Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (6): 28-46.DOI: 10.13745/j.esf.sf.2020.6.2
Previous Articles Next Articles
HUA Hong1(), CAI Yaoping1, MIN Xiao2, CHAI Shu1, DAI Qiaokun1, CUI Zaihang1
Received:
2020-03-27
Revised:
2020-05-29
Online:
2020-11-02
Published:
2020-11-02
CLC Number:
HUA Hong, CAI Yaoping, MIN Xiao, CHAI Shu, DAI Qiaokun, CUI Zaihang. Ecological diversity in the terminal Ediacaran Gaojiashan biota[J]. Earth Science Frontiers, 2020, 27(6): 28-46.
属种名称 | 属性 | 形态特征 | 生态类型 | 生活方式 | 生态位 | |||||
---|---|---|---|---|---|---|---|---|---|---|
管状动物化石 | Cloudina | 可能多毛类 | 漏斗套漏斗锥管状结构,具矿化壁 | 底栖 | 固着滤食 | 初级消费者 | ||||
Conotubus | 可能多毛类 | 漏斗套漏斗锥管状结构,有机质壁 | 底栖 | 固着滤食 | 初级消费者 | |||||
Gaojiashania | 后生动物 | 由一系列坚硬的圆环构成的空心管体,圆环间由软体组织连接 | 表栖 | 游移食腐殖质 | 初级消费者 | |||||
Sinotubulites | 可能多毛类 | 管套管结构; 多层壁,表面具纵脊及横向皱褶 | 表栖 | 滤食或食腐殖质 | 初级消费者 | |||||
Shaanxilithes | 后生动物化石 | 带状构造,一系列片状构造组合 | 底栖 | 固着化学共生 | 自养 | |||||
瓶状化石 | Protolagena | 原生动物,可能有孔虫 | 瓶状,颈长短不一,颈短,口缘圆滑或具外翻的漏斗状口缘 | 底栖 | 滤食 | 初级消费者 | ||||
Sicylagena | 原生动物,可能有孔虫 | 亚葫芦状, 具颈、口孔居中或侧位 | 底栖 | 滤食 | 初级消费者 | |||||
蓝 细 菌 或 藻 类 化 石 | Obruchevella | 钙化蓝细菌 | 螺旋状盘卷管丝体 | 底栖 | 固着 | 生产者 | ||||
Eiphyton | 钙化蓝细菌 | 二歧式分枝管丝体 | 底栖 | 固着 | 生产者 | |||||
Cambricodium | 钙化蓝细菌 | 束发状管丝体 | 底栖 | 固着 | 生产者 | |||||
Girvanella | 钙化蓝细菌 | 相互缠绕管丝体 | 底栖 | 固着 | 生产者 | |||||
遗迹化石 | Bucerusichnus | 动物遗迹 | 可能垂直潜穴 | 底内 | 食腐殖质 | 初级消费者 | ||||
Planolites | 动物遗迹 | 简单表生爬迹 | 底内 | 食腐殖质 | 初级消费者 | |||||
Helminthopsis | 可能遗迹化石 | 蛇曲形遗迹 | 底内 | 食腐殖质 | 初级消费者 | |||||
可能的小壳化石先驱 | Anabarites sp. | 动物化石 | 三个管规则旋卷 | 底栖 | 食腐殖质 | 初级消费者 | ||||
Paragloborilus sp. | 动物化石 | 圆锥形,始部球形肿大 | 底栖 | 食腐殖质 | 初级消费者 |
Table 1 List of distinct taxa in the Gaojiashan biota and their possible interpretation
属种名称 | 属性 | 形态特征 | 生态类型 | 生活方式 | 生态位 | |||||
---|---|---|---|---|---|---|---|---|---|---|
管状动物化石 | Cloudina | 可能多毛类 | 漏斗套漏斗锥管状结构,具矿化壁 | 底栖 | 固着滤食 | 初级消费者 | ||||
Conotubus | 可能多毛类 | 漏斗套漏斗锥管状结构,有机质壁 | 底栖 | 固着滤食 | 初级消费者 | |||||
Gaojiashania | 后生动物 | 由一系列坚硬的圆环构成的空心管体,圆环间由软体组织连接 | 表栖 | 游移食腐殖质 | 初级消费者 | |||||
Sinotubulites | 可能多毛类 | 管套管结构; 多层壁,表面具纵脊及横向皱褶 | 表栖 | 滤食或食腐殖质 | 初级消费者 | |||||
Shaanxilithes | 后生动物化石 | 带状构造,一系列片状构造组合 | 底栖 | 固着化学共生 | 自养 | |||||
瓶状化石 | Protolagena | 原生动物,可能有孔虫 | 瓶状,颈长短不一,颈短,口缘圆滑或具外翻的漏斗状口缘 | 底栖 | 滤食 | 初级消费者 | ||||
Sicylagena | 原生动物,可能有孔虫 | 亚葫芦状, 具颈、口孔居中或侧位 | 底栖 | 滤食 | 初级消费者 | |||||
蓝 细 菌 或 藻 类 化 石 | Obruchevella | 钙化蓝细菌 | 螺旋状盘卷管丝体 | 底栖 | 固着 | 生产者 | ||||
Eiphyton | 钙化蓝细菌 | 二歧式分枝管丝体 | 底栖 | 固着 | 生产者 | |||||
Cambricodium | 钙化蓝细菌 | 束发状管丝体 | 底栖 | 固着 | 生产者 | |||||
Girvanella | 钙化蓝细菌 | 相互缠绕管丝体 | 底栖 | 固着 | 生产者 | |||||
遗迹化石 | Bucerusichnus | 动物遗迹 | 可能垂直潜穴 | 底内 | 食腐殖质 | 初级消费者 | ||||
Planolites | 动物遗迹 | 简单表生爬迹 | 底内 | 食腐殖质 | 初级消费者 | |||||
Helminthopsis | 可能遗迹化石 | 蛇曲形遗迹 | 底内 | 食腐殖质 | 初级消费者 | |||||
可能的小壳化石先驱 | Anabarites sp. | 动物化石 | 三个管规则旋卷 | 底栖 | 食腐殖质 | 初级消费者 | ||||
Paragloborilus sp. | 动物化石 | 圆锥形,始部球形肿大 | 底栖 | 食腐殖质 | 初级消费者 |
生态分类 | 特征描述 | 高家山生物群动物化石代表 | |
---|---|---|---|
营 养 层 | 1.浮游游泳 | 生活在脱离基底的水体中 | |
2.底栖直立 | 底栖,直立于水体中生活 | Conotubus,Shaanxilithes | |
3.表栖 | 在基底表面生活,不明显向上生长 | Cloudina,Sinotubulites,Gaojiashania,遗迹化石 | |
4.半内栖 | 半埋半暴露在水体中生活 | 遗迹化石 | |
5.浅表内栖 | 在基底-水界面下5 cm之内的沉积物中生活 | 遗迹化石 | |
6.深部内栖 | 在基底之下大于5 cm的沉积物内生活 | ||
活 动 能 力 | 1.自由快速运动 | 有规律地不受阻碍的移动或游移 | |
2. 自由慢速运动 | 有规律地移动,与基底保持紧密接触 | 瓶状化石 | |
3.兼性非固着 | 只有在必要的时候才会移动,自由平躺 | ||
4.兼性固着 | 固着生活,只有在必要的时候才移动 | Sinotubulites,Gaojiashania | |
5.非固着,不能移动 | 不具备自我推移的能力,平躺生活 | ||
6. 固着,不能移动 | 不具备自我推移的能力,固着生活 | Cloudina,Conotubus,Shaanxilithes | |
取 食 策 略 | 1.食悬浮 | 捕捉水中的悬浮食物颗粒 | Cloudina,Conotubus,瓶状化石 |
2.底表食碎屑 | 从基底上捕捉松散的颗粒 | Sinotubulites,Gaojiashania | |
3.底内挖掘 | 在基底内取食埋在地下的食物 | 根据遗迹化石推测 | |
4.牧食 | 从基质上刮削或啃食食物 | ||
5. 捕食 | 捕获具一定抵抗力的生物 | Cloudina管体表明的钻孔 | |
6. 其他营养方式 | 包括光合自养或化学共生及寄生等多种类型 | Shaanxilithes? |
Table 2 Ecological categories in the Gaojiashan biota based on tiering position, motility level and feeding mechanism
生态分类 | 特征描述 | 高家山生物群动物化石代表 | |
---|---|---|---|
营 养 层 | 1.浮游游泳 | 生活在脱离基底的水体中 | |
2.底栖直立 | 底栖,直立于水体中生活 | Conotubus,Shaanxilithes | |
3.表栖 | 在基底表面生活,不明显向上生长 | Cloudina,Sinotubulites,Gaojiashania,遗迹化石 | |
4.半内栖 | 半埋半暴露在水体中生活 | 遗迹化石 | |
5.浅表内栖 | 在基底-水界面下5 cm之内的沉积物中生活 | 遗迹化石 | |
6.深部内栖 | 在基底之下大于5 cm的沉积物内生活 | ||
活 动 能 力 | 1.自由快速运动 | 有规律地不受阻碍的移动或游移 | |
2. 自由慢速运动 | 有规律地移动,与基底保持紧密接触 | 瓶状化石 | |
3.兼性非固着 | 只有在必要的时候才会移动,自由平躺 | ||
4.兼性固着 | 固着生活,只有在必要的时候才移动 | Sinotubulites,Gaojiashania | |
5.非固着,不能移动 | 不具备自我推移的能力,平躺生活 | ||
6. 固着,不能移动 | 不具备自我推移的能力,固着生活 | Cloudina,Conotubus,Shaanxilithes | |
取 食 策 略 | 1.食悬浮 | 捕捉水中的悬浮食物颗粒 | Cloudina,Conotubus,瓶状化石 |
2.底表食碎屑 | 从基底上捕捉松散的颗粒 | Sinotubulites,Gaojiashania | |
3.底内挖掘 | 在基底内取食埋在地下的食物 | 根据遗迹化石推测 | |
4.牧食 | 从基质上刮削或啃食食物 | ||
5. 捕食 | 捕获具一定抵抗力的生物 | Cloudina管体表明的钻孔 | |
6. 其他营养方式 | 包括光合自养或化学共生及寄生等多种类型 | Shaanxilithes? |
Fig.12 Ecospace occupancy in the Gaojiashan biota, as compared with the White Sea and the Nama assemblages and modern animals. Modified from [82,112].
[1] | KNOLL A H. Life on a young planet: the first three billion years of evolution on Earth[M]. Princeton/Oxford: Princeton University Press, 2003: 277. |
[2] |
NARBONNE G M. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems[J]. Annual Review of Earth and Planetary Sciences, 2005, 33(1): 421-442.
DOI URL |
[3] |
CUI H, XIAO S H, CAI Y P, et al. Sedimentology and chemostratigraphy of the terminal Ediacaran Dengying Formation at the Gaojiashan Section, South China[J]. Geological Magazine, 2019, 156(11): 1924-1948.
DOI URL |
[4] | 陈孟莪, 陈忆元, 钱逸. 峡东区震旦系—寒武系底部的管状动物化石[C]// 中国地质学会. 中国地质科学院天津地质矿产研究所文集(3). 1982: 119-126. |
[5] | 张录易, 董军社, 田淑华, 等. 高家山生物群[M]//丁莲芳, 张录易, 李勇, 等. 扬子地台北缘晚震旦世—早寒武世生物群研究. 北京: 科学技术文献出版社, 1992: 33-63. |
[6] | 陈哲, 孙卫国. 陕南晚震旦世后生动物管状化石Cloudina和Sinotubulites[J]. 微体古生物学报, 2001, 18(2): 180-202. |
[7] |
HUA H, CHEN Z, YUAN X L, et al. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina[J]. Geology, 2005, 33(4): 277-280.
DOI URL |
[8] | 华洪, 陈哲, 蔡耀平, 等. 最早骨骼生物Cloudina: 埃迪卡拉纪晚期一类重要的标准化石[J]. 西北大学学报(自然科学版), 2009, 39(3): 522-527. |
[9] |
CAI Y P, HUA H, SCHIFFBAUER J D, et al. Tubegrowth patterns and microbial mat-related lifestyles in the Ediacaran fossil Cloudina, Gaojiashan Lagerstätte, South China[J]. Gondwana Research, 2014, 25(3): 1008-1018.
DOI URL |
[10] |
CAI Y P, CORTIJO I, SCHIFFBAUER J D, et al. Taxonomy of the late Ediacaran index fossil Cloudina and a new similar taxon from South China[J]. Precambrian Research, 2017, 298: 146-156.
DOI URL |
[11] |
HUA H, CHEN Z, YUAN X L. The advent of mineralized skeletons in Neoproterozoic Metazoa: new fossil evidence from the Gaojiashan fauna[J]. Geological Journal, 2007, 42(3/4): 263-279.
DOI URL |
[12] |
CAI Y P, SCHIFFBAUER J D, HUA H, et al. Morphology and paleoecology of the late Ediacaran tubular fossil Conotubus hemiannulatus from the Gaojiashan Lagerstätte of southern Shaanxi Province, South China[J]. Precambrian Research, 2011, 191(1/2): 46-57.
DOI URL |
[13] | 陈哲, 孙卫国, 华洪. 陕南晚震旦世Gaojiashania的保存特征及形态解释[J]. 古生物学报, 2002, 41(3): 448-454. |
[14] |
CAI Y P, HUA H, ZHANG X L. Tube construction and life mode of the late Ediacaran tubular fossil Gaojiashania cyclus from the Gaojiashan Lagerstätte[J]. Precambrian Research, 2013, 224: 255-267.
DOI URL |
[15] | 华洪, 陈哲, 张录易. Shaanxilithes在贵州的发现及其意义[J]. 地层学杂志, 2004(3): 265-269, 291. |
[16] | 华洪, 陈哲, 袁训来, 等. 陕南伊迪卡拉纪末期的瓶状化石: 可能最早的有孔虫化石[J]. 中国科学: 地球科学, 2010, 40(9): 1105-1114. |
[17] | MIN X, HUA H, LIU L J, et al. Phosphatized Epiphyton from the terminal Neoproterozoic and its significance[J]. Precambrian Research, 2019, 331: 1-8. |
[18] | MIN X, HUA H, LIU L J, et al. A diverse calcified cyanobacteria assemblage in the latest Ediacaran[J]. Precambrian Research, 2020, 342: 1-10. |
[19] |
HUA H, PRATT B R, ZHANG L Y. Borings in Cloudina shells: complex predator-prey dynamics in the terminal Neoproterozoic[J]. Palaios, 2003, 18(4/5): 454-459.
DOI URL |
[20] |
CAI Y, HUA H, XIAO S, et al. Biostratinomy of the late Ediacaran pyritized Gaojiashan Lagerstätte from southern Shaanxi, South China: importance of event deposits[J]. Palaios, 2010, 25(8): 487-506.
DOI URL |
[21] | 华洪, 蔡耀平, 闵筱, 等. 埃迪卡拉纪末期管状动物的“大辐射”[J]. 西北大学学报(自然科学版), 2020, 50(2): 141-174. |
[22] | 蔡耀平, 华洪. 高家山生物群中的黄铁矿化作用[J]. 科学通报, 2006, 51(20): 2404-2409. |
[23] | 李朋. 高家山生物群沉积特征及碳同位素地球化学研究[D]. 西安: 西北大学, 2008. |
[24] | KREISA R D. Storm-generated sedimentary structures in subtidal marine facies with examples from the Middle and Upper Ordovician of Southwestern Virginia[J]. SEPM Journal of Sedimentary Research, 1981, 51(3): 823-848. |
[25] | AIGNER T. Calcareous tempestites: storm-dominated stratification in upper muschelkalk limestones (Middle Trias, SW-Germany)[M]// EINSELE G, SEILACHER A. Cyclic and Event Stratification. Berlin, Heidelberg: Springer, 1982: 180-198. |
[26] | AIGNER T. Storm depositional systems: dynamic stratigraphy in modern and ancient shallow-marine sequences[M]. New York: Springer-Verlag, 1985: 1-174 |
[27] | HU S X. Taphonomy and paleoecology of the Early Cambrian Chengjiang biota from Eastern Yunnan,China[J]. Berliner Paläobiologische Abhandlungen, 2005(7): 1-197. |
[28] | SEILACHER A. Distinctive features of sandy tempestites[M]//EINSELE G, SEILACHER A. Cyclic and event stratification. Berlin, Heidelberg: Springer, 1982: 333-349. |
[29] | GAGAN M, JOHNSON D, CARTER R M. The cyclone winifred storm bed, central Great Barrier Reef shelf,Australia[J]. Journal of Sedimentary Petrology, 1988, 58(5): 845-856. |
[30] | EINSELE G, SEILACHER A. Distinction of tempestites and turbidites[M]. Berlin: Springer-Verlag, 1991: 377-382. |
[31] | CHEEL R J, LECKIE D A. Hummocky Cross-Stratification[M]//WRIGHT P V. Sedimentology Review. Oxford, UK: Blackwell Publishing Ltd., 1992: 103-122. |
[32] |
MOHSENI H, AL-AASM I S. Tempestite deposits on a storm-influenced carbonate ramp: an example from the Pabdeh Formation (Paleogene), Zagros Basin, SW Iran[J]. Journal of Petroleum Geology, 2004, 27(2): 163-178.
DOI URL |
[33] | JEFFERY D, AIGNER T. Storm sedimentation in the carboniferous limestones near weston-super-mare (Dinantian, SW England)[M]//EINSELE G, SEILACHER A. Cyclic and event stratification. Berlin, Heidelberg: Springer, 1982: 240-247. |
[34] |
GERMS G J B. New shelly fossils from Nama Group, South West Africa[J]. American Journal of Science, 1972, 272(8): 752-761.
DOI URL |
[35] |
GLAESSNER M F. Early Phanerozoic annelid worms and their geological and biological significance[J]. Journal of the Geological Society, 1976, 132(3): 259-275.
DOI URL |
[36] | GRANT S W. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic[J]. American Journal of Science, 1990, 290- A: 261-294. |
[37] | VINN O, ZATOŃ M. Inconsistencies in proposed annelid affinities of early biomineralized organism Cloudina (Ediacaran): structural and ontogenetic evidences[J]. Carnets De Géologie (Notebooks on Geology), 2012, 3: 39-47. |
[38] |
WARREN L V, FAIRCHILD T R, GAUCHER C, et al. Corumbella and in situ Cloudina in association with thrombolites in the Ediacaran Itapucumi Group, Paraguay[J]. Terra Nova, 2011, 23(6): 382-389.
DOI URL |
[39] |
SEILACHER A. Biomat-related lifestyles in the Precambrian[J]. Palaios, 1999, 14(1): 86-93.
DOI URL |
[40] | REITNER J. Cloudina-buildups Neoproterozoische Biodiversitäts Hotspots (Südliches Namibia)[M]//REITNER J, REICH M, SCHMIDT G. Geobiologie 2. Göttingen: Universitätsverlag Göttingen, 2004: 256-257. |
[41] | MILLER A J. A revised morphology of Cloudina with ecological and phylogenetic implications[D]. Cambridge, MA: Harvard University, 2005 |
[42] |
HAGADORN J W, WAGGONER B. Ediacaran fossils from the southwestern Great Basin, United States[J]. Journal of Paleontology, 2000, 74(2): 349-359.
DOI URL |
[43] | BOTTJER D J, ETTER W, HAGADORN J M, et al. Fossil-Lagerstätten: jewels of the fossil record[M]BOTTJER D J, ETTER W, HAGADORN J W, et al. Exceptional fossil preservation: a unique view on the evolution of marine life. New York: Columbia University Press, 2002: 1-142. |
[44] |
SEILACHER A, GRAZHDANKIN D, LEGOUTA A. Ediacaran biota: the dawn of animal life in the shadow of giant protists[J]. Paleontological Research, 2003, 7(1): 43-54.
DOI URL |
[45] |
SMITH E F, NELSON L L, STRANGE M A, et al. The end of the Ediacaran: two new exceptionally preserved body fossil assemblages from Mount Dunfee, Nevada, USA[J]. Geology, 2016, 44(11): 911-914.
DOI URL |
[46] |
GROTZINGER J P, BOWRING S A, SAYLOR B Z, et al. Biostratigraphic and geochronologic constraints on early animal evolution[J]. Science, 1995, 270: 598-604.
DOI URL |
[47] |
CUI H, KAUFMAN A J, XIAO S, et al. Environmental context for the terminal Ediacaran biomineralization of animals[J]. Geobiology, 2016, 14(4): 344-363.
DOI URL |
[48] |
CAI Y P, XIAO S H, HUA H, et al. New material of the biomineralizing tubular fossil Sinotubulites from the late Ediacaran Dengying Formation, South China[J]. Precambrian Research, 2015, 261: 12-24.
DOI URL |
[49] |
CHEN Z, BENGTSON S, ZHOU C M, et al. Tube structure and original composition of Sinotubulites: shelly fossils from the late Neoproterozoic in southern Shaanxi, China[J]. Lethaia, 2008, 41(1): 37-45.
DOI URL |
[50] | 赵自强, 邢裕盛, 马国干, 等. 长江三峡地区生物地层学(1): 震旦纪分册[M]. 北京: 地质出版社, 1985: 1-143. |
[51] | 孙勃, 华洪, 蔡耀平. 陕西宁强埃迪卡拉系顶部管状化石Sinotubulites形态学与古生态学新知[J]. 古生物学报, 2012, 51(1): 107-113. |
[52] |
PACHECO M L A F, GALANTE D, RODRIGUES F, et al. Insights into the skeletonization, lifestyle, and affinity of the unusual Ediacaran fossil Corumbella[J]. PLoS One, 2015, 10(3): e0114219.
DOI URL |
[53] | HAHN G, HAHN R, LEONARDOS O H, et al, Kϵorperlich erhaltene Scyphozoen-Reste aus dem Jungprϵakambrium Brasiliens[J]. Geologica et Palaeontologica, 1982, 16: 1-18. |
[54] |
BABCOCK L E, GRUNOW A M, SADOWSKI G R, et al. Corumbella, an Ediacaran-grade organism from the Late Neoproterozoic of Brazil[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 220(1/2): 7-18.
DOI URL |
[55] | PACHECO M L A F, LEME J M, FAIRCHILD T R. Reevaluation of the morphology and systematic affinities of Corumbella werneri Hahn et al. 1982, Tamengo Formation (Ediacaran), Corumba, Brazil[M]. 10th Congreso Argentino de Paleontologia y Bioestratigrafia, Ⅶ. Congreso Latinoamericano de Paleontologia. La Plata, Argentina, Libro de Resumes, 2010: 193. |
[56] | PACHECO M, LEME J, MACHADO A F. Taphonomic analysis and geometric modeling for the reconstitution of the Ediacaran metazoan Corumbella werneri (Hahn et al., 1982), (Tamengo Formation, Corumba Basin, Brasil)[J]. Journal of Taphonomy, 2011(9): 269-283. |
[57] |
WALDE DETLEFH G, WEBER B, ERDTMANN B D, et al. Taphonomy of Corumbella werneri from the Ediacaran of Brazil: Sinotubulitid tube or conulariid test?[J]. Alcheringa: An Australasian Journal of Palaeontology, 2019, 43(3): 335-350.
DOI URL |
[58] |
SEILACHER A, OLIVERO E B, BUTTS S H, et al. Soft-bottom tube worms: from irregular to programmed shell growth[J]. Lethaia, 2008, 41(4): 349-365.
DOI URL |
[59] |
MEYER M, SCHIFFBAUER J D, XIAO S, et al. Taphonomy of the Upper Ediacaran enigmatic ribbonlike fossil Shaanxilithes[J]. Palaios, 2012, 27(5): 354-372.
DOI URL |
[60] | 王欣. 晚埃迪卡拉世管状化石陕西迹的形态学、生物地层学及埋藏学研究[D]. 西安: 西北大学, 2019. |
[61] | 张志亮, 华洪, 张志飞. 埃迪卡拉纪疑难化石Shaanxilithes在云南王家湾剖面的发现及地层意义[J]. 古生物学报, 2015, 54(1): 12-28. |
[62] |
DROSER M L, GEHLING J G. Synchronous aggregate growth in an abundant new Ediacaran tubular organism[J]. Science, 2008, 319(5870): 1660-1662.
DOI URL |
[63] | 张录易. 陕西宁强晚震旦世晚期高家山生物群的发现和初步研究[G]// 中国地质学会. 中国地质科学院西安地质矿产研究所文集(13). 1986: 70- 91, 102-105. |
[64] | 张录易, 李勇. 陕西宁强震旦纪末期的瓶状微化石[G]//中国地质学会. 中国地质科学院西安地质矿产研究所文集(31). 1991: 80-89. |
[65] | 张录易. 陕南震旦系灯影组瓶状微化石研究新进展[J]. 甘肃地质学报, 1994(2): 1-8. |
[66] | 薛耀松, 周传明, 唐天福. 扬子区晚震旦世动物化石新材料[J]. 古生物学报, 2002, 41(1): 137-142. |
[67] | 闵筱. 高家山生物群疑难化石研究[D]. 西安: 西北大学, 2019. |
[68] | RIDING R. Calcified cyanobacteria[M]//PENTECOST A. Calcareous Algae and Stromatolites. Berlin, Heidelberg: Springer, 1991: 55-87. |
[69] |
WOO J, CHOUGH S K, HAN Z. Chambers of Epiphyton Thalli in microbial buildups, Zhangxia Formation (Middle Cambrian), Shandong Province, China[J]. Palaios, 2008, 23(1): 55-64.
DOI URL |
[70] |
SǍSǍRAN E, BUCUR I I, PLE G, et al. Late Jurassic Epiphyton-like cyanobacteria: indicators of long-term episodic variation in marine bioinduced microbial calcification?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 401(5): 122-131.
DOI URL |
[71] |
LIU L J, WU Y S, YANG H J, et al. Ordovician calcified cyanobacteria and associated microfossils from the Tarim Basin, Northwest China: systematics and significance[J]. Journal of Systematic Palaeontology, 2016, 14(3): 183-210.
DOI URL |
[72] |
RIDING R, VORONOVA L. Assemblages of calcareous algae near the Precambrian/Cambrian boundary in Siberia and Mongolia[J]. Geological Magazine, 1984, 121(3): 205-210.
DOI URL |
[73] | KORDE K B. Cambrian algae of the southeastern Siberian platform[J]. USSR Academy of Sciences, Transactions of the Institute of Palaeontology, 1961, 89: 147. |
[74] | AHR W M. Paleoenvironment,algal structures, and fossil algae in the Upper Cambrian of Central Texas[J]. SEPM Journal of Sedimentary Research, 1971, 41(1): 205-216. |
[75] | PRATT B R. Epiphyton and Renalcis: diagenetic microfossils from calcification of coccoid blue-green algae[J]. SEPM Journal of Sedimentary Research, 1984, 54: 948-971. |
[76] | RIDING R. Calcified algae and bacteria[M]//ZHURAVLEV A, RIDING R. The ecology of the Cambrian Radiation. New York, Chichester, West Sussex: Columbia University Press, 2000: 445-473. |
[77] |
GANDIN A, DEBRENNE F. Distribution of the archaeocyath-calcimicrobial bioconstructions on the Early Cambrian shelves[J]. Palaeoworld, 2010, 19(3/4): 222-241.
DOI URL |
[78] |
LUCHININA V A. Cambrian algoflora: association of various microorganism groups[J]. Paleontological Journal, 2013, 47(9): 989-996.
DOI URL |
[79] |
LUCHININA V A, TERLEEV A A. Features of calcareous algae mineralization at the transition to the Phanerozoic biosphere[J]. Paleontological Journal, 2014, 48(14): 1450-1456.
DOI URL |
[80] | PEEL J S. An epiphytacean-Girvanella (Cyanobacteria) symbiosis from the Cambrian (Series 3, Drumian) of North Greenland (Laurentia)[J]. Bulletin of Geosciences, 2018, 93(3): 327-336. |
[81] |
LIU P J, XIAO S H, YIN C Y, et al. Silicified tubular microfossils from the upper Doushantuo Formation (Ediacaran) in the Yangtze Gorges area, South China[J]. Journal of Paleontology, 2009, 83(4): 630-633.
DOI URL |
[82] | 钱逸, 李国祥, 蒋志文, 等. 我国寒武系底部几种磷酸盐化保存的蓝菌类化石[J]. 微体古生物学报, 2007, 24(2): 222-228. |
[83] | 罗惠麟, 蒋志文, 徐重九, 等. 云南晋宁梅树村、王家湾震旦系-寒武系界线研究[J]. 地质学报, 1980, 54(2): 95-111. |
[84] | 刘云焕, 李勇, 邵铁全, 等. 陕南寒武系底部磷酸盐化保存的寒武松藻属化石新知[J]. 微体古生物学报, 2014, 31(1): 98-103. |
[85] | 杨晓光. 寒武纪早期宽川铺生物群中微生物化石与相关显微结构[D]. 西安: 西北大学, 2018. |
[86] |
PEEL J S. Spirellus and related helically coiled microfossils (cyanobacteria) from the lower Cambrian of north Greenland[J]. Rapport Grønlands Geologiske Undersøgelse, 1988, 137: 5-32.
DOI URL |
[87] |
MANKIEWICZ C. Obruchevella and other microfossils in the Burgess shale: preservation and affinity[J]. Journal of Paleontology, 1992, 66(5): 717-729.
DOI URL |
[88] | BURZIN M B. Late Vendian helicoid filamentous microfossils[J]. Palaeontological Journal, 1995, 29(1A): 1-34. |
[89] |
XIAO S H, LAFLAMME M. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota[J]. Trends in Ecology and Evolution, 2009, 24(1): 31-40.
DOI URL |
[90] | GEHLING J G, DROSER M L, JENSEN S R, et al. Evolving form and function: fossils and development[M]. Yale Peabody Museum, 2005: 43-66. |
[91] |
EVANS S D, GEHLING J G, DROSER M L. Slime travelers: early evidence of animal mobility and feeding in an organic mat world[J]. Geobiology, 2019, 17(5): 490-509.
DOI URL |
[92] |
GEHLING J G, RUNNEGAR B N, DROSER M L. Scratch traces of large Ediacara bilaterian animals[J]. Journal of Paleontology, 2014, 88(2): 284-298.
DOI URL |
[93] |
IVANTSOV A Y. Trace fossils of precambrian metazoans “Vendobionta” and “Mollusks”[J]. Stratigraphy and Geological Correlation, 2013, 21(3): 252-264.
DOI URL |
[94] |
IVANTSOV A Y. Feeding traces of Proarticulata: the Vendian Metazoa[J]. Paleontological Journal, 2011, 45(3): 237-248.
DOI URL |
[95] |
CHEN Z, ZHOU C M, YUAN X L, et al. Death march of a segmented and trilobate bilaterian elucidates early animal evolution[J]. Nature, 2019, 573: 412-415.
DOI URL |
[96] |
CLAPHAM M E, NARBONNE G M. Ediacaran epifaunal tiering[J]. Geology, 2002, 30(7): 627-630.
DOI URL |
[97] |
CLAPHAM M E, NARBONNE G M, GEHLING J G. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland[J]. Paleobiology, 2003, 29(4): 527-544.
DOI URL |
[98] |
DROSER M L, GEHLING J G, JENSEN S R. Assemblage palaeoecology of the Ediacara biota: the unabridged edition?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/3/4): 131-147.
DOI URL |
[99] |
GRAZHDANKIN D, SEILACHER A. Underground Vendobionta from Namibia[J]. Palaeontology, 2002, 45(1): 57-78.
DOI URL |
[100] |
DZIK J. Organic membranous skeleton of the Precambrian metazoans from Namibia[J]. Geology, 1999, 27(6): 519-522.
DOI URL |
[101] | JENSEN S, DROSER M L, GEHLING J G. A critical look at the ediacaran trace fossil record[M]//XIAO S, KAUFMAN A J. Topics in geobiology. Dordrecht: Springer, 2006: 115-157. |
[102] |
CHEN Z, ZHOU C M, MEYER M, et al. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors[J]. Precambrian Research, 2013, 224: 690-701.
DOI URL |
[103] | CHEN Z, CHEN X, ZHOU C M, et al. Late Ediacarantrackways produced by bilaterian animals with paired appendages[J]. Science Advances, 2018, 4(6): eaao6691. |
[104] |
XIAO S H, CHEN Z, ZHOU C M, et al. Surfing in and on microbial mats: oxygen-related behavior of a terminal Ediacaran bilaterian animal[J]. Geology, 2019, 47(11): 1054-1058.
DOI URL |
[105] |
GEHLING J G, NARBONNE G M. Spindle-shaped Ediacara fossils from the Mistaken Point assemblage, Avalon Zone, Newfoundland[J]. Canadian Journal of Earth Sciences, 2007, 44(3): 367-387.
DOI URL |
[106] |
LAFLAMME M, NARBONNE G M. Ediacaran fronds[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 258(3): 162-179.
DOI URL |
[107] |
LAFLAMME M, NARBONNE G M, GREENTREE C, et al. Morphology and taphonomy of an Ediacaran frond: Charnia from the Avalon Peninsula of Newfoundland[J]. Geological Society, London, Special Publications, 2007, 286(1): 237-257.
DOI URL |
[108] | SEILACHER A. Late Precambrian and Early Cambrian Metazoa: preservational or real extinctions?[M]// HOLLAND H D, TRENDALL A F. Patterns of Change in Earth Evolution. Berlin, Heidelberg: Springer, 1984: 159-168. |
[109] |
SEILACHER A. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution[J]. Journal of the Geological Society, 1992, 149(4): 607-613.
DOI URL |
[110] |
SEILACHER A. Vendozoa:organismic construction in the Proterozoic biosphere[J]. Lethaia, 1989, 22(3): 229-239.
DOI URL |
[111] |
MCMENAMIN M A S. The garden of Ediacara[J]. Palaios, 1986, 1(2): 178-182.
DOI URL |
[112] | MCMENAMIN M A S, MCMENAMIN D L S. The emergence of animals: the Cambrian breakthrough[M]. New York: Columbia University Press, 1990: 217. |
[113] |
STEINER M, REITNER J. Evidence of organic structures in Ediacara-type fossils and associated microbial mats[J]. Geology, 2001, 29(12): 1119-1122.
DOI URL |
[114] |
GEHLING J G. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks[J]. Palaios, 1999, 14(1): 40-57.
DOI URL |
[115] | GEHLING J G, DROSER M L, JENSEN S R, et al. Ediacara organisms: relating form to function[J]. Evolving Form and Function: Fossils and Development,(Gehling 1999), 2005: 43-66. |
[116] |
SPERLING E A, PISANI D, PETERSON K J. Poriferan paraphyly and its implications for Precambrian palaeobiology[J]. Geological Society, London, Special Publications, 2007, 286(1): 355-368.
DOI URL |
[117] | HOFFMAN A, VERMEIJ G J. Evolution and escalation: an ecological history of life[M]. Princeton, New Jersey: Princeton University Press, 1987: 1-527. |
[118] |
BUSH A M, BAMBACH R K, DALEY G M. Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic[J]. Paleobiology, 2007, 33(1): 76-97.
DOI URL |
[119] |
BAMBACH R K, BUSH A M, ERWIN D H. Autecology and the filling of ecospace: key metazoan radiations[J]. Palaeontology, 2007, 50(1): 1-22.
DOI URL |
[1] | XIE Shucheng, ZHU Zongmin, ZHANG Hongbin, YANG Yi, WANG Canfa, RUAN Xiaoyan. Earth sphere interaction reflected in microbial fingerprints through Earth's history—a critical review [J]. Earth Science Frontiers, 2024, 31(1): 446-454. |
[2] | LING Yuan, WANG Yong, WANG Shuxian, SUN Qing, LI Haibing. Application of biomarkers in reconstructing marine and lacustrine paleoecosystems and paleoproductivity: A review [J]. Earth Science Frontiers, 2022, 29(2): 327-342. |
[3] | ZHANG Zhiliang, CHEN Feiyang, ZHANG Zhifei. The earliest phosphatic-shelled brachiopods from the carbonates of South China: their diversification, ontogeny and distribution [J]. Earth Science Frontiers, 2020, 27(6): 79-103. |
[4] | HAN Jian, GUO Junfeng, OU Qiang, SONG Zuchen, LIU Ping, HAO Wenjing, SUN Jie, WANG Xing. Evolutionary framework of early Cambrian cnidarians from South China [J]. Earth Science Frontiers, 2020, 27(6): 67-78. |
[5] | OU Qiang. Cambrian lobopodians: confusion and consideration [J]. Earth Science Frontiers, 2020, 27(6): 47-66. |
[6] | LU Liwu, TAN Kai, WANG Xi. Redescription of Eochondrosteus sinensis (Acipenseriformes, Actinopterygii) and its geological age [J]. Earth Science Frontiers, 2020, 27(6): 371-381. |
[7] | JI Shu’an, ZHANG Lifu. A new Early Cretaceous pterosaur from the Ordos region, Inner Mongolia [J]. Earth Science Frontiers, 2020, 27(6): 365-370. |
[8] | WANG Xiaolin, LI Yang, QIU Rui, JIANG Shunxing, ZHANG Xinjun, CHEN He, WANG Junxia, CHENG Xin. Comparison of biodiversity of the Early Cretaceous pterosaur faunas of China [J]. Earth Science Frontiers, 2020, 27(6): 347-364. |
[9] | GUO Xianpu, WANG Shitao, GAI Zhikun, ZHAO Ziran, DING Xiaozhong, LI Tianfu. The Late Ordovician fish-like animal from Xinjiang [J]. Earth Science Frontiers, 2020, 27(6): 341-346. |
[10] | WANG Jianhua, ZHAO Wenjin, ZHU Min, LI Qiang, CAI Jiachen, ZHANG Na, PENG Lijian, LUO Yanchao. Microvertebrate remains from the Kuanti Formation of the Liujiachong Section in Qujing, Yunnan and their stratigraphic significance [J]. Earth Science Frontiers, 2020, 27(6): 329-340. |
[11] | HUANG Mingli, TIAN Kunxuan, SHI Yukun. Artinskian (Early Permian) marine environmental disparity and evolved fusulinid foranminifa in the Dianqiangui Basin, South China [J]. Earth Science Frontiers, 2020, 27(6): 313-328. |
[12] | DONG Zhi, SHI Xuefa, ZOU Xinqing, ZOU Jianjun, YANG Baoju, LIU Jihua, CHENG Zhenbo. Spatial distribution characteristics of radiolarian species in surface sediments from the Okinawa Trough and the impact of environmental factors [J]. Earth Science Frontiers, 2020, 27(6): 300-312. |
[13] | LUO Hai, LI Jie, ZOU Yafei, XU Huiming. Rapid response of diatom biodiversity to millennial-scale abrupt change of climate: a case study of the last glacial record of the Yunlong Lake, Yunnan Province [J]. Earth Science Frontiers, 2020, 27(6): 289-299. |
[14] | YUAN Jieqiong, DING Xuan, ZOU Xinqing. Distribution of benthic foraminiferal taphocoenose in surface sediments and the environmental implication in the radial sand ridge of the South Yellow Sea [J]. Earth Science Frontiers, 2020, 27(6): 276-288. |
[15] | SU Xin, QU Ying, CHEN Fang, YANG Shengxiong, ZHOU Yang, CUI Hongpeng, YU Chonghan, TENG Tiantian. Deep sea benthic foraminifera from the Taixinan Basin and changes of their cold seep microhabitats during the past 50000 years [J]. Earth Science Frontiers, 2020, 27(6): 255-275. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||