Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (6): 199-212.DOI: 10.13745/j.esf.sf.2023.2.37
Previous Articles Next Articles
QIU Nansheng1,2(), CHANG Jian1,2, FENG Qianqian1,2, ZENG Shuai1,2, LIU Xiaoyu1,2, LI Huili3, MA Anlai3
Received:
2023-02-06
Revised:
2023-03-10
Online:
2023-11-25
Published:
2023-11-25
CLC Number:
QIU Nansheng, CHANG Jian, FENG Qianqian, ZENG Shuai, LIU Xiaoyu, LI Huili, MA Anlai. Maturation history of deep and ultra-deep source rocks, central and western basins, China[J]. Earth Science Frontiers, 2023, 30(6): 199-212.
Fig.10 (a) Thermal effect range of the Permian Emeishan large igneous province (modified after [66]); (b) Thermal effect range of the Permian Tarim large igneous province. Modified after [33].
Fig.11 (a) Maturity and temperature evolution of the Lower Cambrian source rock of the Well YF1 in the Sichuan Basin; (b) Maturity and temperature evolution of the Lower Silurian source rock of the Well YF1 in the Sichuan Basin; (c) Maturity and temperature evolution of the Lower Cambrian source rock of the Well sb5 in the Tarim Basin.
[1] |
李阳, 薛兆杰, 程喆, 等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探, 2020, 25(1): 45-57.
DOI |
[2] | 马永生, 黎茂稳, 蔡勋育, 等. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题[J]. 石油与天然气地质, 2020, 41(4): 655-672, 683. |
[3] |
杨海军, 陈永权, 田军, 等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2): 62-72.
DOI |
[4] | 邱楠生, 何丽娟, 常健, 等. 沉积盆地热历史重建研究进展与挑战[J]. 石油实验地质, 2020, 42(5): 790-802. |
[5] | 任战利, 崔军平, 祁凯, 等. 叠合盆地深层、超深层热演化史恢复理论及方法研究新进展[J]. 西北大学学报(自然科学版), 2022, 52(6): 910-929. |
[6] | 贾承造. 塔里木盆地构造特征与油气聚集规律[J]. 新疆石油地质, 1999, 20(3):177-183. |
[7] | 马庆佑, 吕海涛, 蒋华山, 等. 塔里木盆地台盆区构造单元划分方案[J]. 海相油气地质, 2015, 20(1): 1-9. |
[8] | 贾承造, 魏国齐. 塔里木盆地构造特征与含油气性[J]. 科学通报, 2002, 47(增刊1): 1-8. |
[9] | 邬光辉, 邓卫, 黄少英, 等. 塔里木盆地构造-古地理演化[J]. 地质科学, 2020, 55(2):305-321. |
[10] | 肖贤明. 塔里木盆地三叠系烃源岩有机岩石学特征与生烃评价[J]. 地球化学, 1997, 26(1): 64-71. |
[11] | 赵靖舟. 塔里木盆地北部寒武—奥陶系海相烃源岩重新认识[J]. 沉积学报, 2001, 19(1):117-124. |
[12] | 赵孟军, 张宝民, 肖中尧, 等. 塔里木盆地奥陶系偏腐殖型烃源岩的发现[J]. 天然气工业, 1998, 18(5): 32-36. |
[13] | 赵孟军, 张水昌. 塔里木盆地石炭系巴楚组碳酸盐岩烃源岩及其原油特征[J]. 海相油气地质, 2000, 5(1): 23-28. |
[14] | 刘胜, 邱斌, 陈新安, 等. 塔里木盆地西端中生界沉积环境与油气地质特征[J]. 新疆石油地质, 2006, 27(1):10-14. |
[15] | 刘玉魁, 闵磊, 冯游文, 等. 塔里木盆地乌什凹陷石油地质特征[J]. 天然气工业, 2007, 27(1):24-26. |
[16] | 云露, 翟晓先. 塔里木盆地塔深1井寒武系储层与成藏特征探讨[J]. 石油与天然气地质, 2008, 29(6):726-732. |
[17] | 朱传玲, 闫华, 云露, 等. 塔里木盆地沙雅隆起星火1井寒武系烃源岩特征[J]. 石油实验地质, 2014, 36(5):626-632. |
[18] | 王招明, 谢会文, 陈永权, 等. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 2014, 19(2): 1-13. |
[19] | 杨海军, 于双, 张海祖, 等. 塔里木盆地轮探1井下寒武统烃源岩地球化学特征及深层油气勘探意义[J]. 地球化学, 2020, 49(6): 666-682. |
[20] |
张科, 潘文庆, 苏劲, 等. 塔里木盆地南华系—寒武系烃源岩时空分布与生烃潜力评价[J]. 中国石油勘探, 2022, 27(4): 121-134.
DOI |
[21] | 张水昌, 高志勇, 李建军, 等. 塔里木盆地寒武系—奥陶系海相烃源岩识别与分布预测[J]. 石油勘探与开发, 2012, 39(3):285-294. |
[22] | 潘文庆, 陈永权, 熊益学, 等. 塔里木盆地下寒武统烃源岩沉积相研究及其油气勘探指导意义[J]. 天然气地球科学, 2015, 26(7):1224-1232. |
[23] | 朱光有, 陈斐然, 陈志勇, 等. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 2016, 27(1):8-21. |
[24] | 朱光有, 胡剑风, 陈永权, 等. 塔里木盆地轮探1井下寒武统玉尔吐斯组烃源岩地球化学特征与形成环境[J]. 地质学报, 2022, 96(6):2116-2130. |
[25] |
魏国齐, 朱永进, 郑剑锋, 等. 塔里木盆地寒武系盐下构造-岩相古地理、规模源储分布与勘探区带评价[J]. 石油勘探与开发, 2021, 48(6): 1114-1126.
DOI |
[26] |
刘池洋. 叠合盆地特征及油气赋存条件[J]. 石油学报, 2007, 28(1): 1-7.
DOI |
[27] | 刘树根, 李智武, 孙玮, 等. 四川含油气叠合盆地基本特征[J]. 地质科学, 2011, 46(1):233-257. |
[28] |
LIU S G, YANG Y, DENG B, et al. Tectonic evolution of the Sichuan Basin, Southwest China[J]. Earth-Science Reviews, 2021, 213: 103470.
DOI URL |
[29] |
ZOU C N, WEI G Q, XU C C, et al. Geochemistry of the Sinian-Cambrian gas system in the Sichuan Basin, China[J]. Organic Geochemistry, 2014, 74: 13-21.
DOI URL |
[30] |
LI X Q, ZHANG J Z, WANG Y, et al. Accumulation conditions of Lower Paleozoic shale gas from the southern Sichuan Basin, China[J]. Journal of Natural Gas Geoscience, 2016, 1(2): 101-108.
DOI URL |
[31] | SWEENEY J J, BURNHAM A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics (1)[J]. AAPG Bulletin, 1990, 74(10): 1559-1570. |
[32] |
KETCHAM R A, CARTER A, DONELICK R A, et al. Improved modeling of fission-track annealing in apatite[J]. American Mineralogist, 2007, 92(5/6): 799-810.
DOI URL |
[33] |
YAMADA R, MURAKAMI M, TAGAMI T. Statistical modelling of annealing kinetics of fission tracks in zircon; reassessment of laboratory experiments[J]. Chemical Geology, 2007, 236(1/2): 75-91.
DOI URL |
[34] |
GUENTHNER W R, REINERS P W, KETCHAM R A, et al. Helium diffusion in natural zircon:radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology[J]. American Journal of Science, 2013, 313(3): 145-198.
DOI URL |
[35] |
FLOWERS R M, KETCHAM R A, SHUSTER D L, et al. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model[J]. Geochimica et Cosmochimica Acta, 2009, 73(8): 2347-2365.
DOI URL |
[36] |
NIELSEN S B, CLAUSEN O R, MCGREGOR E. Basin%Ro: a vitrinite reflectance model derived from basin and laboratory data[J]. Basin Research, 2017, 29: 515-536.
DOI URL |
[37] | BURNHAM A, PETERS K E, ANONYMOUS. Evolution of vitrinite reflectance models[C]. AAPG 2016 annual convention and exhibition. Tulsa: American Association of Petroleum Geologists and Society for Sedimentary Geology, 2016. |
[38] |
QIU N S, CHANG J, ZUO Y H, et al. Thermal evolution and maturation of Lower Paleozoic source rocks in the Tarim Basin, Northwest China[J]. AAPG Bulletin, 2012, 96(5): 789-821.
DOI URL |
[39] |
FENG Q Q, QIU N, FU X D, et al. Maturity evolution of Permian source rocks in the Sichuan Basin, southwestern China: the role of the Emeishan mantle plume[J]. Journal of Asian Earth Sciences. 2022, 229: 105180.
DOI URL |
[40] |
QIU N S, LIU W, FU X D, et al. Maturity evolution of Lower Cambrian Qiongzhusi Formation shale of the Sichuan Basin[J]. Marine and Petroleum Geology, 2021, 128: 105061.
DOI URL |
[41] |
FENG Q Q, QIU N S, FU X D, et al. Permian geothermal units in the Sichuan Basin: implications for the thermal effect of the Emeishan mantle plume[J]. Marine and Petroleum Geology, 2021, 132: 105226.
DOI URL |
[42] | 邱楠生, 刘雯, 徐秋晨, 等. 深层-古老海相层系温压场与油气成藏[J]. 地球科学, 2018, 43(10): 3511-3525. |
[43] | 贾承造, 张水昌. 中国海相超深层油气形成[J]. 地质学报, 2023, 97(9): 2775-2801. |
[44] |
QIU N S, CHANG J, ZHU C Q, et al. Thermal regime of sedimentary basins in the Tarim, Upper Yangtze and North China Cratons, China[J]. Earth-Science Reviews, 2022, 224: 103884.
DOI URL |
[45] |
马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1):1-17.
DOI |
[46] |
刘树根, 邓宾, 钟勇, 等. 四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用[J]. 地学前缘, 2016, 23(1):11-28.
DOI |
[47] |
郭旭升, 腾格尔, 魏祥峰, 等. 四川盆地深层海相页岩气赋存机理与勘探潜力[J]. 石油学报, 2022, 43(4): 453-468.
DOI |
[48] | 孙冬胜, 李双建, 李建交, 等. 塔里木与四川盆地震旦系—寒武系油气成藏条件对比与启示[J]. 地质学报, 2022, 96(1): 249-264. |
[49] |
BRYAN S E, ERNST R E. Revised definition of large igneous provinces (LIPs)[J]. Earth-Science Reviews, 2008, 86(1/2/3/4): 175-202.
DOI URL |
[50] |
CHEN C S, QIN S F, WANG Y P, et al. High temperature methane emissions from Large Igneous Provinces as contributors to Late Permian mass extinctions[J]. Nature Communications, 2022, 13: 6893.
DOI PMID |
[51] | 陈军, 徐义刚. 二叠纪大火成岩省的环境与生物效应:进展与前瞻[J]. 矿物岩石地球化学通报. 2017, 36(3): 374-393. |
[52] |
XU Y G, HE B, CHUNG S L, et al. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province[J]. Geology, 2004, 32(10): 917-920.
DOI URL |
[53] |
ZHANG Z C, MAHONEY J J, MAO J W, et al. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China[J]. Journal of Petrology, 2006, 47(10): 1997-2019.
DOI URL |
[54] |
SHELLNUTT J G, DENYSZYN S W, MUNDIL R. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China)[J]. Gondwana Research, 2012, 22(1): 118-126.
DOI URL |
[55] |
LIU X Y, QIU N S, SØAGER N, et al. Geochemistry of Late Permian basalts from boreholes in the Sichuan Basin, SW China: implications for an extension of the Emeishan large igneous province[J]. Chemical Geology, 2022, 588: 120636.
DOI URL |
[56] |
HE B, XU Y G, CHUNG S L, et al. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts[J]. Earth and Planetary Science Letters, 2003, 213(3/4): 391-405.
DOI URL |
[57] |
ALI J R, LO C H, THOMPSON G M, et al. Emeishan basalt Ar-Ar overprint ages define several tectonic events that affected the western Yangtze platform in the Mesozoic and Cenozoic[J]. Journal of Asian Earth Sciences, 2004, 23(2): 163-178.
DOI URL |
[58] |
SUN Y D, LAI X L, WIGNALL P B, et al. Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models[J]. Lithos, 2010, 119(1/2): 20-33.
DOI URL |
[59] |
SHELLNUTT J G. The Emeishan large igneous province: a synthesis[J]. Geoscience Frontiers, 2014, 5(3): 369-394.
DOI URL |
[60] |
HONG Y T, HE B, MUNDIL R, et al. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section: implications for the termination age of Emeishan large igneous province[J]. Lithos, 2014, 204: 14-19.
DOI URL |
[61] |
HUANG B C, YAN Y G, PIPER J D A, et al. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times[J]. Earth-Science Reviews, 2018, 186: 8-36.
DOI URL |
[62] |
YAN H, PI D H, JIANG S Y, et al. New constraints on the onset age of the Emeishan LIP volcanism and implications for the Guadalupian mass extinction[J]. Lithos, 2020, 360/361: 105441.
DOI URL |
[63] |
LIU Y D, LI L, VAN WIJK J, et al. Surface-wave tomography of the Emeishan large igneous province (China): magma storage system, hidden hotspot track, and its impact on the Capitanian mass extinction[J]. Geology, 2021, 49(9): 1032-1037.
DOI URL |
[64] | 胡明毅, 胡忠贵, 魏国齐, 等. 四川盆地茅口组层序岩相古地理特征及储集层预测[J]. 石油勘探与开发, 2012, 39(1): 45-55. |
[65] |
LI H B, ZHANG Z C, SANTOSH M, et al. Late Permian basalts in the Yanghe area, eastern Sichuan Province, SW China: implications for the geodynamics of the Emeishan flood basalt province and Permian global mass extinction[J]. Journal of Asian Earth Sciences, 2017, 134: 293-308.
DOI URL |
[66] | 梁宇馨, 李红, 张冬冬, 等. 四川盆地华蓥山峨眉玄武岩地球化学特征及其成因分析[J]. 地质科学, 2021, 56(1): 288-302. |
[67] |
ZHANG D Y, ZHANG Z C, SANTOSH M, et al. Perovskite and badeleyite from kimberlitic intrusions in the Tarim large igneous province signal the onset of an end-Carboniferous mantle plume[J]. Earth and Planetary Science Letters, 2013, 361: 238-248.
DOI URL |
[68] |
XU Y G, WEI X, LUO Z Y, et al. The Early Permian Tarim large igneous province: main characteristics and a plume incubation model[J]. Lithos, 2014, 204: 20-35.
DOI URL |
[69] |
YU X, YANG S F, CHEN H L, et al. Permian flood basalts from the Tarim Basin, Northwest China: SHRIMP zircon U-Pb dating and geochemical characteristics[J]. Gondwana Research, 2011, 20(2/3): 485-497.
DOI URL |
[70] |
SHANGGUAN S, PEATE I U, TIAN W, et al. Re-evaluating the geochronology of the Permian Tarim magmatic province: implications for temporal evolution of magmatism[J]. Journal of the Geological Society, 2016, 173(1): 228-239.
DOI URL |
[1] | PAN Lei, DU Hongquan, LI Leitao, LONG Tao, YIN Xuefeng. Fracture development characteristics and main controlling factors of natural fracture in the Upper Triassic Xujiahe Formation in Yuanba area, northeastern Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(5): 156-165. |
[2] | QIAO Hui, ZHANG Yonggui, NIE Haikuan, PENG Yongmin, ZHANG Ke, SU Haikun. Characterization and 3D modeling of multiscale natural fractures in shale gas reservoir: A case study in the Pingqiao structural belt, Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(5): 89-102. |
[3] | MENG Qingxiu, CAO Zicheng, DING Wenlong, YANG Debin, MA Hailong, DIAO Xindong, WANG Ming, HAN Pengyuan, WANG Huanhuan. Fracture stages and distribution patterns in Cambrian fractured dolomite reservoirs, Sandaoqiao gas field [J]. Earth Science Frontiers, 2024, 31(5): 247-262. |
[4] | GU Yu, WU Jun, FAN Tailiang, LÜ Junling. Lithological associations, deformation characteristics of the Lower-Middle Cambrian and their influence on oil and gas migration in the North-central Tarim Basin [J]. Earth Science Frontiers, 2024, 31(5): 313-331. |
[5] | LI Fenglei, LIN Chengyan, REN Lihua, ZHANG Guoyin, GUAN Baozhu. Characteristics of deep karst fracture-cavity reservoir formation controlled by multi-phase faults matching in the northern Tarim Basin [J]. Earth Science Frontiers, 2024, 31(4): 219-236. |
[6] | CHEN Changjin, CHENG Xiaogan, LIN Xiubin, LI Feng, TIAN Hefeng, QU Mengxue, SUN Siyao. Modeling of the Cenozoic subsidence of northern Tarim Basin using elastic plate numerical model: Implications for uplift of South Tian Shan [J]. Earth Science Frontiers, 2024, 31(4): 340-353. |
[7] | HE Jianhua, LI Yong, DENG Hucheng, WANG Yuanyuan, MA Ruolong, TANG Jianming. Study on tectonic fracture characteristics and stage evolution of Longmaxi shale reservoir in Yongchuan, southeastern Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(3): 298-311. |
[8] | WANG Junpeng, ZENG Lianbo, XU Zhenping, WANG Ke, ZENG Qinglu, ZHANG Zhiyuan, ZHANG Ronghu, JIANG Jun. The impact of diagenetic fluids on the structural fracture filling and dissolution alteration of ultra-deep tight sandstone reservoirs: a case study of the Kelasu oil and gas field in the Tarim Basin [J]. Earth Science Frontiers, 2024, 31(3): 312-323. |
[9] | LIU Chao, FU Xiaofei, LI Yangcheng, WANG Haixue, SUN Bing, HAO Yan, HU Huiting, YANG Zicheng, LI Yilin, GU Shefeng, ZHOU Aihong, MA Chenglong. Can hydrocarbon source rock be uranium source rock?—a review and prospectives [J]. Earth Science Frontiers, 2024, 31(2): 284-298. |
[10] | XU Zhaohui, HU Suyun, ZENG Hongliu, MA Debo, LUO Ping, HU Zaiyuan, SHI Shuyuan, CHEN Xiuyan, TAO Xiaowan. Distribution and hydrocarbon significance of source rock in the Upper Xiaoerbulake Formation, Tarim Basin, NW China [J]. Earth Science Frontiers, 2024, 31(2): 343-358. |
[11] | HE Yanbing, LEI Yongchang, QIU Xinwei, XIAO Zhangbo, ZHENG Yangdi, LIU Dongqing. Sedimentary paleoenvironment and main controlling factors of organic enrichment in source rocks of the Wenchang Formation in southern Lufeng, Pearl River Mouth Basin [J]. Earth Science Frontiers, 2024, 31(2): 359-376. |
[12] | WANG Ruimin, SHEN Bing. The disappearance of banded iron formations: Research progress and perspectives on the origin of rhythmic Fe-rich/Si-rich laminae [J]. Earth Science Frontiers, 2024, 31(1): 111-126. |
[13] | JIN Zhijun, CHEN Shuping, ZHANG Rui. Fluctuation analysis for sedimentary basins: Review and outlook [J]. Earth Science Frontiers, 2024, 31(1): 284-296. |
[14] | TAO Shizhen, WU Yiping, TAO Xiaowan, WANG Xiaobo, WANG Qing, CHEN Sheng, GAO Jianrong, WU Xiaozhi, LIU-SHEN Aoyi, SONG Lianteng, CHEN Rong, LI Qian, YANG Yiqing, CHEN Yue, CHEN Xiuyan, CHEN Yanyan, QI Wen. Helium: Accumulation model, resource exploration and evaluation, and integrative evaluation of the entire industrial chain [J]. Earth Science Frontiers, 2024, 31(1): 351-367. |
[15] | WU Chun, LIU Hangyu, LU Feifan, LIU Bo, SHI Kaibo, HE Qing. Storm deposition characteristics and models for the Middle and Upper Cambrian in Xiaweidian, Xishan area, Beijing [J]. Earth Science Frontiers, 2023, 30(6): 110-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||