
[45] | 朱日祥, 范宏瑞, 李建威, 等. 克拉通破坏型金矿床[J]. 中国科学: 地球科学, 2015, 45(8): 1153-1168, 1. |
[46] | 郑永飞, 徐峥, 赵子福, 等. 华北中生代镁铁质岩浆作用与克拉通减薄和破坏[J]. 中国科学: 地球科学, 2018, 48(4): 379-414. |
[47] |
WU F Y, YANG J H, XU Y G, et al. Destruction of the North China craton in the Mesozoic[J]. Annual Review of Earth and Planetary Sciences, 2019, 47: 173-195.
DOI URL |
[48] |
ZHU R X, YANG J H, WU F Y. Timing of destruction of the North China Craton[J]. Lithos, 2012, 149: 51-60.
DOI URL |
[49] | 吴福元, 杨进辉, 柳小明, 等. 冀东3.8Ga锆石Hf同位素特征与华北克拉通早期地壳时代[J]. 科学通报, 2005, 50(18): 1996-2003. |
[50] | 张朋, 陈冬, 寇林林, 等. 辽东卧龙泉岩体锆石U-Pb年龄、地球化学、Sr-Nd-Pb同位素特征及其构造意义[J]. 地质学报, 2015, 89(10): 1762-1772. |
[51] | 张朋, 陈冬, 寇林林, 等. 辽东宽甸东北沟钼矿二长花岗岩年代学、地球化学及Hf同位素特征[J]. 中国地质, 2016, 43(6): 2092-2103. |
[52] | 张朋, 赵岩, 寇林林, 等. 辽东半岛丹东地区中生代花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义[J]. 地球科学, 2019, 44(10): 3297-3313. |
[53] | 刘永俊, 韩晓涛, 刘正宏, 等. 辽东凤城地区早白垩世花岗岩的锆石U-Pb年龄、地球化学特征及地质意义[J]. 地球科学, 2020, 45(1): 145-155. |
[54] | 刘杰勋, 郭巍, 朱凯. 辽东岫岩地区早白垩世侵入岩的年代学、地球化学及地质意义[J]. 岩石学报, 2016, 32(9): 2889-2900. |
[55] | 王志强, 胡滑志帆, 陈斌, 等. 辽东半岛早白垩世三股流岩体岩石成因: 微量元素模拟和Sr-Nd同位素的制约[J]. 岩石学报, 2020, 36(12): 3683-3704. |
[56] | 郭伟静, 陈树良, 于海峰, 等. 辽东半岛印支期侵入岩侵入机制与岩浆大陆动力学演化[J]. 地质与资源, 2005, 14(2): 92-96. |
[57] |
WU F Y, YANG J H, WILDE S A, et al. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China[J]. Chemical Geology, 2005, 221(1/2): 127-156.
DOI URL |
[58] |
LIU D Y, NUTMAN A P, COMPSTON W, et al. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean Craton[J]. Geology, 1992, 20(4): 339-342.
DOI URL |
[59] |
SONG B, NUTMAN A P, LIU D Y, et al. 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China[J]. Precambrian Research, 1996, 78(1-3): 79-94.
DOI URL |
[60] | 吴福元, 葛文春, 孙德有, 等. 吉林南部太古代花岗岩Sm-Nd, Rb-Sr同位素年龄测定[J]. 岩石学报, 1997, 13(4): 499-506. |
[61] | 路孝平, 吴福元, 林景仟, 等. 辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架[J]. 地质科学, 2004, 39(1): 123-138. |
[62] | 周皓, 裴福萍, 焦骥, 等. 吉林通化赤柏松地区早白垩世花岗质岩脉(株)的成因: 锆石U-Pb年代学、Hf同位素和地球化学证据[J]. 地球科学, 2020, 45(2): 519-533. |
[63] |
LUO Y, SUN M, ZHAO G C, et al. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the eastern block of the North China Craton: constraints on the evolution of the Jiao-Liao-Ji Belt[J]. Precambrian Research, 2004, 134(3/4): 349-371.
DOI URL |
[64] |
LUO Y, SUN M, ZHAO G C, et al. A comparison of U-Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Groups: constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton[J]. Precambrian Research, 2008, 163(3/4): 279-306.
DOI URL |
[65] |
LU X P, WU F Y, GUO J H, et al. Zircon U-Pb geochronological constraints on the Paleoproterozoic crustal evolution of the eastern block in the North China Craton[J]. Precambrian Research, 2006, 146(3/4): 138-164.
DOI URL |
[66] | 李壮, 陈斌, 刘经纬, 等. 辽东半岛南辽河群锆石U-Pb年代学及其地质意义[J]. 岩石学报, 2015, 31(6): 1589-1605. |
[67] |
THOMPSON J M, MEFFRE S, DANYUSHEVSKY L. Impact of air, laser pulse width and fluence on U-Pb dating of zircons by LA-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2): 221-230.
DOI URL |
[68] | PATON C, WOODHEAD J D, HELLSTROM J C, et al. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q0AA06. |
[69] |
SLAMA J, KOSLER J, CONDON D J, et al. Plesovice zircon: a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249: 1-35.
DOI URL |
[70] |
YUAN H L, GAO S, LIU X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370.
DOI URL |
[71] |
LIU Y S, HU Z C, ZONG K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546.
DOI URL |
[72] |
ANDERSEN T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.
DOI URL |
[73] |
SÖDERLUND U, PATCHETT P J, VERVOORT J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 311-324.
DOI URL |
[74] |
GRIFFIN W L, PEARSON N J, BELOUSOVA E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147.
DOI URL |
[75] |
GRIFFIN W L, WANG X, JACKSON S E, et al. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3/4): 237-269.
DOI URL |
[76] |
KOSCHEK G. Origin and significance of the SEM cathodoluminescence from zircon[J]. Journal of Microscopy, 1993, 171(3): 223-232.
DOI URL |
[77] |
BELOUSOVA E, GRIFFIN W, O'REILLY S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.
DOI URL |
[78] |
IRVINE TN, BARAGAR W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5): 523-548.
DOI URL |
[79] |
MANIAR P D, PICCOLI P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643.
DOI URL |
[80] |
RICKWOOD P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247-263.
DOI URL |
[81] |
FROST B R, BARNES C G, COLLINS W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42(11): 2033-2048.
DOI URL |
[82] | 王世成, 杨仲杰, 杨菊, 等. 辽东石庙沟岩体岩石地球化学特征、锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(2): 429-441. |
[83] | 崔维龙, 刘正宏, 杜洋, 等. 辽东地区大兴岩体LA-ICP-MS锆石U-Pb定年、地球化学特征及地质意义[J]. 地球科学与环境学报, 2016, 38(5): 623-637. |
[84] | 杨凤超, 宋运红, 杨佳林, 等. 辽东五龙—四道沟金矿集区花岗杂岩SHRIMP U-Pb年龄、地球化学特征及地质意义[J]. 大地构造与成矿学, 2018, 42(5): 940-954. |
[85] | 杨佳林, 顾玉超, 杨凤超, 等. 辽东半岛大金山花岗岩体SHRIMP U-Pb年龄、元素地球化学和Hf同位素特征及地质意义[J]. 地质论评, 2018, 64(6): 1541-1556. |
[86] | 刘杰勋. 华北克拉通北缘东段辽东地区中生代构造演化[D]. 长春: 吉林大学, 2019: 1-131. |
[87] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345.
DOI URL |
[88] | WILSON M. Igneous petrogenesis[M]. London: Unwin Hyman, 1989: 327-373. |
[89] |
PATCHETT P J, KOUVO O, HEDGE C E, et al. Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes[J]. Contributions to Mineralogy and Petrology, 1982, 78(3): 279-297.
DOI URL |
[90] |
KNUDSEN T L, GRIFFIN W, HARTZ E, et al. In-situ hafnium and lead isotope analyses of detrital zircons from the Devonian sedimentary basin of NE Greenland: a record of repeated crustal reworking[J]. Contributions to Mineralogy and Petrology, 2001, 141(1): 83-94.
DOI URL |
[91] | 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. |
[92] | 寇林林, 张朋, 赵岩, 等. 辽东半岛早白垩世黑云母二长闪长岩锆石U-Pb年龄、Hf同位素特征及地质意义[J]. 地球科学, 2020, 45(11): 3950-3961. |
[93] | 胡国辉, 张琪琪, 李建锋, 等. 辽东地区中生代花岗岩的侵位时代: 锆石和独居石U-Pb年代学[J]. 地球科学, 2020, 45(11): 3962-3981. |
[94] | 李海洋, 王玉平, 吴文彬, 等. 辽东袁家堡石英二长斑岩的锆石U-Pb年龄、地球化学特征及地质意义[J]. 桂林理工大学学报, 2019, 39(3): 551-557. |
[95] | 刘杰勋, 李世超, 朱凯, 等. 辽东本溪关门山岩体的年代学、地球化学及构造背景[J]. 地球科学, 2020, 45(3): 869-879. |
[96] | 刘俊来, 纪沫, 申亮, 等. 辽东半岛早白垩世伸展构造组合、形成时代及区域构造内涵[J]. 中国科学: 地球科学, 2011, 41(5): 618-637. |
[97] |
WU F Y, LIN J Q, WILDE S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 2005, 233(1/2): 103-119.
DOI URL |
[98] |
BONIN B. A-type granites and related rocks: evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1/2): 1-29.
DOI URL |
[99] |
DONG Y, GE W C, YANG H, et al. Geochemical and SIMS U-Pb rutile and LA-ICP-MS U-Pb zircon geochronological evidence of the tectonic evolution of the Mudanjiang Ocean from amphibotites of the Heilongjiang Complex, NE China[J]. Gondwana Research, 2019, 69: 25-44.
DOI URL |
[100] | 张旗, 周国庆. 中国蛇绿岩[M]. 北京: 科学出版社, 2001: 1-182. |
[101] |
CHAPPELL B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551.
DOI URL |
[102] |
WU F Y, SUN D Y, JAHN B M, et al. A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns[J]. Journal of Asian Earth Sciences, 2004, 23(5): 731-744.
DOI URL |
[103] |
LI X H, LI Z X, LI W X, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: a major igneous event in response to foundering of a subducted flat-slab[J]. Lithos, 2007, 96(1/2): 186-204.
DOI URL |
[104] | WU F Y, LI X H, ZHENG Y F, et al. Lu-Hf isotopicsystematic and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 185-220. |
[105] | 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238. |
[106] | 李碧乐, 孙永刚, 陈广俊, 等. 小兴安岭东安金矿区细粒正长花岗岩U-Pb年龄、岩石地球化学、Hf同位素组成及地质意义[J]. 地球科学, 2016, 41(1): 1-16. |
[107] |
SYLVESTER P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1/2/3/4): 29-44.
DOI URL |
[108] |
WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419.
DOI URL |
[109] | 张旗, 冉皞, 李承东. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 2012, 31(4): 621-626. |
[110] |
WATSON E B, HARRISON T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983, 64(2): 295-304.
DOI URL |
[111] |
WATSON E B, HARRISON T M. Zircon thermometer reveals minimum melting conditions on earliest earth[J]. Science, 2005, 308(5723): 841-844.
PMID |
[112] |
KING P L, WHITE A J R, CHAPPELL B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3): 371-391.
DOI URL |
[113] | 李献华, 李武显, 李正祥. 再论南岭燕山早期花岗岩的成因类型与构造意义[J]. 科学通报, 2007, 52(9): 981-991. |
[114] | 李世超, 李永飞, 王兴安, 等. 大兴安岭中段晚三叠世四分组效应花岗岩的厘定及其地质意义[J]. 岩石学报, 2016, 32(9): 2793-2806. |
[115] | CHAPPELL B W, WHITE A J R. Two contrasting granite types[J]. Pacific Geology, 1974, 8(2): 173-174. |
[116] |
CHAPPELL B W, WHITE A J R, WYBORN D. The importance of residual source material (restite) in granite petrogenesis[J]. Journal of Petrology, 1987, 28(6): 1111-1138.
DOI URL |
[117] | CHAMPION D C, CHAPPELL B W. Petrogenesis of felsic I-type granites: an example from northern Queensland[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83(1/2): 115-126. |
[118] |
JAHN B, WU F Y, CHEN B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 2000, 23(2): 82-92.
DOI URL |
[119] |
RICHARDS J P. Magmatic to hydrothermal metal fluxes in convergent and collided margins[J]. Ore Geology Reviews, 2011, 40(1): 1-26.
DOI URL |
[120] |
YANG H, GE W C, ZHAO G C, et al. Early Permian-Late Triassic granitic magmatism in the Jiamusi-Khanka Massif, eastern segment of the Central Asian Orogenic Belt and its implications[J]. Gondwana Research, 2015, 27(4): 1509-1533.
DOI URL |
[121] |
HAN B F, WANG S G, JAHN B M, et al. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth[J]. Chemical Geology, 1997, 138(3/4): 135-159.
DOI URL |
[122] |
VALLEY J W, LACKEY J S, CAVOSIE A J, et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon[J]. Contributions to Mineralogy and Petrology, 2005, 150(6): 561-580.
DOI URL |
[123] | TAYLOR S R, MCLENNAN S M. The Continental Crust: its composition and evolution[M]. Oxford: Blackwell Scientific Publications, 1985: 1-312. |
[124] |
HOFMANN ALBRECHT W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90(3): 297-314.
DOI URL |
[125] | 张旗, 王焰, 潘国强, 等. 花岗岩源岩问题: 关于花岗岩研究的思考之四[J]. 岩石学报, 2008, 24(6): 1193-1204. |
[126] | 罗红玲, 吴泰然, 赵磊. 乌拉特中旗二叠纪Ⅰ型花岗岩类地球化学特征及构造意义[J]. 北京大学学报(自然科学版), 2010, 46(5): 805-820. |
[127] |
RUDNICK R L. Making continental crust[J]. Nature, 1995, 378(6557): 571-578.
DOI |
[128] | SAUNDERS A D, NORRY M J, TARNEY J. Origin of MORB and chemically-depleted mantle reservoirs: trace element constraints[J]. Journal of Petrology, 1988, Special Volume(1): 415-445. |
[129] |
WEAVER B L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints[J]. Earth and Planetary Science Letters, 1991, 104(2/3/4): 381-397.
DOI URL |
[130] |
ALTHERR R, SIEBEL W. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece[J]. Contributions to Mineralogy and Petrology, 2002, 143(4): 397-415.
DOI URL |
[131] |
AMELIN Y, LEE D C, HALLIDAY A N. Early-Middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains[J]. Geochimica et Cosmochimica Acta, 2000, 64(24): 4205-4225.
DOI URL |
[132] |
VERVOORT J D, PATCHETT P J, GEHRELS G E, et al. Constraints on early earth differentiation from hafnium and neodymium isotopes[J]. Nature, 1996, 379(6566): 624-627.
DOI |
[133] |
YANG J H, WU F Y, CHUNG S L, et al. A hybrid origin for the Qianshan A-type granite, Northeast China: geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1/2): 89-106.
DOI URL |
[134] |
ALLÈGRE C J, MINSTER J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38(1): 1-25.
DOI URL |
[135] | 徐楠, 吴才来, 雷敏, 等. 茫崖二长花岗岩锆石U-Pb年代学、Lu-Hf同位素特征及岩石成因[J]. 地球科学, 2018, 43(增刊2): 60-80. |
[136] |
WU F Y, JAHN B M, WILDE S A, et al. Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis[J]. Lithos, 2003, 66(3/4): 241-273.
DOI URL |
[137] | 王智慧, 杨浩, 葛文春, 等. 东北三江盆地始新世花岗闪长岩的发现及其地质意义: 锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素证据[J]. 岩石学报, 2016, 32(6): 1823-1838. |
[138] | 许文良, 王枫, 裴福萍, 等. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2): 339-353. |
[139] |
CHEN C H, LEE C Y, SHINJO R. Was there Jurassic paleo-Pacific subduction in South China? : constraints from 40Ar/39Ar dating, elemental and Sr-Nd-Pb isotopic geochemistry of the Mesozoic basalts[J]. Lithos, 2008, 106(1/2): 83-92.
DOI URL |
[140] | 朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 49(9): 1346-1356. |
[141] | 杨进辉, 吴福元, 张艳斌, 等. 辽东半岛南部三叠纪辉绿岩中发现新元古代年龄锆石[J]. 科学通报, 2004, 49(18): 1878-1882. |
[142] | 裴福萍, 许文良, 杨德彬, 等. 华北克拉通东北缘岩石圈深部物质组成的不均一性: 来自吉林南部中生代火山岩元素及Sr-Nd同位素地球化学的证据[J]. 岩石学报, 2009, 25(8): 1962-1974. |
[143] | 唐杰, 许文良, 王枫, 等. 张广才岭帽儿山组双峰式火山岩成因: 年代学与地球化学证据[J]. 世界地质, 2011, 30(4): 508-520. |
[144] | 徐美君, 许文良, 王枫, 等. 小兴安岭中部早侏罗世花岗质岩石的年代学与地球化学及其构造意义[J]. 岩石学报, 2013, 29(2): 354-368. |
[145] | 赵玉妹. 辽西南部中生代构造变形叠加及其意义[D]. 北京: 中国地质大学(北京), 2012: 1-112. |
[146] |
LIANG C Y, LIU Y J, NEUBAUER F, et al. Structural characteristics and LA-ICP-MS U-Pb zircon geochronology of the deformed granitic rocks from the Mesozoic Xingcheng-Taili ductile shear zone in the North China Craton[J]. Tectonophysics, 2015, 650: 80-103.
DOI URL |
[147] |
KARIG D E, SHARMAN G F. Subduction and accretion in trenches[J]. Geological Society of America Bulletin, 1975, 86(3): 377.
DOI URL |
[148] | 李锦轶. 中国东北及邻区若干地质构造问题的新认识[J]. 地质论评, 1998, 44(4): 339-347. |
[149] |
ZHOU J B, CAO J L, WILDE S A, et al. Paleo-Pacific subduction-accretion: evidence from geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China[J]. Tectonics, 2014, 33(12): 2444-2466.
DOI URL |
[150] |
ZHOU J B, LI L. The Mesozoic accretionary complex in Northeast China: evidence for the accretion history of Paleo-Pacific subduction[J]. Journal of Asian Earth Sciences, 2017, 145: 91-100.
DOI URL |
[151] | 崔芳华, 徐学纯, 郑常青, 等. 华北克拉通东部古太平洋板块俯冲与回撤作用: 来自辽西兴城地区晚中生代花岗质岩石的记录与启示[J]. 岩石学报, 2020, 36(8): 2463-2492. |
[152] | 翟明国, 孟庆任, 刘建明, 等. 华北东部中生代构造体制转折峰期的主要地质效应和形成动力学探讨[J]. 地学前缘, 2004, 11(3): 285-297. |
[153] | 姜耀辉, 蒋少涌, 赵葵东, 等. 辽东半岛煌斑岩SHRIMP锆石U-Pb年龄及其对中国东部岩石圈减薄开始时间的制约[J]. 科学通报, 2005, 50(19): 2161-2168. |
[154] | 邵济安, 张履桥, 牟保磊. 大兴安岭中生代伸展造山过程中的岩浆作用[J]. 地学前缘, 1999, 6(4): 339-346. |
[155] | 刘俊来, 纪沫, 夏浩然, 等. 华北克拉通晚中生代壳-幔拆离作用: 岩石流变学约束[J]. 岩石学报, 2009, 25(8): 1819-1829. |
[156] | 仲米山, 张国仁, 杨中柱, 等. 辽东半岛南部早白垩世变质核杂岩时空分布及动力学特征[J]. 地质与资源, 2020, 29(5): 411-418. |
[157] | 路凤香, 韩柱国, 郑建平, 等. 辽宁复县地区古生代岩石圈地幔特征[J]. 地质科技情报, 1991, 10(增刊1): 2-20, 141. |
[158] |
FAN Q C, HOOPER P R. The mineral chemistry of ultramafic xenoliths of eastern China: implications for upper mantle composition and the paleogeotherms[J]. Journal of Petrology, 1989, 30(5): 1117-1158.
DOI URL |
[159] |
SALTERS VINCENT J M, HART STANLEY R. The mantle sources of ocean ridges, islands and arcs: the Hf-isotope connection[J]. Earth and Planetary Science Letters, 1991, 104(2/3/4): 364-380.
DOI URL |
[160] | MULLER D, GROVES D I. Potassic igneous rocks and associated gold-copper mineralization[J]. Berlin: Spring-Verlag, 1995, 1-144. |
[161] |
BATCHELOR RICHARD A, PETER B. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1/2/3/4): 43-55.
DOI URL |
[162] |
APEARCE J, WHARRIS N B, GTINDLE A. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983.
DOI URL |
[163] | 吴福元, 孙德有, 张广良, 等. 论燕山运动的深部地球动力学本质[J]. 高校地质学报, 2000, 6(3): 379-388. |
[164] | 吴福元, 徐义刚, 高山, 等. 华北岩石圈减薄与克拉通破坏研究的主要学术争论[J]. 岩石学报, 2008, 24(6): 1145-1174. |
[165] | 朱日祥, 徐义刚, 朱光, 等. 华北克拉通破坏[J]. 中国科学: 地球科学, 2012, 42(8): 1135-1159. |
[166] |
KING S D. Archean cratons and mantle dynamics[J]. Earth and Planetary Science Letters, 2005, 234: 1-14.
DOI URL |
[167] |
HIERONYMUS C F, SHOMALI Z H, PEDERSEN L B. A dynamical model for generating sharp seismic velocity contrasts underneath continents: application to the Sorgenfrei-Tornquist Zone[J]. Earth and Planetary Science Letters, 2007, 262(1/2): 77-91.
DOI URL |
[168] |
HIRSCHMANN M M, TENNER T, AUBAUD C, et al. Dehydration melting of nominally anhydrous mantle: the primacy of partitioning[J]. Physics of the Earth and Planetary Interiors, 2009, 176(1/2): 54-68.
DOI URL |
[169] |
GREEN D H, HIBBERSON W O, KOVÁCS I, et al. Water and its influence on the lithosphere-asthenosphere boundary[J]. Nature, 2010, 467(7314): 448-451.
DOI |
[1] | WANG Hua-Qiu, ZHANG Bi-Min, TAO Wen-Sheng, LIU Xue-Min. [J]. Earth Science Frontiers, 20140101, 21(1): 65-74. |
[2] | LIU Lingxia, LU Rui, XIE Wenping, LIU Bo, WANG Yaru, YAO Haihui, LIN Wenjing. Distribution and hydrogeochemical characteristics of hot springs in northeastern Tibetan Plateau [J]. Earth Science Frontiers, 2024, 31(6): 173-195. |
[3] | ZHANG Jiawen, LI Mingchao, HAN Shuai, ZHANG Jingyi. Analysis and discrimination of tectonic settings based on stacking quantum neural networks [J]. Earth Science Frontiers, 2024, 31(3): 511-519. |
[4] | ZHOU Yuxi, SHI Yu, HUANG Chunwen, LIU Xijun, LAN Yuanchun, TANG Yuanyuan, WENG Boyin. Petrogenesis and tectonic significance of Caledonian I-Type granitoids in the Gulong and Liandong plutons in southeastern Guangxi [J]. Earth Science Frontiers, 2024, 31(2): 224-248. |
[5] | LI Haidong, TIAN Shihong, LIU Bin, HU Peng, WU Jianyong, CHEN Zhengle. In-situ microchronology and elemental analysis of pitchblende in the Pajiang uranium deposit, northern Guangdong: Implications for uranium mineralization [J]. Earth Science Frontiers, 2024, 31(2): 270-283. |
[6] | HE Yanbing, LEI Yongchang, QIU Xinwei, XIAO Zhangbo, ZHENG Yangdi, LIU Dongqing. Sedimentary paleoenvironment and main controlling factors of organic enrichment in source rocks of the Wenchang Formation in southern Lufeng, Pearl River Mouth Basin [J]. Earth Science Frontiers, 2024, 31(2): 359-376. |
[7] | WANG Ye, CHEN Yang, CHEN Jun. Petrogenic organic carbon weathering and its controlling factors—a review [J]. Earth Science Frontiers, 2024, 31(2): 402-409. |
[8] | GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi [J]. Earth Science Frontiers, 2024, 31(1): 384-399. |
[9] | WU Huaichun, LI Shan, WANG Chengshan, CHU Runjian, WANG Pujun, GAO Yuan, WAN Xiaoqiao, HE Huaiyu, DENG Chenglong, YANG Guang, HUANG Yongjian, GAO Youfeng, XI Dangpeng, WANG Tiantian, FANG Qiang, YANG Tianshui, ZHANG Shihong. Integrated chronostratigraphic framework for Cretaceous strata in the Songliao Basin [J]. Earth Science Frontiers, 2024, 31(1): 431-445. |
[10] | YANG Mengfan, QIU Kunfeng, HE Dengyang, HUANG Yaqi, WANG Yuxi, FU Nan, YU Haocheng, XUE Xianfa. Mineralogy and geochemistry of gold-bearing sulfides in the Wanken gold deposit, West Qinling Orogen [J]. Earth Science Frontiers, 2023, 30(6): 371-390. |
[11] | YANG Shuang, WANG Rui. Research progress on the mechanism for the formation of Nb-Ta deposits by fractionation and enrichment and method development for columbite-tantalite analysis—a review [J]. Earth Science Frontiers, 2023, 30(5): 151-170. |
[12] | HUANG Xiaoqiang, LIU Qingqi, LI Peng, LIU Xiang, ZENG Le, ZHANG Liping, SHI Weike, HUANG Zhibiao, FAN Pengfei, WAN Haihui, LIN Yue, WANG Xuanmin, CAI Chang. Pegmatites of Shangfu deposits, Lianyunshan, northeastern Hunan: Geochemical characteristics, fluid inclusions, and genetic constraints [J]. Earth Science Frontiers, 2023, 30(5): 298-313. |
[13] | CHEN Lei, NIE Xiao, LIU Kai, PANG Xuyong, ZHANG Yingli. Mineralogical and chronological characteristics of the Huoyangou pegmatite Sn(Nb-Ta) deposit in Guanpo, eastern Qinling [J]. Earth Science Frontiers, 2023, 30(5): 40-58. |
[14] | NEUPANE Bhupati, ZHAO Junmeng, LIU Chunru, PEI Shunping, MAHARJAN Bishal, DHAKAL Sanjev. Electron spin resonance dating for the Central Churia Thrust of the Nepal Himalaya [J]. Earth Science Frontiers, 2023, 30(4): 260-269. |
[15] | WANG Tao, LI Jiqing, HAN Jie, WANG Taishan, LI Yulong, YUAN Bowu. Geochemistry, geochronology and Hf isotopic characteristics of rare earth-bearing quartz syenite in eastern Dashuigou, East Kunlun [J]. Earth Science Frontiers, 2023, 30(4): 283-298. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||