Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (3): 313-339.DOI: 10.13745/j.esf.sf.2022.12.51
Previous Articles Next Articles
CHEN Xueqian(), ZHANG Lifei*(
)
Received:
2022-09-14
Revised:
2022-12-15
Online:
2023-05-25
Published:
2023-04-27
CLC Number:
CHEN Xueqian, ZHANG Lifei. Carbon sequestration, transport, transfer, and degassing: Insights into the deep carbon cycle[J]. Earth Science Frontiers, 2023, 30(3): 313-339.
Fig.5 Mechanism of carbonate precipitation in the mantle wedge. During the upward migration of C-H-O fluid (derived from the subducted slab), carbonate solubility decreases with decreasing fluid temperature, which leads to carbonate precipitation in the mantle wedge. Modified after [112].
[1] | BERNER R A. A new look at the long-term carbon cycle[J]. Geological Society of America Today, 1999, 9(11): 1-6. |
[2] |
BUNDY F P. The P, T phase and reaction diagram for elemental carbon, 1979[J]. Journal of Geophysical Research, 1980, 85(B12): 6930.
DOI URL |
[3] |
DASGUPTA R. Ingassing,storage, and outgassing of terrestrial carbon through geologic time[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 183-229.
DOI URL |
[4] |
MÖRNER N A, ETIOPE G. Carbon degassing from the lithosphere[J]. Global and Planetary Change, 2002, 33(1/2): 185-203.
DOI URL |
[5] |
SCHIDLOWSKI M. A 3, 800-million-year isotopic record of life from carbon in sedimentary rocks[J]. Nature, 1988, 333(6171): 313-318.
DOI |
[6] |
HAMMOUDA T, KESHAV S. Melting in the mantle in the presence of carbon:review of experiments and discussion on the origin of carbonatites[J]. Chemical Geology, 2015, 418: 171-188.
DOI URL |
[7] |
HAZEN R M, DOWNS R T, JONES A P, et al. Carbonmineralogy and crystal chemistry[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 7-46.
DOI URL |
[8] | 张立飞, 陶仁彪, 朱建江. 俯冲带深部碳循环: 问题与探讨[J]. 矿物岩石地球化学通报, 2017, 36(2): 185-196, 182. |
[9] |
STEWART E M, AGUE J J, FERRY J M, et al. Carbonation and decarbonation reactions:implications for planetary habitability[J]. American Mineralogist, 2019, 104(10): 1369-1380.
DOI URL |
[10] |
KELEMEN P B, MATTER J, STREIT E E, et al. Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 545-576.
DOI URL |
[11] |
AGUE J J, NICOLESCU S. Carbon dioxide released from subduction zones by fluid-mediated reactions[J]. Nature Geoscience, 2014, 7(5): 355-360.
DOI |
[12] |
FREZZOTTI M L, SELVERSTONE J, SHARP Z D, et al. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps[J]. Nature Geoscience, 2011, 4(10): 703-706.
DOI |
[13] |
KERRICK D M. Present and past nonanthropogenic CO2 degassing from the solid earth[J]. Reviews of Geophysics, 2001, 39(4): 565-585.
DOI URL |
[14] |
STOREY M, DUNCAN R A, SWISHER C C. Paleocene-Eocenethermal maximum and the opening of the Northeast Atlantic[J]. Science, 2007, 316(5824): 587-589.
DOI URL |
[15] |
HAZEN R M, SCHIFFRIES C M. Why deep carbon?[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 1-6.
DOI URL |
[16] | HOLLAND H D. The chemistry of the atmosphere and oceans[J]. New York, Wiley Interscience, 1978: 351. |
[17] |
DASGUPTA R, HIRSCHMANN M M. The deep carbon cycle and melting in Earth’s interior[J]. Earth and Planetary Science Letters, 2010, 298(1/2): 1-13.
DOI URL |
[18] | EVANS M J, DERRY L A, FRANCE-LANORD C. Degassing of metamorphic carbon dioxide from the Nepal Himalaya[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04021. |
[19] | KELEMEN P B, MANNING C E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30): E3997-E4006. |
[20] | LITASOV K D, SHATSKIY A. Carbon-bearing magmas in the earth’s deep interior[M]// Magmas under pressure. Amsterdam: Elsevier, 2018: 43-82. |
[21] | SLEEP N H. Stagnant lid convection and carbonate metasomatism of the deep continental lithosphere[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(11): Q11010. |
[22] |
AIUPPA A, CASETTA F, COLTORTI M, et al. Carbon concentration increases with depth of melting in Earth’s upper mantle[J]. Nature Geoscience, 2021, 14(9): 697-703.
DOI |
[23] |
FISCHER R A, COTTRELL E, HAURI E, et al. The carbon content of Earth and its core[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(16): 8743-8749.
DOI PMID |
[24] | HUNT J M. Distribution of carbon in crust of earth: geological NOTES[J]. American Association of Petroleum Geologists Bulletin, 1972, 56(11): 2273-2277. |
[25] |
LE VOYER M, KELLEY K A, COTTRELL E, et al. Heterogeneity in mantle carbon content from CO2-undersaturated basalts[J]. Nature Communications, 2017, 8: 14062.
DOI |
[26] |
MILLER W G R, MACLENNAN J, SHORTTLE O, et al. Estimating the carbon content of the deep mantle with Icelandic melt inclusions[J]. Earth and Planetary Science Letters, 2019, 523: 115699.
DOI URL |
[27] |
NAKAJIMA Y, TAKAHASHI E, SUZUKI T, et al. “Carbon in the core” revisited[J]. Physics of the Earth and Planetary Interiors, 2009, 174(1/2/3/4): 202-211.
DOI URL |
[28] |
FRIEDLINGSTEIN P, HOUGHTON R A, MARLAND G, et al. Update on CO2 emissions[J]. Nature Geoscience, 2010, 3(12): 811-812.
DOI |
[29] |
FALKOWSKI P, SCHOLES R J, BOYLE E, et al. The global carbon cycle: a test of our knowledge of earth as a system[J]. Science, 2000, 290(5490): 291-296.
PMID |
[30] |
MATTHEWS H D, TOKARSKA K B, NICHOLLS Z R J, et al. Opportunities and challenges in using remaining carbon budgets to guide climate policy[J]. Nature Geoscience, 2020, 13(12): 769-779.
DOI |
[31] |
YUE X L, GAO Q X. Contributions of natural systems and human activity to greenhouse gas emissions[J]. Advances in Climate Change Research, 2018, 9(4): 243-252.
DOI URL |
[32] |
YAXLEY G M, BREY G P. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites[J]. Contributions to Mineralogy and Petrology, 2004, 146(5): 606-619.
DOI URL |
[33] |
BECKER J A, BICKLE M J, GALY A, et al. Himalayan metamorphic CO2 fluxes: quantitative constraints from hydrothermal springs[J]. Earth and Planetary Science Letters, 2008, 265(3/4): 616-629.
DOI URL |
[34] |
EVANS K A, BICKLE M J, SKELTON A D L, et al. Reductive deposition of graphite at lithological margins in East Central Vermont: a Sr, C and O isotope study[J]. Journal of Metamorphic Geology, 2002, 20(8): 781-798.
DOI URL |
[35] | LUTH R W, FEI Y, BERTKA C, et al. Carbon and carbonates in the mantle[J]. Mantle petrology: Field observations and high pressure experimentation: A tribute to Francis R(Joe) Boyd, 1999, 6: 297-316. |
[36] |
HAMMOUDA T. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle[J]. Earth and Planetary Science Letters, 2003, 214(1/2): 357-368.
DOI URL |
[37] |
DASGUPTA R, HIRSCHMANN M M. Melting in the Earth’s deep upper mantle caused by carbon dioxide[J]. Nature, 2006, 440(7084): 659-662.
DOI |
[38] |
DASGUPTA R, HIRSCHMANN M M. Effect of variable carbonate concentration on the solidus of mantle peridotite[J]. American Mineralogist, 2007, 92(2/3): 370-379.
DOI URL |
[39] |
BRENKER F E, VOLLMER C, VINCZE L, et al. Carbonates from the lower part of transition zone or even the lower mantle[J]. Earth and Planetary Science Letters, 2007, 260(1/2): 1-9.
DOI URL |
[40] |
FROST D J, MCCAMMON C A. The redox state of earth’s mantle[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 389-420.
DOI URL |
[41] |
NESTOLA F, KOROLEV N, KOPYLOVA M, et al. CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle[J]. Nature, 2018, 555(7695): 237-241.
DOI URL |
[42] |
KISEEVA E S, LITASOV K D, YAXLEY G M, et al. Melting and phase relations of carbonated eclogite at 9-21 GPa and the petrogenesis of alkali-rich melts in the deep mantle[J]. Journal of Petrology, 2013, 54(8): 1555-1583.
DOI URL |
[43] | STACHEL T, LUTH R W. Diamond formation: where, when and how?[J]. Lithos, 2015, 220/221/222/223: 200-220. |
[44] |
NESTOLA F. Inclusions in super-deep diamonds: windows on the very deep Earth[J]. Rendiconti Lincei, 2017, 28(4): 595-604.
DOI URL |
[45] |
LORD O T, WALTER M J, DASGUPTA R, et al. Melting in the Fe-C system to 70 GPa[J]. Earth and Planetary Science Letters, 2009, 284(1/2): 157-167.
DOI URL |
[46] |
OGANOV A R, ONO S, MA Y M, et al. Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth’s lower mantle[J]. Earth and Planetary Science Letters, 2008, 273(1/2): 38-47.
DOI URL |
[47] |
ONO S, KIKEGAWA T, OHISHI Y. High-pressure transition of CaCO3[J]. American Mineralogist, 2007, 92(7): 1246-1249.
DOI URL |
[48] |
ANDERSON K R, POLAND M P. Abundant carbon in the mantle beneath Hawai‘I[J]. Nature Geoscience, 2017, 10(9): 704-708.
DOI URL |
[49] | CARTIGNY P, PINEAU F, AUBAUD C, et al. Towards a consistent mantle carbon flux estimate:insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14° N and 34° N)[J]. Earth and Planetary Science Letters, 2008, 265(3/4): 672-685. |
[50] |
MICHAEL P J, GRAHAM D W. The behavior and concentration of CO2 in the suboceanic mantle: inferences from undegassed ocean ridge and ocean island basalts[J]. Lithos, 2015, 236/237: 338-351.
DOI URL |
[51] |
SAAL A E, HAURI E H, LANGMUIR C H, et al. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle[J]. Nature, 2002, 419(6906): 451-455.
DOI |
[52] |
BAJGAIN S K, MOOKHERJEE M, DASGUPTA R. Earth’s core could be the largest terrestrial carbon reservoir[J]. Communications Earth and Environment, 2021, 2: 165.
DOI |
[53] |
DASGUPTA R, WALKER D. Carbon solubility in core melts in a shallow magma ocean environment and distribution of carbon between the Earth’s core and the mantle[J]. Geochimica et Cosmochimica Acta, 2008, 72(18): 4627-4641.
DOI URL |
[54] |
WOOD B J, LI J, SHAHAR A. Carbon in the core: its influence on the properties of core and mantle[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 231-250.
DOI URL |
[55] |
MCCAMMON C, BUREAU H, CLEAVES J H II, et al. Deep Earth carbon reactions through time and space[J]. American Mineralogist, 2020, 105(1): 22-27.
DOI URL |
[56] |
MASHINO I, MIOZZI F, HIROSE K, et al. Melting experiments on the Fe-C binary system up to 255 GPa: constraints on the carbon content in the Earth’s core[J]. Earth and Planetary Science Letters, 2019, 515: 135-144.
DOI URL |
[57] | MCDONOUGH W F. Compositional model for the earth’s core[M]// HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Amsterdam: Elsevier, 2014: 559-577. |
[58] |
WOOD B J. Carbon in the core[J]. Earth and Planetary Science Letters, 1993, 117(3/4): 593-607.
DOI URL |
[59] |
GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30.
DOI URL |
[60] | BERNER R A, BERNER E K. Silicate weathering and climate[M]// BERNER R A, BERNER E K. Tectonic uplift and climate change. Boston, MA: Springer US, 1997: 353-365. |
[61] | HILLEY G E, PORDER S. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(44): 16855-16859. |
[62] |
STEWART J A, JAMES R H, ANAND P, et al. Silicate weathering and carbon cycle controls on the Oligocene-Miocene transition glaciation[J]. Paleoceanography, 2017, 32(10): 1070-1085.
DOI URL |
[63] |
DUTKIEWICZ A, MÜLLER R D, CANNON J, et al. Sequestration and subduction of deep-sea carbonate in the global ocean since the Early Cretaceous[J]. Geology, 2019, 47(1): 91-94.
DOI URL |
[64] |
MAHER K, CHAMBERLAIN C P. Hydrologic regulation of chemical weathering and the geologic carbon cycle[J]. Science, 2014, 343(6178): 1502-1504.
DOI PMID |
[65] |
DESSERT C, DUPRÉ B, GAILLARDET J, et al. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle[J]. Chemical Geology, 2003, 202(3/4): 257-273.
DOI URL |
[66] |
ALT J C, TEAGLE D A H. The uptake of carbon during alteration of ocean crust[J]. Geochimica et Cosmochimica Acta, 1999, 63(10): 1527-1535.
DOI URL |
[67] |
GILLIS K M, COOGAN L A. Secular variation in carbon uptake into the ocean crust[J]. Earth and Planetary Science Letters, 2011, 302(3/4): 385-392.
DOI URL |
[68] |
MÜLLER R D, DUTKIEWICZ A. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities[J]. Science Advances, 2018, 4(2): eaaq0500.
DOI URL |
[69] |
ALT J C, HONNOREZ J, LAVERNE C, et al. Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B:mineralogy, chemistry and evolution of seawater-basalt interactions[J]. Journal of Geophysical Research, 1986, 91(B10): 10309.
DOI URL |
[70] |
MCDUFF R E, MOREL F M M. The geochemical control of seawater (sillen revisited)[J]. Environmental Science and Technology, 1980, 14(10): 1182-1186.
DOI URL |
[71] |
SPIVACK A J, STAUDIGEL H. Low-temperature alteration of the upper oceanic crust and the alkalinity budget of seawater[J]. Chemical Geology, 1994, 115(3/4): 239-247.
DOI URL |
[72] |
WALLMANN K, ALOISI G, HAECKEL M, et al. Silicate weathering in anoxic marine sediments[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2895-2918.
DOI URL |
[73] |
MATTER J M, BROECKER W S, STUTE M, et al. Permanent carbon dioxide storage into basalt: the CarbFix pilot project, Iceland[J]. Energy Procedia, 2009, 1(1): 3641-3646.
DOI URL |
[74] |
GOLDBERG D S, TAKAHASHI T, SLAGLE A L. Carbon dioxide sequestration in deep-sea basalt[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(29): 9920-9925.
DOI PMID |
[75] |
COOGAN L A, GILLIS K M. Evidence that low-temperature oceanic hydrothermal systems play an important role in the silicate-carbonate weathering cycle and long-term climate regulation[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(6): 1771-1786.
DOI URL |
[76] |
CANNAT M, MEVEL C, MAIA M, et al. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°-24°N)[J]. Geology, 1995, 23(1): 49-52.
DOI URL |
[77] |
CARLSON R L. The abundance of ultramafic rocks in Atlantic Ocean crust[J]. Geophysical Journal International, 2001, 144(1): 37-48.
DOI URL |
[78] | BIRD P. An updated digital model of plate boundaries[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3): 1027. |
[79] |
PEACOCK S M. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle?[J]. Geology, 2001, 29(4): 299.
DOI URL |
[80] |
NAIF S, KEY K, CONSTABLE S, et al. Water-rich bending faults at the Middle America Trench[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(8): 2582-2597.
DOI URL |
[81] |
IVANDIC M, GREVEMEYER I, BIALAS J, et al. Serpentinization in the trench-outer rise region offshore of Nicaragua: constraints from seismic refraction and wide-angle data[J]. Geophysical Journal International, 2010, 180(3): 1253-1264.
DOI URL |
[82] |
ALT J C, SCHWARZENBACH E M, FRÜH-GREEN G L, et al. The role of serpentinites in cycling of carbon and sulfur: seafloor serpentinization and subduction metamorphism[J]. Lithos, 2013, 178: 40-54.
DOI URL |
[83] |
MENDONÇA R, MÜLLER R A, CLOW D, et al. Organic carbon burial in global lakes and reservoirs[J]. Nature Communications, 2017, 8(1): 1694.
DOI PMID |
[84] |
TRANVIK L J, DOWNING J A, COTNER J B, et al. Lakes and reservoirs as regulators of carbon cycling and climate[J]. Limnology and Oceanography, 2009, 54(6,part2): 2298-2314.
DOI URL |
[85] |
BERNER R A. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance[J]. American Journal of Science, 1982, 282(4): 451-473.
DOI URL |
[86] |
KUMP L R, ARTHUR M A. Interpreting carbon-isotope excursions: carbonates and organic matter[J]. Chemical Geology, 1999, 161(1/2/3): 181-198.
DOI URL |
[87] |
ISSON T T, PLANAVSKY N J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate[J]. Nature, 2018, 560(7719): 471-475.
DOI |
[88] | BEBOUT G E. Trace element and isotopic fluxes/subducted slab[M]// Treatise on Geochemistry. Amsterdam: Elsevier, 2007: 1-50. |
[89] |
BECKER H, ALTHERR R. Evidence from ultra-high-pressure marbles for recycling of sediments into the mantle[J]. Nature, 1992, 358(6389): 745-748.
DOI |
[90] |
LÜ Z, BUCHER K, ZHANG L F. Omphacite-bearing calcite marble and associated coesite-bearing pelitic schist from the meta-ophiolitic belt of Chinese western Tianshan[J]. Journal of Asian Earth Sciences, 2013, 76: 37-47.
DOI URL |
[91] |
OGASAWARA Y, OHTA M, FUKASAWA K, et al. Diamond-bearing and diamond-free metacarbonate rocks from Kumdy-Kol in the Kokchetav Massif, northern Kazakhstan[J]. The Island Arc, 2000, 9(3): 400-416.
DOI URL |
[92] |
OHTA M, MOCK T, OGASAWARA Y, et al. Oxygen, carbon, and strontium isotope geochemistry of diamond-bearing carbonate rocks from Kumdy-Kol, Kokchetav Massif, Kazakhstan[J]. Lithos, 2003, 70(3/4): 77-90.
DOI URL |
[93] |
PROYER A, ROLFO F, ZHU Y F, et al. Ultrahigh-pressure metamorphism in the magnesite+aragonite stability field: evidence from two impure marbles from the Dabie-Sulu UHPM belt[J]. Journal of Metamorphic Geology, 2013, 31(1): 35-48.
DOI URL |
[94] |
ZHANG L F, ELLIS D J, ARCULUS R J, et al. ‘Forbidden zone’ subduction of sediments to 150 km depth-the reaction of dolomite to magnesite + aragonite in the UHPM metapelites from western Tianshan, China[J]. Journal of Metamorphic Geology, 2003, 21(6): 523-529.
DOI URL |
[95] |
SHIREY S B, CARTIGNY P, FROST D J, et al. Diamonds and the geology of mantle carbon[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 355-421.
DOI URL |
[96] |
IZRAELI E S, HARRIS J W, NAVON O. Brine inclusions in diamonds: a new upper mantle fluid[J]. Earth and Planetary Science Letters, 2001, 187(3/4): 323-332.
DOI URL |
[97] |
KAMINSKY F V, WIRTH R, SCHREIBER A. Carbonatitic inclusions indeep mantle diamond from juina, Brazil: new minerals in the carbonate-halide association[J]. The Canadian Mineralogist, 2013, 51(5): 669-688.
DOI URL |
[98] |
NAVON O, HUTCHEON I D, ROSSMAN G R, et al. Mantle-derived fluids in diamond micro-inclusions[J]. Nature, 1988, 335(6193): 784-789.
DOI |
[99] |
WANG A L, PASTERIS J D, MEYER H O A, et al. Magnesite-bearing inclusion assemblage in natural diamond[J]. Earth and Planetary Science Letters, 1996, 141(1/2/3/4): 293-306.
DOI URL |
[100] |
CHEN C F, LIU Y S, FOLEY S F, et al. Carbonated sediment recycling and its contribution to lithospheric refertilization under the northern North China Craton[J]. Chemical Geology, 2017, 466: 641-653.
DOI URL |
[101] |
LI Y S, ZHANG J X, MOSTOFA K M G, et al. Petrogenesis of carbonatites in the Luliangshan region, North Qaidam, northern Tibet, China: evidence for recycling of sedimentary carbonate and mantle metasomatism within a subduction zone[J]. Lithos, 2018, 322: 148-165.
DOI URL |
[102] |
XUE S, LING M X, LIU Y L, et al. Recycling of subducted carbonates:formation of the taohuala mountain carbonatite, North China Craton[J]. Chemical Geology, 2018, 478: 89-101.
DOI URL |
[103] | BUCHER K, GRAPES R. Petrogenesis of metamorphic rocks[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. |
[104] |
COOK-KOLLARS J, BEBOUT G E, COLLINS N C, et al. Subduction zone metamorphic pathway for deep carbon cycling: I. evidence from HP/UHP metasedimentary rocks, Italian Alps[J]. Chemical Geology, 2014, 386: 31-48.
DOI URL |
[105] | GORMAN P J, KERRICK D M, CONNOLLY J A D. Modeling open system metamorphic decarbonation of subducting slabs[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(4): Q04007. |
[106] |
STEWART E M, AGUE J J. Pervasive subduction zone devolatilization recycles CO2 into the forearc[J]. Nature Communications, 2020, 11(1): 6220.
DOI |
[107] |
CLIFT P D. A revised budget for Cenozoic sedimentary carbon subduction[J]. Reviews of Geophysics, 2017, 55(1): 97-125.
DOI URL |
[108] |
COOGAN L A, DOSSO S E. Alteration of ocean crust provides a strong temperature dependent feedback on the geological carbon cycle and is a primary driver of the Sr-isotopic composition of seawater[J]. Earth and Planetary Science Letters, 2015, 415: 38-46.
DOI URL |
[109] | JARRARD R D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium[J]. Geochemistry, Geophysics,Geosystems, 2003, 4(5): 8950. |
[110] |
HILTON D R, FISCHER T P, MARTY B. Noblegases and volatile recycling at subduction zones[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 319-370.
DOI URL |
[111] |
OKAMOTO A, OYANAGI R, YOSHIDA K, et al. Rupture of wet mantle wedge by self-promoting carbonation[J]. Communications Earth and Environment, 2021, 2: 151.
DOI |
[112] |
PICCOLI F, VITALE BROVARONE A, BEYSSAC O, et al. Carbonation by fluid-rock interactions at high-pressure conditions: implications for carbon cycling in subduction zones[J]. Earth and Planetary Science Letters, 2016, 445: 146-159.
DOI URL |
[113] |
FALK E S, KELEMEN P B. Geochemistry and petrology of listvenite in the samail ophiolite, sultanate of Oman: complete carbonation of peridotite during ophiolite emplacement[J]. Geochimica et Cosmochimica Acta, 2015, 160: 70-90.
DOI URL |
[114] |
ZHAO D, ROGERS G, WANG K. Tomographic imaging of Cascadia subduction zone in and around Vancouver Island[J]. Earth Planets and Space, 2001, 53: 285-293.
DOI URL |
[115] |
SCAMBELLURI M, BEBOUT G E, BELMONTE D, et al. Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling[J]. Earth and Planetary Science Letters, 2016, 441: 155-166.
DOI URL |
[116] |
SIEBER M J, HERMANN J, YAXLEY G M. An experimental investigation of C-O-H fluid-driven carbonation of serpentinites under forearc conditions[J]. Earth and Planetary Science Letters, 2018, 496: 178-188.
DOI URL |
[117] |
KERRICK D M, CONNOLLY J A D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle[J]. Nature, 2001, 411(6835): 293-296.
DOI |
[118] |
KERRICK D M, CONNOLLY J A D. Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling[J]. Earth and Planetary Science Letters, 2001, 189(1/2): 19-29.
DOI URL |
[119] |
MASON E, EDMONDS M, TURCHYN A V. Remobilization of crustal carbon may dominate volcanic arc emissions[J]. Science, 2017, 357(6348): 290-294.
DOI PMID |
[120] |
DESCHAMPS F, GUILLOT S, GODARD M, et al. In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones[J]. Chemical Geology, 2010, 269(3/4): 262-277.
DOI URL |
[121] |
SKELTON A. Flux rates for water and carbon during greenschist facies metamorphism[J]. Geology, 2011, 39(1): 43-46.
DOI URL |
[122] |
TAO R B, ZHANG L F, LI S G, et al. Significant contrast in the Mg-C-O isotopes of carbonate between carbonated eclogite and marble from the S.W. Tianshan UHP subduction zone:evidence for two sources of recycled carbon[J]. Chemical Geology, 2018, 483: 65-77.
DOI URL |
[123] |
ZHU J J, ZHANG L F, LÜ Z, et al. Elemental and isotopic (C, O, Sr, Nd) compositions of Late Paleozoic carbonated eclogite and marble from the SW Tianshan UHP belt, NW China: implications for deep carbon cycle[J]. Journal of Asian Earth Sciences, 2018, 153: 307-324.
DOI URL |
[124] | SCHMIDT M W, POLI S. Devolatilization during subduction[M]// HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Amsterdam: Elsevier, 2014: 669-701. |
[125] |
SCHMIDT M W, VIELZEUF D, AUZANNEAU E. Melting and dissolution of subducting crust at high pressures: the key role of white mica[J]. Earth and Planetary Science Letters, 2004, 228(1/2): 65-84.
DOI URL |
[126] |
KAWAMOTO T, HOLLOWAY J. Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 gigapascals[J]. Science, 1997, 276(5310): 240-243.
PMID |
[127] |
MYSEN B O, WHEELER K. Solubility behavior of water in haploandesitic melts at high pressure and high temperature[J]. American Mineralogist, 2000, 85(9): 1128-1142.
DOI URL |
[128] |
DUNCAN M S, DASGUPTA R. CO2 solubility and speciation in rhyolitic sediment partial melts at 1.5-3.0 GPa-implications for carbon flux in subduction zones[J]. Geochimica et Cosmochimica Acta, 2014, 124: 328-347.
DOI URL |
[129] |
MALUSÀ M G, FREZZOTTI M L, FERRANDO S, et al. Active carbon sequestration in the Alpine mantle wedge and implications for long-term climate trends[J]. Scientific Reports, 2018, 8: 4740.
DOI PMID |
[130] |
MALLIK A, DASGUPTA R. Reactive infiltration of MORB-eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkalic magmas[J]. Journal of Petrology, 2013, 54(11): 2267-2300.
DOI URL |
[131] |
BEHN M D, KELEMEN P B, HIRTH G, et al. Diapirs as the source of the sediment signature in arc lavas[J]. Nature Geoscience, 2011, 4(9): 641-646.
DOI |
[132] | KELEMEN P B, HANGHØJ K, GREENE A R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[M]// HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Amsterdam: Elsevier, 2014: 749-806. |
[133] |
MARSCHALL H R, SCHUMACHER J C. Arc magmas sourced from mélange diapirs in subduction zones[J]. Nature Geoscience, 2012, 5(12): 862-867.
DOI |
[134] | PLANK T. The chemical composition of subducting sediments[M]// Treatise on Geochemistry. Amsterdam: Elsevier, 2014: 607-629. |
[135] |
WYLLIE P J, HUANG W L. Carbonation and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressures with geophysical and petrological applications[J]. Contributions to Mineralogy and Petrology, 1976, 54(2): 79-107.
DOI URL |
[136] |
TSUNO K, DASGUPTA R. Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5-3.0 GPa and deep cycling of sedimentary carbon[J]. Contributions to Mineralogy and Petrology, 2011, 161(5): 743-763.
DOI URL |
[137] |
TSUNO K, DASGUPTA R. The effect of carbonates on near-solidus melting of pelite at 3 GPa: relative efficiency of H2O and CO2 subduction[J]. Earth and Planetary Science Letters, 2012, 319/320: 185-196.
DOI URL |
[138] |
AIUPPA A, FISCHER T P, PLANK T, et al. CO2 flux emissions from the Earth’s most actively degassing volcanoes, 2005-2015[J]. Scientific Reports, 2019, 9(1): 5442.
DOI |
[139] |
LEE C T A, SHEN B, SLOTNICK B S, et al. Continental arc-island arc fluctuations, growth of crustal carbonates, and long-term climate change[J]. Geosphere, 2013, 9(1): 21-36.
DOI URL |
[140] |
LI J, REDFERN S A T, GIOVANNELLI D. Introduction: deep carbon cycle through five reactions[J]. American Mineralogist, 2019, 104(4): 465-467.
DOI URL |
[141] | SNYDER G, POREDA R, HUNT A, et al. Regional variations in volatile composition: isotopic evidence for carbonate recycling in the Central American volcanic arc[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(10): 2001GC000163. |
[142] |
MARTY B, TOLSTIKHIN I N. CO2 fluxes from mid-ocean ridges, arcs and plumes[J]. Chemical Geology, 1998, 145(3/4): 233-248.
DOI URL |
[143] |
LE VOYER M, HAURI E H, COTTRELL E, et al. Carbonfluxes and primary magma CO2 contents along the global mid-ocean ridge system[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(3): 1387-1424.
DOI URL |
[144] |
JOHNSTON F K B, TURCHYN A V, EDMONDS M. Decarbonation efficiency in subduction zones:implications for warm Cretaceous climates[J]. Earth and Planetary Science Letters, 2011, 303(1/2): 143-152.
DOI URL |
[145] | DAI J G, WANG C S, LIU S A, et al. Deep carbon cycle recorded by calcium-silicate rocks (rodingites) in a subduction-related ophiolite[J]. Geophysical Research Letters, 2016, 43(22): 11635-11643. |
[146] |
SEWARD T M, KERRICK D M. Hydrothermal CO2 emission from the taupo volcanic zone, new zealand[J]. Earth and Planetary Science Letters, 1996, 139(1/2): 105-113.
DOI URL |
[147] |
JAMES E R, MANGA M, ROSE T P. CO2 degassing in the Oregon cascades[J]. Geology, 1999, 27(9): 823-826.
DOI URL |
[148] |
JAMES E R, MANGA M, ROSE T P, et al. The use of temperature and the isotopes of O, H, C, and noble gases to determine the pattern and spatial extent of groundwater flow[J]. Journal of Hydrology, 2000, 237(1/2): 100-112.
DOI URL |
[149] |
BARRY P H, DE MOOR J M, GIOVANNELLI D, et al. Forearc carbon sink reduces long-term volatile recycling into the mantle[J]. Nature, 2019, 568(7753): 487-492.
DOI |
[150] |
GAILLARDET J, GALY A. Himalaya: carbon sink or source?[J]. Science, 2008, 320(5884): 1727-1728.
DOI URL |
[151] | RAMOS E, LACKEY J S, BARNES J, et al. Remnants andrates of metamorphic decarbonation in continental arcs[J]. GSA Today, 2020, 30(5): 4-10. |
[152] |
AGUE J J. Release of CO2 from carbonate rocks during regional metamorphism of lithologically heterogeneous crust[J]. Geology, 2000, 28(12): 1123-1126.
DOI URL |
[153] |
BURGESS S D, MUIRHEAD J D, BOWRING S A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction[J]. Nature Communications, 2017, 8(1): 164.
DOI PMID |
[154] |
GANINO C, ARNDT N T. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces[J]. Geology, 2009, 37(4): 323-326.
DOI URL |
[155] |
BARTON M D, HANSON R B. Magmatism and the development of low-pressure metamorphic belts:implications from the western United States and thermal modeling[J]. Geological Society of America Bulletin, 1989, 101(8): 1051-1065.
DOI URL |
[156] |
STEWART E M, AGUE J J. Infiltration-driven metamorphism, New England, USA:regional CO2 fluxes and implications for Devonian climate and extinctions[J]. Earth and Planetary Science Letters, 2018, 489: 123-134.
DOI URL |
[157] | CHIODINI G, FRONDINI F, CARDELLINI C, et al. Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers:the case of central Apennine, Italy[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B4): 8423-8434. |
[158] |
KERRICK D M, CALDEIRA K. Metamorphic CO2 degassing from orogenic belts[J]. Chemical Geology, 1998, 145(3/4): 213-232.
DOI URL |
[159] |
AGUE J J. Fluid infiltration and transport of major, minor, and trace elements during regional metamorphism of carbonate rocks, wepawaug schist, Connecticut, USA[J]. American Journal of Science, 2003, 303(9): 753-816.
DOI URL |
[160] |
PENG W G, ZHANG L F, MENZEL M D, et al. Multistage CO2 sequestration in the subduction zone: insights from exhumed carbonated serpentinites, SW Tianshan UHP belt, China[J]. Geochimica et Cosmochimica Acta, 2020, 270: 218-243.
DOI URL |
[161] |
CAMPBELL K A, FARMER J D, DES MARAIS D. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments[J]. Geofluids, 2002, 2(2): 63-94.
DOI URL |
[162] |
SANO Y, WILLIAMS S N. Fluxes of mantle and subducted carbon along convergent plate boundaries[J]. Geophysical Research Letters, 1996, 23(20): 2749-2752.
DOI URL |
[163] |
POLI S. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids[J]. Nature Geoscience, 2015, 8(8): 633-636.
DOI |
[164] |
NEWTON R C, MANNING C E. Experimental determination of calcite solubility in H2O-NaCl solutions at deep crust/upper mantle pressures and temperatures: implications for metasomatic processes in shear zones[J]. American Mineralogist, 2002, 87(10): 1401-1409.
DOI URL |
[165] |
FARSANG S, LOUVEL M, ZHAO C S, et al. Deep carbon cycle constrained by carbonate solubility[J]. Nature Communications, 2021, 12: 4311.
DOI PMID |
[166] |
HERMANN J, ZHENG Y F, RUBATTO D. Deepfluids in subducted continental crust[J]. Elements, 2013, 9(4): 281-287.
DOI URL |
[167] |
MANNING C E. The chemistry of subduction-zone fluids[J]. Earth and Planetary Science Letters, 2004, 223(1/2): 1-16.
DOI URL |
[168] |
NI H W, ZHANG L, XIONG X L, et al. Supercritical fluids at subduction zones:evidence, formation condition, and physicochemical properties[J]. Earth-Science Reviews, 2017, 167: 62-71.
DOI URL |
[169] |
ZHENG Y F, XIA Q X, CHEN R X, et al. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision[J]. Earth-Science Reviews, 2011, 107(3/4): 342-374.
DOI URL |
[170] |
HERMANN J, SPANDLER C, HACK A, et al. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks:implications for element transfer in subduction zones[J]. Lithos, 2006, 92(3/4): 399-417.
DOI URL |
[171] |
KAWAMOTO T, KANZAKI M, MIBE K, et al. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(46): 18695-18700.
DOI PMID |
[172] | HERMANN J, RUBATTO D. Subduction of continental crust to mantle depth[M]// HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Amsterdam: Elsevier, 2014: 309-340. |
[173] | 倪怀玮, 王沁霞, 张力, 等. 超临界地质流体的形成条件[J]. 矿物岩石地球化学通报, 2020, 39(3): 472-478. |
[174] |
GHOSH S, OHTANI E, LITASOV K D, et al. Solidus of carbonated peridotite from 10 to 20 GPa and origin of magnesiocarbonatite melt in the Earth’s deep mantle[J]. Chemical Geology, 2009, 262(1/2): 17-28.
DOI URL |
[175] |
THOMSON A R, WALTER M J, KOHN S C, et al. Slab melting as a barrier to deep carbon subduction[J]. Nature, 2016, 529(7584): 76-79.
DOI |
[176] |
AVANZINELLI R, CASALINI M, ELLIOTT T, et al. Carbon fluxes from subducted carbonates revealed by uranium excess at Mount Vesuvius, Italy[J]. Geology, 2018, 46(3): 259-262.
DOI URL |
[177] |
HORTON F. Rapid recycling of subducted sedimentary carbon revealed by Afghanistan carbonatite volcano[J]. Nature Geoscience, 2021, 14(7): 508-512.
DOI |
[178] |
AVANZINELLI R, LUSTRINO M, MATTEI M, et al. Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region:significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins[J]. Lithos, 2009, 113(1/2): 213-227.
DOI URL |
[179] |
BURKE A, PRESENT T M, PARIS G, et al. Sulfur isotopes in rivers:insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle[J]. Earth and Planetary Science Letters, 2018, 496: 168-177.
DOI URL |
[180] | PETSCH S T. Weathering of organic carbon[M]// HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Amsterdam: Elsevier, 2014: 217-238. |
[181] |
CAO S Y, NEUBAUER F. Graphitic material in fault zones: implications for fault strength and carbon cycle[J]. Earth-Science Reviews, 2019, 194: 109-124.
DOI URL |
[182] |
CHOULGA M, JANSSENS-MAENHOUT G, SUPER I, et al. Global anthropogenic CO2 emissions and uncertainties as a prior for Earth system modelling and data assimilation[J]. Earth System Science Data, 2021, 13(11): 5311-5335.
DOI URL |
[183] | MÉLIÈRES M A, MARÉCHAL C. Climate change: past, present, and future[M]. Hoboken: Wiley Blackwell, 2015: 197-312. |
[184] |
BODEN T A, MARLAND G, ANDRES R J. Global, regional, and national fossil fuel CO2 emissions: 1751-2017[R]. U.S. Department of Energy Office of Scientific and Technical Information, 2020. doi:https://doi.org/10.15485/1712447
DOI |
[185] |
ANDREW R M. Global CO2 emissions from cement production, 1928-2018[J]. Earth System Science Data, 2019, 11(4): 1675-1710.
DOI URL |
[186] | 方琦, 钱立华, 鲁政委. 我国实现碳达峰与碳中和的碳排放量测算[J]. 环境保护, 2021, 49(16): 49-54. |
[187] |
OLAJIRE A A. A review of mineral carbonation technology in sequestration of CO2[J]. Journal of Petroleum Science and Engineering, 2013, 109: 364-392.
DOI URL |
[188] |
REINER D M. Learning through a portfolio of carbon capture and storage demonstration projects[J]. Nature Energy, 2016, 1: 15011.
DOI |
[189] |
SNÆBJÖRNSDÓTTIR S Ó, SIGFÚSSON B, MARIENI C, et al. Carbon dioxide storage through mineral carbonation[J]. Nature Reviews Earth and Environment, 2020, 1(2): 90-102.
DOI |
[190] | WIESE F, FRIDRIKSSON T, ÁRMANNSSON H. CO2 fixation by calcite in high-temperature geothermal systems in Iceland[J]. Report ÍSOR-2008/003, 2008. |
[191] |
LIU Y S, CHEN C F, HE D T, et al. Deep carbon cycle in subduction zones[J]. Science China Earth Sciences, 2019, 62(11): 1764-1782.
DOI |
[192] |
PLANK T, LANGMUIRC H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3/4): 325-394.
DOI URL |
[193] | 兰春元, 陶仁彪, 张立飞, 等. 俯冲板片的脱碳机制及通量估算:问题与进展[J]. 岩石学报, 2022, 38(5): 1523-1540. |
[1] | LI Zhuoqi, XU Cheng, WEI Chunwan. Outgassing processes of carbon in deep Earth: A review [J]. Earth Science Frontiers, 2024, 31(6): 304-319. |
[2] | . Diamond and deep carbon cycle. [J]. Earth Science Frontiers, 2011, 18(3): 268-283. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||