Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (6): 47-66.DOI: 10.13745/j.esf.sf.2020.6.21
Previous Articles Next Articles
Received:
2020-06-01
Revised:
2020-07-01
Online:
2020-11-02
Published:
2020-11-02
CLC Number:
OU Qiang. Cambrian lobopodians: confusion and consideration[J]. Earth Science Frontiers, 2020, 27(6): 47-66.
序号 | 属种 | 文献 | 古地理及岩性 | 年代地层 |
---|---|---|---|---|
1 | Xenusion auerswaldae | [ | 波罗的古陆;Kalmarsund砂岩 | 寒武系第2~3阶 |
2 | Microdictyon sinicum | [ | 扬子板块;澄江泥岩 (帽天山“页岩”) | 寒武系第3阶 |
3 | Facivermis yunnanicus | [ | ||
4 | Luolishania longicruris | [ | ||
5 | Cardiodictyon catenulum | [ | ||
6 | Onychodictyon ferox | [ | ||
7 | Paucipodia inermis | [ | ||
8 | Hallucigenia fortis | [ | ||
9 | Megadictyon haikouensis | [ | ||
10 | Miraluolishania haikouensis | [ | ||
11 | Jianshanopodia decora | [ | ||
12 | Onychodictyon gracilis (?) | [ | ||
13 | Antennacanthopodia gracilis | [ | ||
14 | Diania cactiformis (?) | [ | ||
15 | Lenisambulatrix humboldti | [ | ||
16 | Unnamed lobopodian | [ | 扬子板块;清江页岩 | |
17 | Collinsium ciliosum | [ | 扬子板块;小石坝泥岩 | |
18 | Tritonychus phanerosarkus | [ | 扬子板块;奥斯顿型(灰岩) | |
19 | Hadranax augustus | [ | 劳伦古陆;Sirius Passet页岩 | |
20 | Kerygmachela kierkegaardi | [ | ||
21 | Pambdelurion whittingtoni | [ | ||
22 | Siberion lenaicus | [ | 西伯利亚古陆;Sinsk藻类透镜体 | 寒武系第4阶 |
23 | Hallucigenia hongmeia | [ | 扬子板块;关山泥岩 | |
24 | Collinsiumsp. | [ | ||
25 | Unnamed “Collins’ monster” | [ | 冈瓦纳古陆;鸸鹋湾页岩 | |
26 | Microdictyonsp. | [ | 华南古陆;凯里页岩 | 寒武系乌溜阶 |
27 | Acinocricus stichus | [ | 劳伦古陆;Spence页岩 | |
28 | Collinsovermis monstruosus | [ | 劳伦古陆;布尔吉斯页岩 | |
29 | Aysheaia pedunculata | [ | ||
30 | Hallucigenia sparsa | [ | ||
31 | Ovatiovermis cribratus | [ | ||
32 | Orstenotubulus evamuellerae | [ | 波罗的古陆;奥斯顿型(灰岩) | 寒武系鼓山阶 |
33 | Unnamed luolishaniid | [ | 劳伦古陆;Fezouata泥岩 | 奥陶系特马豆克阶 |
34 | Unnamed xenusiid (?) | [ | 冈瓦纳古陆;Soom页岩 | 奥陶系赫南特阶 |
35 | Unnamed lobopodian (?) | [ | 劳伦古陆;Eramosa白云岩 | 志留系温洛克统 |
36 | Carbotubulus waloszeki | [ | 劳伦古陆;梅逊溪菱铁矿结核 | 上石炭统 |
Table 1 A list of Paleozoic marine lobopodians preserved with soft tissues
序号 | 属种 | 文献 | 古地理及岩性 | 年代地层 |
---|---|---|---|---|
1 | Xenusion auerswaldae | [ | 波罗的古陆;Kalmarsund砂岩 | 寒武系第2~3阶 |
2 | Microdictyon sinicum | [ | 扬子板块;澄江泥岩 (帽天山“页岩”) | 寒武系第3阶 |
3 | Facivermis yunnanicus | [ | ||
4 | Luolishania longicruris | [ | ||
5 | Cardiodictyon catenulum | [ | ||
6 | Onychodictyon ferox | [ | ||
7 | Paucipodia inermis | [ | ||
8 | Hallucigenia fortis | [ | ||
9 | Megadictyon haikouensis | [ | ||
10 | Miraluolishania haikouensis | [ | ||
11 | Jianshanopodia decora | [ | ||
12 | Onychodictyon gracilis (?) | [ | ||
13 | Antennacanthopodia gracilis | [ | ||
14 | Diania cactiformis (?) | [ | ||
15 | Lenisambulatrix humboldti | [ | ||
16 | Unnamed lobopodian | [ | 扬子板块;清江页岩 | |
17 | Collinsium ciliosum | [ | 扬子板块;小石坝泥岩 | |
18 | Tritonychus phanerosarkus | [ | 扬子板块;奥斯顿型(灰岩) | |
19 | Hadranax augustus | [ | 劳伦古陆;Sirius Passet页岩 | |
20 | Kerygmachela kierkegaardi | [ | ||
21 | Pambdelurion whittingtoni | [ | ||
22 | Siberion lenaicus | [ | 西伯利亚古陆;Sinsk藻类透镜体 | 寒武系第4阶 |
23 | Hallucigenia hongmeia | [ | 扬子板块;关山泥岩 | |
24 | Collinsiumsp. | [ | ||
25 | Unnamed “Collins’ monster” | [ | 冈瓦纳古陆;鸸鹋湾页岩 | |
26 | Microdictyonsp. | [ | 华南古陆;凯里页岩 | 寒武系乌溜阶 |
27 | Acinocricus stichus | [ | 劳伦古陆;Spence页岩 | |
28 | Collinsovermis monstruosus | [ | 劳伦古陆;布尔吉斯页岩 | |
29 | Aysheaia pedunculata | [ | ||
30 | Hallucigenia sparsa | [ | ||
31 | Ovatiovermis cribratus | [ | ||
32 | Orstenotubulus evamuellerae | [ | 波罗的古陆;奥斯顿型(灰岩) | 寒武系鼓山阶 |
33 | Unnamed luolishaniid | [ | 劳伦古陆;Fezouata泥岩 | 奥陶系特马豆克阶 |
34 | Unnamed xenusiid (?) | [ | 冈瓦纳古陆;Soom页岩 | 奥陶系赫南特阶 |
35 | Unnamed lobopodian (?) | [ | 劳伦古陆;Eramosa白云岩 | 志留系温洛克统 |
36 | Carbotubulus waloszeki | [ | 劳伦古陆;梅逊溪菱铁矿结核 | 上石炭统 |
性状 | 寒武纪叶足动物 Cambrian lobopodians | 有爪动物 Onychophorans | 缓步动物 Tardigrades | 节肢动物 Arthropods |
---|---|---|---|---|
蜕皮 (Ecdysis) a | √ | √ | √ | √ |
α-几丁质的角皮 (Alpha-chitin cuticle) | ? | √ | √ | √ |
局部硬化的角皮结构 b(Scattered cuticular sclerites) | √/× | × | √/× | √/× |
体表环纹 (Body surface annulation) | √ | √ | × | × |
铰合的硬化骨板 (Articulated sclerites) | × | × | × | √ |
内衬角皮的气管 (Tracheas lined with cuticle) | ? | √ | × | √/× |
分节的附肢 (Jointed limbs) | × | × | × | √ |
叶足 (Lobopodous limbs) | √/× | √ | √ | × |
附肢末端具爪 (Limbs with claws) | √ | √ | √ | √ |
顶端口 (Anterior mouth) | √/× | × | √ | × |
硬化的口器 (Sclerotized mouthparts) | √/× | √ | √ | √ |
原脑附肢 (Protocerebral appendage) | √/× | √ | × | × |
单眼 (Ocelli) | √ | √ | √/× | √/× |
复眼 (Compound eyes) | × | × | × | √/× |
身体分段 (Segmented body) | √ | √ | √ | √ |
血腔 (Haemocoel) | ? | √ | √ | √ |
开放的循环系统 (Open circulatory system) | ? | √ | × | √ |
马氏管 (Malpighian tubules) | ? | × | √ | √ |
表达在胚胎分段条带的engrailed基因 | ? | √ | √ | √ |
1对腹神经管 (A pair of ventral nerve cords) | ? | √ | √ | √ |
躯干腹侧神经节 (Trunk ventral ganglions) | ? | × | √ | √ |
头部体节数目 (Somite number of cephalon) | 1~3(?) | 3 | 1(?) | 2~6 |
身体分部 (Tagmosis) | 弱 | 弱 | 弱 | 强 |
躯干肌肉系统 (Trunk musculature) | 环肌;纵肌 | 环肌;纵肌不分段 | 无环肌;纵肌分段 | 无环肌;纵肌分段 |
附肢肌肉系统 (Limb musculature) | ? | 外附肌+内附肌 | 外附肌+内附肌 | 外附肌+内附肌 |
Table 2 Similarities (homologous or analogous) and differences between modern onychophorans, tardigrades, arthropods and Cambrian lobopodians[7,28,36,41,59-62,64,71-81]
性状 | 寒武纪叶足动物 Cambrian lobopodians | 有爪动物 Onychophorans | 缓步动物 Tardigrades | 节肢动物 Arthropods |
---|---|---|---|---|
蜕皮 (Ecdysis) a | √ | √ | √ | √ |
α-几丁质的角皮 (Alpha-chitin cuticle) | ? | √ | √ | √ |
局部硬化的角皮结构 b(Scattered cuticular sclerites) | √/× | × | √/× | √/× |
体表环纹 (Body surface annulation) | √ | √ | × | × |
铰合的硬化骨板 (Articulated sclerites) | × | × | × | √ |
内衬角皮的气管 (Tracheas lined with cuticle) | ? | √ | × | √/× |
分节的附肢 (Jointed limbs) | × | × | × | √ |
叶足 (Lobopodous limbs) | √/× | √ | √ | × |
附肢末端具爪 (Limbs with claws) | √ | √ | √ | √ |
顶端口 (Anterior mouth) | √/× | × | √ | × |
硬化的口器 (Sclerotized mouthparts) | √/× | √ | √ | √ |
原脑附肢 (Protocerebral appendage) | √/× | √ | × | × |
单眼 (Ocelli) | √ | √ | √/× | √/× |
复眼 (Compound eyes) | × | × | × | √/× |
身体分段 (Segmented body) | √ | √ | √ | √ |
血腔 (Haemocoel) | ? | √ | √ | √ |
开放的循环系统 (Open circulatory system) | ? | √ | × | √ |
马氏管 (Malpighian tubules) | ? | × | √ | √ |
表达在胚胎分段条带的engrailed基因 | ? | √ | √ | √ |
1对腹神经管 (A pair of ventral nerve cords) | ? | √ | √ | √ |
躯干腹侧神经节 (Trunk ventral ganglions) | ? | × | √ | √ |
头部体节数目 (Somite number of cephalon) | 1~3(?) | 3 | 1(?) | 2~6 |
身体分部 (Tagmosis) | 弱 | 弱 | 弱 | 强 |
躯干肌肉系统 (Trunk musculature) | 环肌;纵肌 | 环肌;纵肌不分段 | 无环肌;纵肌分段 | 无环肌;纵肌分段 |
附肢肌肉系统 (Limb musculature) | ? | 外附肌+内附肌 | 外附肌+内附肌 | 外附肌+内附肌 |
[1] | HUTCHINSON G E. Restudy of some Burgess Shale fossils[J]. Proceedings of the United States National Museum, 1930, 78(2854): 1-11. |
[2] | WHITTINGTON H B. The lobopod animal Aysheaia pedunculata Walcott, Middle Cambrian, Burgess Shale, British Columbia[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1979, 285(1010): 408. |
[3] | YANG J, ORTEGA-HERNÁNDEZ J, GERBER S, et al. A superarmored lobopodian from the Cambrian of China and early disparity in the evolution of Onychophora[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(28): 8678-8683. |
[4] |
CARON J B, ARIA C. Cambrian suspension-feeding lobopodians and the early radiation of panarthropods[J]. BMC Evolutionary Biology, 2017, 17(1): 1-14.
DOI URL |
[5] | 侯先光, 陈均远. 云南澄江早寒武世节肢类与环节类中间性生物: Luolishania gen. nov.[J]. 古生物学报, 1989, 28(2): 207-213. |
[6] |
RAMSKÖLD L, HOU X G. New early Cambrian animal and onychophoran affinities of enigmatic metazoans[J]. Nature, 1991, 351(6323): 225-228.
DOI URL |
[7] | OU Q, SHU D G, MAYER G. Cambrian lobopodians and extant onychophorans provide new insights into early cephalization in Panarthropoda[J]. Nature Communications, 2012, 3(1): 451-459. |
[8] | LEGG D A, SUTTON M D, EDGECOMBE G D. Arthropod fossil data increase congruence of morphological and molecular phylogenies[J]. Nature Communications, 2013, 4: 3485. |
[9] |
LIU J N, SHU D G, HAN J, et al. Origin, diversification, and relationships of Cambrian lobopods[J]. Gondwana Research, 2008, 14(1/2): 277-283.
DOI URL |
[10] | WALCOTT C D. Middle Cambrian annelids[J]. Smithsonian Miscellaneous Collections, 1911, 57: 109-144. |
[11] |
WALLISER O H. Rhombocorniculum comleyense n.gen., n.sp.[J]. Paläontologische Zeitschrift, 1958, 32(3): 176-180.
DOI URL |
[12] | MISSARZHEVSKY V V, MAMBETOV A M. The stratigraphy and fauna of the Cambrian-Precambrian boundary beds of the Lesser Karatau range[J]. Trudy Geologischeskogo Instituta Akademia Nauk SSSR, 1981, 326: 1-92. |
[13] | 陈均远. 动物世界的黎明[M]. 南京: 江苏科学技术出版社, 2004. |
[14] |
LIU J N, DUNLOP J A. Cambrian lobopodians: a review of recent progress in our understanding of their morphology and evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398(3): 4-15.
DOI URL |
[15] | HOU X G, ALDRIDGE R J, BERGSTROM J, et al. The Cambrian Fossils of Chengjiang, China: the flowering of early animal life[M]. 2nd ed. New York: John Wiley & Sons, 2017. |
[16] |
DZIK J, KRUMBIEGEL G. The oldest ‘onychophoran’ Xenusion: a link connecting phyla?[J]. Lethaia, 1989, 22(2): 169-181.
DOI URL |
[17] | 陈均远, 侯先光, 路浩之. 早寒武世带网状鳞片的蠕形海生动物[J]. 古生物学报, 1989, 28(1): 1-16, 119-122. |
[18] | CHEN J Y, ZHOU G, RAMSKÖLD L. The Cambrian lobopodian Microdictyon sinicum and its broader significance[J]. Bulletin of the National Museum of Nature and Science, 1995, 5: 1-93. |
[19] | 侯先光, 陈均远. 云南澄江早寒武世带触手的蠕形动物: Facivermis gen.nov.[J]. 古生物学报, 1989, 28(1): 32-41. |
[20] |
HOWARD R J. A tube-dwelling early Cambrian lobopodian[J]. Current Biology, 2020, 30: 1-8.
DOI URL |
[21] | MA X Y, HOU X G, BERGSTRÖM J. Morphology of Luolishania longicruris (lower Cambrian, Chengjiang Lagerstätte, SW China) and the phylogenetic relationships within lobopodians[J]. Arthropod Structure & Development, 2009, 38(4): 271-291. |
[22] |
HOU X G, RAMSKÖLD L, BERGSTRÖM J. Composition and preservation of the Chengjiang fauna: a lower Cambrian soft-bodied biota[J]. Zoologica Scripta, 1991, 20: 395-411.
DOI URL |
[23] | CHEN J Y, ZHOU G Q, RAMSKÖLD L. A new early Cambrian onychophoran-like animal, Paucipodia gen. nov., from the Chengjiang fauna, China[J]. Transactions of the Royal Society of Edinburgh, 1995, 85: 275-282. |
[24] |
HOU X G, MA X Y, ZHAO J, et al. The lobopodian Paucipodia inermis from the Lower Cambrian Chengjiang fauna, Yunnan, China[J]. Lethaia, 2004, 37(3): 235-244.
DOI URL |
[25] |
HOU X G, BERGSTRÖM J. Cambrian lobopodians: ancestors of extant onychophorans?[J]. Zoological Journal of the Linnean Society, 1995, 114(1): 3-19.
DOI URL |
[26] | 罗惠麟, 胡世学, 陈良忠, 等. 昆明地区早寒武世澄江动物群[M]. 昆明: 云南科技出版社, 1999: 129. |
[27] |
LIU J N, SHU D G, HAN J, et al. Morpho-anatomy of the lobopod Magadictyon cf.haikouensis from the Early Cambrian Chengjiang Lagerstätte, South China[J]. Acta Zoologica (Stockholm), 2007, 88(4): 279-288.
DOI URL |
[28] |
LIU J N, SHU D G, HAN J, et al. A rare lobopod with well-preserved eyes from Chengjiang Lagerstätte and its implications for origin of arthropods[J]. Chinese Science Bulletin, 2004, 49(10): 1063-1071.
DOI URL |
[29] | LIU J N, SHU D G, HAN J, et al. A large xenusiid lobopod with complex appendages from the lower Cambrian Chengjiang Lagerstätte[J]. Acta Palaeontologica Polonica, 2006, 51(2): 215-222. |
[30] |
LIU J N, SHU D G, HAN J, et al. The lobopod Onychodictyon from the lower Cambrian Chengjiang Lagerstätte revisited[J]. Acta Palaeontologica Polonica, 2008, 53(2): 285-292.
DOI URL |
[31] |
OU Q, LIU J, SHU D, et al. A rare onychophoran-like lobopodian from the Lower Cambrian Chengjiang Lagerstätte, Southwestern China, and its phylogenetic implications[J]. Journal of Paleontology, 2011, 85(3): 587-594.
DOI URL |
[32] |
LIU J N, STEINER M, DUNLOP J A, et al. An armoured Cambrian lobopodian from China with arthropod-like appendages[J]. Nature, 2011, 470: 526-530.
DOI URL |
[33] |
MA X Y, EDGECOMBE G D, LEGG D A, et al. The morphology and phylogenetic position of the Cambrian lobopodian Diania cactiformis[J]. Journal of Systematic Palaeontology, 2014, 12(3/4): 445-457.
DOI URL |
[34] |
OU Q, MAYER G. A Cambrian unarmoured lobopodian, †Lenisambulatrix humboldti gen.et sp.nov., compared with new material of †Diania cactiformis[J]. Scientific Reports, 2018, 8(1): 13667.
DOI URL |
[35] |
FU D J, TONG G H, DAI T, et al. The Qingjiang biota: a Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China[J]. Science, 2019, 363(6433): 1338-1342.
DOI URL |
[36] | ZHANG X G, SMITH M R, YANG J, et al. Onychophoran-like musculature in a phosphatized Cambrian lobopodian[J]. Biological Letters, 2016, 12(9): 20160492. |
[37] | BUDD G E, PEEL J S. A new xenusiid lobopod from the early Cambrian Sirius Passet fauna of North Greenland[J]. Palaeontology, 1998, 41(6): 1201-1213. |
[38] |
BUDD G E. A Cambrian gilled lopopod from Greenland[J]. Nature, 1993, 364: 709-711.
DOI URL |
[39] | BUDD G E. The morphology and phylogenetic significance of Kerygmachela kierkegaardi Budd (Buen Formation, Lower Cambrian, N Greenland)[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1998, 89(4): 249-290. |
[40] |
PARK T Y S, KIHM J H, WOO J, et al. Brain and eyes of Kerygmachela reveal protocerebral ancestry of the panarthropod head[J]. Nature Communications, 2018, 9(1): 1019.
DOI URL |
[41] |
VINTHER J, PORRAS L, YOUNG F J, et al. The mouth apparatus of the Cambrian gilled lobopodian Pambdelurion whittingtoni[J]. Palaeontology, 2016, 59(6): 841-849.
DOI URL |
[42] | FORTEY R A, THOMAS R H. Arthropod Relationships[M]. Berlin: Springer, 1998: 125-138. |
[43] | DZIK J. The xenusian-to-anomalocaridid transition within the lobopodians[J]. Bollettino della Societa Paleontologica Italiana, 2011, 50(1): 65-74. |
[44] | STEINER M, HU S X, LIU J N, et al. A new species of Hallucigenia from the Cambrian Stage 4 Wulongqing Formation of Yunnan (South China) and the structure of sclerites in lobopodians[J]. Bulletin of Geosciences, 2012, 87(1): 107-124. |
[45] | JIAO D G, YANG J, ZHANG X G. A superarmoured lobopodian from the Cambrian Stage 4 of southern China[J]. Chinese Science Bulletin, 2016, 61(17): 1372-1376. |
[46] |
GARCÍA-BELLIDO D C, EDGECOMBE G D, PATERSON J R, et al. A ‘Collins’ monster’-type lobopodian from the Emu Bay Shale Konservat-Lagerstätte (Cambrian), South Australia[J]. Alcheringa, 2013, 37(4): 474-478.
DOI URL |
[47] | 赵元龙. 凯里生物群: 5.08亿年前的海洋生物[M]. 贵阳: 贵州科技出版社, 2011: 251. |
[48] | CONWAY MORRIS S, ROBISON R A. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia[J]. The University of Kansas Paleontological Contributions, 1988, 122: 1-48. |
[49] | COLLINS D. Paradise revisited[J]. Rotunda, 1986, 19: 30-39. |
[50] | CARON J B, ARIA C. The Collins’ monster, a pinous suspension-feeding lobopodian from the Cambrian Burgess Shale of British Columbia[J]. Palaeontology, 2020: 1-16. |
[51] |
SMITH M R, CARON J B. Hallucigenia’s head and the pharyngeal armature of early ecdysozoans[J]. Nature, 2015, 523: 75-78.
DOI URL |
[52] | CONWAY MORRIS S. A new entoproct-like organism from the Burgess Shale of British Columbia[J]. Palaeontology, 1978, 20: 833-845. |
[53] |
WALOSZEK D. The ‘Orsten’ window: a three-dimensionally preserved Upper Cambrian meiofauna and its contribution to our understanding of the evolution of Arthropoda[J]. Paleontological Research, 2003, 7(1): 71-88.
DOI URL |
[54] |
MAAS A, MAYER G, KRISTENSEN R M, et al. A Cambrian micro-lobopodian and the evolution of arthropod locomotion and reproduction[J]. Chinese Science Bulletin, 2007, 52(24): 3385-3392.
DOI URL |
[55] |
VAN ROY P, ORR P J, BOTTING J P, et al. Ordovician faunas of Burgess Shale type[J]. Nature, 2010, 465(7295): 215-218.
DOI URL |
[56] |
WHITTLE R J, GABBOTT S E, ALDRIDGE R J, et al. An Ordovician lobopodian from the Soom Shale Lagerstätte, South Africa[J]. Palaeontology, 2009, 52(3): 561-567.
DOI URL |
[57] |
VON BITTER P H, PURNELL M A, Tetreault D K, et al. Eramosa Lagerstätte: exceptionally preserved soft-bodied biotas with shallow-marine shelly and bioturbating organisms (Silurian, Ontario, Canada)[J]. Geology, 2007, 35: 879-882.
DOI URL |
[58] |
HAUG J T, MAYER G, HAUG C, et al. A Carboniferous non-onychophoran lobopodian reveals long-term survival of a Cambrian morphotype[J]. Current Biology, 2012, 22(18): 1673-1675.
DOI URL |
[59] | CARON J B, SMITH M R, HARVEY T H P. Beyond the Burgess Shale: Cambrian microfossils track the rise and fall of hallucigeniid lobopodians[J]. Proceedings of the Royal Society B: Biological Sciences, 2013, 280(1767): 20131613. |
[60] |
SMITH M R, ORTEGA-HERNÁNDEZ J. Hallucigenia’s onychophoran-like claws and the case for Tactopoda[J]. Nature, 2014, 514(7522): 363-366.
DOI URL |
[61] |
ZHANG X G, ALDRIDGE R J. Development and diversification of trunk plates of the Lower Cambrian lobopodians[J]. Palaeontology, 2007, 50(2): 401-415.
DOI URL |
[62] |
TOPPER T P, SKOVSTED C B, PEEL J S, et al. Moulting in the lobopodian Onychodictyon from the lower Cambrian of Greenland[J]. Lethaia, 2013, 46(4): 490-495.
DOI URL |
[63] |
VANNIER J, LIU J N, LEROSEY-AUBRIL R, et al. Sophisticated digestive systems in early arthropods[J]. Nature Communications, 2014, 5: 3641.
DOI URL |
[64] |
YOUNG F J, VINTHER J. Onychophoran-like myoanatomy of the Cambrian gilled lobopodian Pambdelurion whittingtoni[J] Palaeontology, 2016, 60: 27-54.
DOI URL |
[65] |
LIU J N, LEROSEY-AUBRIL R, STEINER M, et al. Origin of raptorial feeding in juvenile euarthropods revealed by a Cambrian radiodontan[J]. National Science Review, 2018, 5(6): 863-869.
DOI URL |
[66] | DALEY A C, ANTCLIFFE J B, DRAGE H B, et al. Early fossil record of Euarthropoda and the Cambrian Explosion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(21): 5323-5331. |
[67] | NIELSEN C. Animal evolution: interrelationships of the living phyla[M]. Oxford: Oxford University Press, 1995. |
[68] |
DUNN C W, HEJNOL A, MATUS D Q, et al. Broad phylogenomic sampling improves resolution of the animal tree of life[J]. Nature, 2008, 452(7188): 745-749.
DOI URL |
[69] |
TELFORD M J, BOURLAT S J, ECONOMOU A, et al. The evolution of the Ecdysozoa[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363: 1529-1537.
DOI URL |
[70] | ORTEGA-HERNÁNDEZ J, JANSSEN R, BUDD G E. Origin and evolution of the panarthropod head: a palaeobiological and developmental perspective[J]. Arthropod Structure & Development, 2017, 46: 354-379. |
[71] | NIELSEN C. Animal evolution: interrelationships of the living phyla[M]. 3rd ed. Oxford: Oxford University Press, 2012. |
[72] |
ERIKSSON B J, TAIT N N, BUDD G E, et al. The involvement of engrailed and wingless during segmentation in the onychophoran Euperipatoides kanangrensis (Peripatopsidae: Onychophora) (Reid 1996)[J]. Development Genes and Evolution, 2009, 219(5): 249-264.
DOI URL |
[73] |
MAYER G, WHITINGTON P M, SUNNUCKS P, et al. A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods[J]. BMC Evolutionary Biology, 2010, 10(1): 255.
DOI URL |
[74] | BRUSCA R C, MOORE W, SHUSTER S M. Invertebrates[M]. 3rd ed. Sydney: Sinauer Associates, 2016. |
[75] | RUPPERT E E, FOX R S, BARNES R D. Invertebrate zoology: a functional evolutionary approach[M]. Brooks: Brooks/Cole-Thomson Learning, 2004. |
[76] |
GREVEN H, KAYA M, BARAN T. The presence of α-chitin in Tardigrada with comments on chitin in the Ecdysozoa[J]. Zoologischer Anzeiger, 2016, 264: 11-16.
DOI URL |
[77] | MAYER G, KOCH M. Ultrastructure and fate of the nephridial anlagen in the antennal segment of Epiperipatus biolleyi (Onychophora, Peripatidae): evidence for the onychophoran antennae being modified legs[J]. Arthropod Structure & Development, 2005, 34(4): 471-480. |
[78] |
OLIVEIRA I D S, KUMERICS A, JAHN H, et al. Functional morphology of a lobopod: case study of an onychophoran leg[J]. Royal Society Open Science, 2019, 6(10): 191200.
DOI URL |
[79] |
GROSS V, MAYER G. Cellular morphology of leg musculature in the water bear Hypsibius exemplaris (Tardigrada) unravels serial homologies[J]. Royal Society Open Science, 2019, 6: 191159.
DOI URL |
[80] |
MAYER G, KAUSCHKE S, RÜDIGER J, et al. Neural markers reveal a one-segmented head in tardigrades (water bears)[J]. PLoS One, 2013, 8(3): e59090.
DOI URL |
[81] |
MAYER G, MARTIN C, RÜDIGER J, et al. Selective neuronal staining in tardigrades and onychophorans provides insights into the evolution of segmental ganglia in panarthropods[J]. BMC Evolutionary Biology, 2013, 13(1): 230.
DOI URL |
[82] | CHEN J Y, LI C W. Biology of the Chengjiang fauna[J]. Bulletin of the National Museum of Nature and Science, 1997(10): 11-106. |
[83] |
CAVE L D, INSOM E, SIMONETTA A M. Advances, divisions, possible relapses and additional problems in understanding the early evolution of the Articulata[J]. Italian Journal of Zoology, 1998, 65(1): 19-38.
DOI URL |
[84] |
LIU J N, HAN J, SIMONETTA A M, et al. New observations of the lobopod-like worm Facivermis from the Early Cambrian Chengjiang Lagerstätte[J]. Chinese Science Bulletin, 2006, 51(3): 358-363.
DOI URL |
[85] |
AGUINALDO A M A, TURBEVILLE J M, LINFORD L S, et al. Evidence for a clade of nematodes, arthropods and other moulting animals[J]. Nature, 1997, 387(6632): 489-493.
DOI URL |
[86] | MA X Y, HOU X, ALDRIDGE R J, et al. Morphology of Cambrian lobopodian eyes from the Chengjiang Lagerstätte and their evolutionary significance[J]. Arthropod Structure & Development, 2012, 41(5): 495-504. |
[87] | 欧强. 早期动物树部分关键支系及节点的构建[D]. 北京: 中国地质大学(北京), 2012. |
[88] | CHEN J, WANG B, ENGEL M S, et al. Extreme adaptations for aquatic ectoparasitism in a Jurassic fly larva[J]. eLife, 2014(3): e02844. |
[89] | PANGANIBAN G, IRVINE S M, LOWE C. The origin and evolution of animal appendages[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(10): 5162-5166. |
[90] |
ERIKSSON B J, TAIT N N, BUDD G E, et al. Head patterning and Hox gene expression in an onychophoran and its implications for the arthropod head problem[J]. Development Genes and Evolution, 2010, 220(3): 117-122.
DOI URL |
[91] | WILLIAMSON D I. Caterpillars evolved from onychophorans by hybridogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(47): 19901-19905. |
[92] |
ROEDING F, HAGNER-HOLLER S, RUHBERG H, et al. EST sequencing of Onychophora and phylogenomic analysis of Metazoa[J]. Molecular Phylogenetics and Evolution, 2007, 45(3): 942-951.
DOI URL |
[93] |
BALLARD J W O, OLSEN G, FAITH D, et al. Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods[J]. Science, 1992, 258(5086): 1345-1348.
DOI URL |
[94] | HINTON H E. On the structure, function. and distribution of the prolegs of the Panorpoidea, with a criticism of the Berlese-Imms theory[J]. Ecological Entomology, 1955, 106(13): 455-540. |
[95] |
SCHMIDTRHAESA A, KULESSA J. Muscular architecture of Milnesium tardigradum and Hypsibius sp. (Eutardigrada, Tardigrada) with some data on Ramazottius oberhaeuseri[J]. Zoomorphology, 2007, 126(4): 265-281.
DOI URL |
[96] | HOYLE G, WILLIAMS M. The musculature of Peripatus and its innervation[J]. Philosophical Transactions of the Royal Society B, 1980, 288(1031): 481-510. |
[97] |
RAMSKÖLD L. Homologies in Cambrian Onychophora[J]. Lethaia, 1992, 25(4): 443-460.
DOI URL |
[98] | HAN J, LIU J N, ZHANG Z F, et al. Trunk ornament on the palaeoscolecid worms Cricocosmia and Tabelliscolex from the Early Cambrian Chengjiang deposits of China[J]. Acta Palaeontologica Polonica, 2007, 52(2): 423-431. |
[99] | IVANTSOV A Y, WRONA R. Articulated palaeoscolecid sclerite arrays from the Lower Cambrian of eastern Siberia[J]. Acta Geologica Polonica, 2004, 54(1): 1-22. |
[100] |
HARVEY T H P, ORTEGA-HERNÁNDEZ J, LIN J, et al. Burgess Shale-type microfossils from the middle Cambrian Kaili Formation, Guizhou Province, China[J]. Acta Palaeontologica Polonica, 2011, 57(2): 423-436.
DOI URL |
[101] |
DZIK J. Early Cambrian lobopodian sclerites and associated fossils from Kazakhstan[J]. Palaeontology, 2003, 46(1): 93-112.
DOI URL |
[102] | ROBSON E A. The cuticle of Peripatopsis Moseleyi[J]. Journal of Cell Science, 1964, 105: 281-299. |
[103] |
EHRLICH H, KEITH RIGBY J, BOTTING J, et al. Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta[J]. Scientific Reports, 2013, 3(1): 1541-1543.
DOI URL |
[104] |
HOU X G, BERGSTROM J, JIE Y. Distinguishing anomalocaridids from arthropods and priapulids[J]. Geological Journal, 2006, 41(3/4): 259-269.
DOI URL |
[105] |
LIU J N, SHU D G, HAN J, et al. Comparative study of Cambrian lobopods Miraluolishania and Luolishania[J]. Chinese Science Bulletin, 2008, 53(1): 87-93.
DOI URL |
[106] | WILLMER P. Invertebrate Relationships[M]. Cambridge: Cambridge University Press, 1990: 400. |
[107] |
EDGECOMBE G D, LEGG D A. Origins and early evolution of arthropods[J]. Palaeontology, 2014, 57(3): 457-468.
DOI URL |
[108] | BUDD G E. Why are arthropods segmented?[J]. Evolution & Development, 2001, 3(5): 332-342. |
[1] | MENG Qingxiu, CAO Zicheng, DING Wenlong, YANG Debin, MA Hailong, DIAO Xindong, WANG Ming, HAN Pengyuan, WANG Huanhuan. Fracture stages and distribution patterns in Cambrian fractured dolomite reservoirs, Sandaoqiao gas field [J]. Earth Science Frontiers, 2024, 31(5): 247-262. |
[2] | GU Yu, WU Jun, FAN Tailiang, LÜ Junling. Lithological associations, deformation characteristics of the Lower-Middle Cambrian and their influence on oil and gas migration in the North-central Tarim Basin [J]. Earth Science Frontiers, 2024, 31(5): 313-331. |
[3] | WANG Ruimin, SHEN Bing. The disappearance of banded iron formations: Research progress and perspectives on the origin of rhythmic Fe-rich/Si-rich laminae [J]. Earth Science Frontiers, 2024, 31(1): 111-126. |
[4] | WU Chun, LIU Hangyu, LU Feifan, LIU Bo, SHI Kaibo, HE Qing. Storm deposition characteristics and models for the Middle and Upper Cambrian in Xiaweidian, Xishan area, Beijing [J]. Earth Science Frontiers, 2023, 30(6): 110-124. |
[5] | ZHANG Liyu, CHEN Qianglu, LI Maowen, YUAN Kun, MA Xiaoxiao, XI Binbin, YUE Yong, HUANG Taiyu. Comparative study on the organic enrichment mechanisms between western Hubei and northeastern Guizhou during the Early Cambrian [J]. Earth Science Frontiers, 2023, 30(6): 181-198. |
[6] | QIU Nansheng, CHANG Jian, FENG Qianqian, ZENG Shuai, LIU Xiaoyu, LI Huili, MA Anlai. Maturation history of deep and ultra-deep source rocks, central and western basins, China [J]. Earth Science Frontiers, 2023, 30(6): 199-212. |
[7] | XU Daliang, DENG Xin, PENG Lianhong, TIAN Yang, JIN Wei, JIN Xinbiao. The components of the subducted continental basement within the Dabieshan orogenic belt as evidenced by xenocrystic/inherited zircons from Cretaceous dykes [J]. Earth Science Frontiers, 2023, 30(4): 299-316. |
[8] | ZHANG Tongwei, LUO Huan, MENG Kang. Main factors controlling the shale gas content of Cambrian shales of southern China—a discussion [J]. Earth Science Frontiers, 2023, 30(3): 1-13. |
[9] | ZHANG Liuliu, CHEN Gengxin, LE Xingfu, ZHANG Yu, SHAO Deyong, YAN Jianping, MENG Kang, ZHANG Tongwei. Significance of water absorption characteristics and difference of pore structures in the Cambrian shale intervals, Yichang area for shale reservoir evaluation [J]. Earth Science Frontiers, 2023, 30(3): 138-150. |
[10] | PAN Xiaoqiang, HUA Hong, DAI Qiaokun, LUO Jinzhou, LIU Ziwei. Fossil assemblages and their stratigraphic distribution in the Shuijingtuo Formation (Cambrian Series 2, Stage 3) in Yichang area, Hubei Province, China [J]. Earth Science Frontiers, 2023, 30(3): 28-43. |
[11] | LUO Huan, SHAO Deyong, MENG Kang, ZHANG Yu, SONG Hui, YAN Jianping, ZHANG Tongwei. Origin of excess barium in the Cambrian shale of Yichang area, western Hubei, and its implication for organic matter accumulation [J]. Earth Science Frontiers, 2023, 30(3): 66-82. |
[12] | ZHANG Yu, HUANG Dejiang, ZHANG Liuliu, WAN Chuanhui, LUO Huan, SHAO Deyong, MENG Kang, YAN Jianping, ZHANG Tongwei. Biogenic silica of the Lower Cambrian Shuijingtuo Formation in Yichang, western Hubei Province—features and influence on shale gas accumulation [J]. Earth Science Frontiers, 2023, 30(3): 83-100. |
[13] | XIONG Weidong, XIAO Ancheng, WEI Guoqi, WU Lei, ZHANG Chunlin, WANG Yiping, YANG Liuyun, WANG Qianqian. Characteristics of a Cambrian normal fault system in the Southern Ordos Basin and its formation mechanism [J]. Earth Science Frontiers, 2022, 29(6): 305-313. |
[14] | FAN Qi, FAN Tailiang, LI Qingping, ZHANG Yan, GU Yu, SHANG Yaxin. Carbon isotope excursion and its genetic mechanism during the Sinian to Cambrian transition in the northern Tarim Basi [J]. Earth Science Frontiers, 2021, 28(5): 436-447. |
[15] | LIU Wei, HUANG Qingyu, BAI Ying, SHI Shuyuan. Meteoric water dissolution controls on microbial carbonate reservoir formation in the penecontemporaneous stage: Insight from the Lower Cambrian formation of the Tarim Basin [J]. Earth Science Frontiers, 2021, 28(1): 225-234. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||