Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (3): 441-451.DOI: 10.13745/j.esf.sf.2022.9.9
Previous Articles Next Articles
YANG Kunkun(), LI Haiyan*(
), ZHAO Hanqing, CHU Runjian, LIU Guanghong, WU Huaichun, ZHANG Shihong
Received:
2022-05-10
Revised:
2022-08-16
Online:
2023-05-25
Published:
2023-04-27
CLC Number:
YANG Kunkun, LI Haiyan, ZHAO Hanqing, CHU Runjian, LIU Guanghong, WU Huaichun, ZHANG Shihong. Cyclostratigraphic study of the Neoproterozoic Browne-Hussar formations in western Australia[J]. Earth Science Frontiers, 2023, 30(3): 441-451.
符号 | 值 | 定义 |
---|---|---|
G | 6.67408×10-11 m3/(kg·s2) | 重力常数 |
ED | 0.003273787 | 地球动力轨率 |
A | 8.008×1037 kg/m2 | 地球赤道惯性矩 |
C | 8.034×1037 kg/m2 | 地球的极惯性矩 |
5.156690° | 月球轨道在黄道面上的倾角 | |
e | 0.016708634 | 地球轨道偏心率 |
0.05554553 | 月球轨道的偏心率 | |
ε | 23.43928° | 地球倾斜度 |
a | 1.4959802×1011 m | 地球轨道的半主轴 |
3.833978×108 m | 月球轨道的半主轴 | |
1.98855×1030 kg | 太阳质量 | |
7.34767309×1022 kg | 月球质量 | |
地质历史时期地球自转速率 | ||
7.2921150×10-5 rad/s | 现在地球自转速率 | |
地质历史时期的地月距离 | ||
3.833978×108 m | 现在的地月距离 |
Table 1 Description of equation parameters used in the cyclostratigraphic analysis
符号 | 值 | 定义 |
---|---|---|
G | 6.67408×10-11 m3/(kg·s2) | 重力常数 |
ED | 0.003273787 | 地球动力轨率 |
A | 8.008×1037 kg/m2 | 地球赤道惯性矩 |
C | 8.034×1037 kg/m2 | 地球的极惯性矩 |
5.156690° | 月球轨道在黄道面上的倾角 | |
e | 0.016708634 | 地球轨道偏心率 |
0.05554553 | 月球轨道的偏心率 | |
ε | 23.43928° | 地球倾斜度 |
a | 1.4959802×1011 m | 地球轨道的半主轴 |
3.833978×108 m | 月球轨道的半主轴 | |
1.98855×1030 kg | 太阳质量 | |
7.34767309×1022 kg | 月球质量 | |
地质历史时期地球自转速率 | ||
7.2921150×10-5 rad/s | 现在地球自转速率 | |
地质历史时期的地月距离 | ||
3.833978×108 m | 现在的地月距离 |
名称 | 周期/ka | NGR序列周期/m |
---|---|---|
Waltham[ | Hussar组泥岩段(B段) | |
长偏心率 | 405 | 34 |
短偏心率 | 125 95 | 8~10 |
斜率 | 28.9±5.1 | 1.8~2.7 |
岁差 | 18.9±2.2 18.1±2.0 15.8±1.6 15.9±1.6 | 1.2~1.4 |
比率 | 23∶7 ∶ 1.6 ∶1 | 24~28∶6.6~7.1∶1.5~1.9∶1 |
Table 2 ~800 Ma Milankovitch cycles and corresponding deposition depths of mudstone interval B, Hussar Formation, well Lancer 1
名称 | 周期/ka | NGR序列周期/m |
---|---|---|
Waltham[ | Hussar组泥岩段(B段) | |
长偏心率 | 405 | 34 |
短偏心率 | 125 95 | 8~10 |
斜率 | 28.9±5.1 | 1.8~2.7 |
岁差 | 18.9±2.2 18.1±2.0 15.8±1.6 15.9±1.6 | 1.2~1.4 |
比率 | 23∶7 ∶ 1.6 ∶1 | 24~28∶6.6~7.1∶1.5~1.9∶1 |
[1] | 吴怀春, 张世红, 冯庆来, 等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学: 中国地质大学学报, 2011, 36(3): 409-428. |
[2] |
HINNOV L A. Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences[J]. Geological Society of America Bulletin, 2013, 125(11/12): 1703-1734.
DOI URL |
[3] | 任传真, 褚润健, 吴怀春, 等. 天津蓟县剖面前寒武系洪水庄组—铁岭组米兰科维奇旋回[J]. 现代地质, 2019, 33(5): 979-989. |
[4] | 刘光泓, 张世红, 吴怀春. 前寒武纪旋回地层学研究的进展与挑战[J]. 地层学杂志, 2020, 44(3): 239-249. |
[5] |
黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 2014, 21(2): 48-66.
DOI |
[6] | 吴怀春, 房强, 张世红, 等. 新生代米兰科维奇旋回与天文地质年代表[J]. 第四纪研究, 2016, 36(5): 1055-1074. |
[7] | 吴怀春, 钟阳阳, 房强, 等. 古生代旋回地层学与天文地质年代表[J]. 矿物岩石地球化学通报, 2017, 36(5): 750-770, 696. |
[8] |
WU H C, ZHANG S H, JIANG G Q, et al. Astrochronology of the Early Turonian-Early Campanian terrestrial succession in the Songliao Basin, northeastern China and its implication for long-period behavior of the Solar System[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 55-70.
DOI URL |
[9] |
WU H C, FANG Q, WANG X D, et al. An -34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan realm[J]. Geology, 2019, 47(1): 83-86.
DOI URL |
[10] |
FANG Q, WU H C, HINNOV L A, et al. Geologic evidence for chaotic behavior of the planets and its constraints on the third-order eustatic sequences at the end of the Late Paleozoic Ice Age[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440: 848-859.
DOI URL |
[11] |
FANG Q, WU H C, HINNOV L A, et al. A record of astronomically forced climate change in a late Ordovician (Sandbian) deep marine sequence, Ordos Basin, North China[J]. Sedimentary Geology, 2016, 341: 163-174.
DOI URL |
[12] |
FANG Q, WU H C, HINNOV L A, et al. Astronomical cycles of Middle Permian Maokou Formation in South China and their implications for sequence stratigraphy and paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474: 130-139.
DOI URL |
[13] |
FANG Q, WU H C, HINNOV L A, et al. Abiotic and biotic responses to Milankovitch-forced megamonsoon and glacial cycles recorded in South China at the end of the Late Paleozoic Ice Age[J]. Global and Planetary Change, 2018, 163: 97-108.
DOI URL |
[14] |
FANG Q, WU H C, WANG X L, et al. Astronomical cycles in the Serpukhovian-Moscovian (Carboniferous) marine sequence, South China and their implications for geochronology and icehouse dynamics[J]. Journal of Asian Earth Sciences, 2018, 156: 302-315.
DOI URL |
[15] |
FANG J C, WU H C, FANG Q, et al. Cyclostratigraphy of the global stratotype section and point (GSSP) of the basal Guzhangian Stage of the Cambrian Period[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 540: 109530.
DOI URL |
[16] |
ZHONG Y Y, WU H C, ZHANG Y D, et al. Astronomical calibration of the Middle Ordovician of the Yangtze block, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 86-99.
DOI URL |
[17] |
ZHONG Y Y, WU H C, FAN J X, et al. Late Ordovician obliquity-forced glacio-eustasy recorded in the Yangtze Block, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 540: 109520.
DOI URL |
[18] | 范文博. 前寒武纪旋回地层学研究进展与展望[J]. 地质科学, 2015, 50(4): 1293-1305. |
[19] |
MINGUEZ D, KODAMA K P, HILLHOUSE J W. Paleomagnetic and cyclostratigraphic constraints on the synchroneity and duration of the Shuram carbon isotope excursion, Johnnie Formation, Death Valley Region, CA[J]. Precambrian Research, 2015, 266: 395-408.
DOI URL |
[20] |
MINGUEZ D, KODAMA K P. Rock magnetic chronostratigraphy of the Shuram carbon isotope excursion: Wonoka Formation, Australia[J]. Geology, 2017, 45(6): 567-570.
DOI URL |
[21] |
GONG Z, KODAMA K P, LI Y X. Rock magnetic cyclostratigraphy of the Doushantuo Formation, South China and its implications for the duration of the Shuram carbon isotope excursion[J]. Precambrian Research, 2017, 289: 62-74.
DOI URL |
[22] |
GONG Z, LI M S. Astrochronology of the Ediacaran shuram carbon isotope excursion, Oman[J]. Earth and Planetary Science Letters, 2020, 547: 116462.
DOI URL |
[23] |
SUI Y, HUANG C J, ZHANG R, et al. Astronomical time scale for the middle-upper Doushantuo Formation of Ediacaran in South China: implications for the duration of the Shuram/Wonoka negative δ13C excursion[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 532: 109273.
DOI URL |
[24] |
LI H Y, ZHANG S H, HAN J, et al. Astrochronologic calibration of the Shuram carbon isotope excursion with new data from South China[J]. Global and Planetary Change, 2022, 209: 103749.
DOI URL |
[25] |
BAO X J, ZHANG S H, JIANG G Q, et al. Cyclostratigraphic constraints on the duration of the Datangpo Formation and the onset age of the Nantuo (Marinoan) glaciation in South China[J]. Earth and Planetary Science Letters, 2018, 483: 52-63.
DOI URL |
[26] |
GONG Z. Cyclostratigraphy of the Cryogenian Fiq Formation, Oman and its implications for the age of the Marinoan glaciation[J]. Global and Planetary Change, 2021, 204: 103584.
DOI URL |
[27] | BAO X, ZHAO H Q, ZHANG S H, et al. Length-of-day at ca. 1.1 Ga based on cyclostratigraphic analyses of the Nanfen Formation in the North China Craton, and its geodynamic implications[J]. Journal of the Geological Society, 2023, 180(1): 2022-022. |
[28] | ZHANG S C, WANG X M, HAMMARLUND E U, et al. Orbital forcing of climate 1.4 billion years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): E1406-E1413. |
[29] |
MEYERS S R, MALINVERNO A. Proterozoic Milankovitch cycles and the history of the solar system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(25): 6363-6368.
DOI PMID |
[30] | 梅冥相, 郭庆银, 马永生. 雾迷山旋回层的基本相序模式: 兼论其马尔柯夫链分析及在长周期三级层序中的有序叠加形式[J]. 地质学报, 2001, 75(4): 476. |
[31] |
LIU G H, ZHANG S H, LI H Y, et al. Cyclostratigraphic calibration of the ca. 1.56 Ga carbon isotope excursion and oxygenation event recorded in the Gaoyuzhuang Formation, north China[J]. Global and Planetary Change, 2022, 216: 103916.
DOI URL |
[32] |
LANTINK M L, DAVIES J H F L, MASON P R D, et al. Climate control on banded iron formations linked to orbital eccentricity[J]. Nature Geoscience, 2019, 12(5): 369-374.
DOI PMID |
[33] |
PISAREVSKY S A, WINGATE M T D, STEVENS M K, et al. Palaeomagnetic results from the Lancer 1 stratigraphic drillhole, Officer Basin, Western Australia, and implications for Rodinia reconstructions[J]. Australian Journal of Earth Sciences, 2007, 54(4): 561-572.
DOI URL |
[34] |
XIAN H B, ZHANG S H, LI H Y, et al. Geochronological and palaeomagnetic investigation of the Madiyi Formation, lower Banxi Group, South China: implications for Rodinia reconstruction[J]. Precambrian Research, 2020, 336: 105494.
DOI URL |
[35] | MORY A J, HAINES P W. GSWA Lancer 1 well completion report (basic data) Officer and Gunbarrel Basins, Western Australia[R]. East Perth: Geological Survey of Western Australia, 2004, 10:39. |
[36] | MORY A J, HAINES P W, BACKHOUSE J. GSWA Lancer 1 well completion report (interpretive papers), Officer and Gunbarrel Basins, Western Australia[R]. East Perth: Geological Survey of Western Australia, 2005, 4: 81. |
[37] | GREY K, HOCKING R M, STEVENS M K, et al. Lithostratigraphic nomenclature of the Officer Basin and correlative parts of the Paterson Orogen, Western Australia[R]. Geological Survey of Western Australia, 2005, 93: 89. |
[38] |
PREISS W V. The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction[J]. Precambrian Research, 2000, 100(1/2/3): 21-63.
DOI URL |
[39] |
LI M S, HUANG C J, OGG J, et al. Paleoclimate proxies for cyclostratigraphy: comparative analysis using a Lower Triassic marine section in South China[J]. Earth-Science Reviews, 2019, 189: 125-146.
DOI URL |
[40] |
WU H C, ZHANG S H, JIANG G Q, et al. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications[J]. Earth and Planetary Science Letters, 2009, 278(3/4): 308-323.
DOI URL |
[41] |
WU H C, ZHANG S H, HINNOV L A, et al. Time-calibrated Milankovitch cycles for the Late Permian[J]. Nature Communications, 2013, 4: 2452.
DOI PMID |
[42] |
LI M S, HUANG C J, HINNOV L, et al. Obliquity-forced climate during the Early Triassic hothouse in China[J]. Geology, 2016, 44(8): 623-626.
DOI URL |
[43] |
WANG M, CHEN H H, HUANG C J, et al. Astronomical forcing and sedimentary noise modeling of lake-level changes in the Paleogene Dongpu Depression of North China[J]. Earth and Planetary Science Letters, 2020, 535: 116116.
DOI URL |
[44] |
HUANG H, GAO Y, JONES M M, et al. Astronomical forcing of Middle Permian terrestrial climate recorded in a large paleolake in northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550: 109735.
DOI URL |
[45] |
VAN VUGT N, LANGEREIS C G, HILGEN F J. Orbital forcing in Pliocene-Pleistocene Mediterranean lacustrine deposits: dominant expression of eccentricity versus precession[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 172(3/4): 193-205.
DOI URL |
[46] |
MEYERS S R. Cyclostratigraphy and the problem of astrochronologic testing[J]. Earth-Science Reviews, 2019, 190: 190-223.
DOI |
[47] |
THOMSON D J. Spectrum estimation and harmonic analysis[J]. Proceedings of the IEEE, 1982, 70(9): 1055-1096.
DOI URL |
[48] |
MANN M E, LEES J M. Robust estimation of background noise and signal detection in climatic time series[J]. Climatic Change, 1996, 33(3): 409-445.
DOI URL |
[49] | KODAMA K P, HINNOV L A. New analytical methods in earth and environmental science series[M]// Rock magnetic cyclostratigraphy. Hoboken: John Wiley and Sons, 2014. |
[50] |
LI M S, KUMP L R, HINNOV L A, et al. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing[J]. Earth and Planetary Science Letters, 2018, 501: 165-179.
DOI URL |
[51] | LI M S, HINNOV L, KUMP L. A cycle: time-series analysis software for paleoclimate research and education[J]. Computers and Geosciences, 2019, 127(C): 12-22. |
[52] |
BERGER A, LOUTRE M F, LASKAR J. Stability of the astronomical frequencies over the earth’s history for paleoclimate studies[J]. Science, 1992, 255(5044): 560-566.
DOI URL |
[53] |
LASKAR J, ROBUTEL P, JOUTEL F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy and Astrophysics, 2004, 428(1): 261-285.
DOI URL |
[54] |
WILLIAMS G E. Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit[J]. Reviews of Geophysics, 2000, 38(1): 37-59.
DOI URL |
[55] | HINNOV L A. Cyclostratigraphy and astrochronology in 2018[J]. Stratigraphy and Timescales, 2018, 3: 1-80. |
[56] |
ZHANG T, LI Y F, FAN T L, et al. Orbitally-paced climate change in the early Cambrian and its implications for the history of the Solar System[J]. Earth and Planetary Science Letters, 2022, 583: 117420.
DOI URL |
[57] | BERGER A, LOUTRE M F. Astronomical forcing through geological time[M]// Orbital forcing and cyclic sequences. Oxford, UK: Blackwell Publishing Ltd, 2009: 15-24. |
[58] |
WALTHAM D. Milankovitch period uncertainties and their impact on cyclostratigraphy[J]. Journal of Sedimentary Research, 2015, 85(8): 990-998.
DOI URL |
[59] | HINNOV L A, HILGEN F J. Cyclostratigraphy and astrochronology[M]// The geologic time scale. Amsterdam: Elsevier, 2012: 63-83. |
[60] | THOMSON D J. Time-series analysis of paleoclimate data[M]// GORNITZ V. Encyclopedia paleoclimatology and ancient environments. Dordrecht: Springer, 2009: 949-959. |
[1] | LI Guangjie, CHEN Yongqing, SHANG Zhi, LIU Shibo. Geochemical characteristics and petrogenesis of the Neoproterozoic Eshan highly fractionated I-type granites, western Yangtze block [J]. Earth Science Frontiers, 2024, 31(3): 20-39. |
[2] | WU Huaichun, LI Shan, WANG Chengshan, CHU Runjian, WANG Pujun, GAO Yuan, WAN Xiaoqiao, HE Huaiyu, DENG Chenglong, YANG Guang, HUANG Yongjian, GAO Youfeng, XI Dangpeng, WANG Tiantian, FANG Qiang, YANG Tianshui, ZHANG Shihong. Integrated chronostratigraphic framework for Cretaceous strata in the Songliao Basin [J]. Earth Science Frontiers, 2024, 31(1): 431-445. |
[3] | SHI Juye, JIN Zhijun, LIU Quanyou, FAN Tailiang, GAO Zhiqian, WANG Hongyu. Application of astronomical cycles in shale oil exploration and in high-precision stratigraphic isochronous comparison of organic-rich fine-grain sedimentary rocks [J]. Earth Science Frontiers, 2023, 30(4): 142-151. |
[4] | HE Bizhu, JIAO Cunli, LIU Ruohan, CAO Zicheng, CAI Zhihui, LAN Mingjie, YUN Xiaorui, ZHU Ding, JIANG Zhongzheng, YANG Yujie, LI Zhenyu. The paleotectonic and paleogeography reconstructions of the Tarim Basin in the Neoproterozoic and prediction of favorable deep source rock areas [J]. Earth Science Frontiers, 2023, 30(4): 19-42. |
[5] | LIU Leixin, LI Jianghai, MA Changming. Reconstruction of the Yangtze, Australian and Indian plates in the Late Neoproterozoic (750-540 Ma) using paleomagnetic constraints [J]. Earth Science Frontiers, 2023, 30(2): 154-162. |
[6] | LI Lushun, WANG Zecheng, XIAO Ancheng, HU Anping, CHEN Youzhi, Wang Qianqian. Tectonics of the Neoproterozoic basin and age of the Macaoyuan Group on the northern margin of the Yangtze Block [J]. Earth Science Frontiers, 2022, 29(6): 291-304. |
[7] | LI Wangpeng, LI Huili, WANG Yi, LIU Shaofeng, ZHANG Zhongpei, YANG Weili, CAI Xiyao, QIAN Tao, LI Xiaojian. Neoproterozoic glaciations in Yecheng area, southwestern margin of the Tarim Basin [J]. Earth Science Frontiers, 2022, 29(3): 356-380. |
[8] | KOU Caihua, LIU Yanxue, LI Jiang, LI Tingdong, DING Xiaozhong, LIU Yong, JIN Shengkai. Geochronology and geochemistry of 830 Ma gabbro in the western segment of the Jiangnan Orogen and constraint on its petrogenesis [J]. Earth Science Frontiers, 2022, 29(2): 218-233. |
[9] | ZHANG Jibiao, DING Xiaozhong, LIU Yanxue. Petrogenesis and tectonic significance of OIB- and arc-type volcanic rocks in the western Yangtze Block: From intracontinental rifting to subduction [J]. Earth Science Frontiers, 2021, 28(4): 250-266. |
[10] | HUA Hong, CAI Yaoping, MIN Xiao, CHAI Shu, DAI Qiaokun, CUI Zaihang. Ecological diversity in the terminal Ediacaran Gaojiashan biota [J]. Earth Science Frontiers, 2020, 27(6): 28-46. |
[11] | PENG Runmin, WANG Jianping. Confirmation and metallogenesis of the Neoproterozoic rift in the western section of the northern margin of the North China Craton [J]. Earth Science Frontiers, 2020, 27(2): 420-441. |
[12] | MA Xueying, DENG Shenghui, LU Yuanzheng, WU Huaichun, LUO Zhong, FAN Ru, LI Xin, FANG Qiang. Astrochronology of the Upper Ordovician Pagoda Formation, South China and its geological implications [J]. Earth Science Frontiers, 2019, 26(2): 281-291. |
[13] | BAO Hongping,SHAO Dongbo,HAO Songli,ZHANG Guisong,RUAN Zhengzhong,LIU Gang,OUYANG Zhengjian. Basement structure and evolution of early sedimentary cover of the Ordos Basin [J]. Earth Science Frontiers, 2019, 26(1): 33-43. |
[14] | MA Kunyuan, LI Ruochen, GONG Yiming.. Chemostratigraphy and cyclostratigraphy of the Ordovician Liangjiashan section from Shimenzhai of Qinhuangdao in North China. [J]. Earth Science Frontiers, 2016, 23(6): 268-286. |
[15] | ZHANG Haijun,WANG Xunlian,WANG Xun,ZHOU Hongrui. U-Pb zircon ages of tuff beds from the Hongzaoshan Formation of the Quanji Group in the north margin of the Qaidam Basin, NW China, and their geological significances. [J]. Earth Science Frontiers, 2016, 23(6): 202-218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||