Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1): 284-296.DOI: 10.13745/j.esf.sf.2024.1.30
Previous Articles Next Articles
JIN Zhijun1,2,3(), CHEN Shuping4, ZHANG Rui1,2,3
Received:
2024-01-30
Revised:
2024-02-03
Online:
2024-01-25
Published:
2024-01-25
CLC Number:
JIN Zhijun, CHEN Shuping, ZHANG Rui. Fluctuation analysis for sedimentary basins: Review and outlook[J]. Earth Science Frontiers, 2024, 31(1): 284-296.
沉积盆地 | 地质时代 | 沉积旋回/Ma | 文献来源 | ||||
---|---|---|---|---|---|---|---|
渤海湾盆地 | 新元古代至今 | 740 | 220~200 | 35~27 | 6~10 | [ | |
塔里木盆地 | 新元古代至今 | 760~740 | 235~200 | 100 | 30 | 10 | [ |
四川盆地 | 新元古代至今 | 750 | 220 | 100 | 35 | 18 | [ |
三水盆地 | 新元古代至今 | 740 | 220 | 120 | 30 | 10 | [ |
楚雄盆地 | 新元古代至今 | 760 | 220 | 100 | 45 | 10 | [ |
柴达木盆地 | 显生宙 | 180 | 20 | 8 | [ | ||
鄂尔多斯盆地 | 显生宙 | 250 | 93 | 33 | 9 | [ | |
松辽盆地 | 中生代 | 100 | 35 | 8 | [ | ||
燕辽裂谷 | 中元古代 | 200 | 32 | [ | |||
西西伯利亚盆地 | 新元古代至今 | 540 | 200 | 35~27 | [ | ||
西西伯利亚盆地 | 中—新生代 | 200~180 | 90 | 45 | 18 | [ | |
加拿大北极地区 | 显生宙 | 32 | [ | ||||
日本美浓盆地 | 中生代 | 30 | 10 | [ | |||
意大利西西里岛 | 中生代 | 30 | 10 | [ | |||
美国纽瓦克盆地 | 中生代 | 10~8 | [ | ||||
巴西亚马逊河口盆地 | 白垩纪 | 9.5 | [ | ||||
意大利古比奥地区 | 白垩纪 | 8 | [ |
Table 1 Dominant fluctuation cycles in globally representative sedimentary basins
沉积盆地 | 地质时代 | 沉积旋回/Ma | 文献来源 | ||||
---|---|---|---|---|---|---|---|
渤海湾盆地 | 新元古代至今 | 740 | 220~200 | 35~27 | 6~10 | [ | |
塔里木盆地 | 新元古代至今 | 760~740 | 235~200 | 100 | 30 | 10 | [ |
四川盆地 | 新元古代至今 | 750 | 220 | 100 | 35 | 18 | [ |
三水盆地 | 新元古代至今 | 740 | 220 | 120 | 30 | 10 | [ |
楚雄盆地 | 新元古代至今 | 760 | 220 | 100 | 45 | 10 | [ |
柴达木盆地 | 显生宙 | 180 | 20 | 8 | [ | ||
鄂尔多斯盆地 | 显生宙 | 250 | 93 | 33 | 9 | [ | |
松辽盆地 | 中生代 | 100 | 35 | 8 | [ | ||
燕辽裂谷 | 中元古代 | 200 | 32 | [ | |||
西西伯利亚盆地 | 新元古代至今 | 540 | 200 | 35~27 | [ | ||
西西伯利亚盆地 | 中—新生代 | 200~180 | 90 | 45 | 18 | [ | |
加拿大北极地区 | 显生宙 | 32 | [ | ||||
日本美浓盆地 | 中生代 | 30 | 10 | [ | |||
意大利西西里岛 | 中生代 | 30 | 10 | [ | |||
美国纽瓦克盆地 | 中生代 | 10~8 | [ | ||||
巴西亚马逊河口盆地 | 白垩纪 | 9.5 | [ | ||||
意大利古比奥地区 | 白垩纪 | 8 | [ |
[1] | 金之钧, 张一伟, 刘国臣, 等. 沉积盆地物理分析: 波动分析[J]. 地质论评, 1996, 42(增刊): 170-180. |
[2] | 金之钧, 等. 沉积盆地波动过程分析[M]. 北京: 科学出版社, 2023. |
[3] |
CHEN S, JIN Z, WANG Y, et al. Sedimentation rate rhythms: evidence from filling of the Tarim Basin, Northwest China[J]. Acta Geologica Sinica (English Edition), 2015, 89(4): 1264-1275.
DOI URL |
[4] | BOULILA S, PETERS S E, MÜLLER R D, et al. Earth's interior dynamics drive marine fossil diversity cycles of tens of millions of years[J]. Proceedings of the National Academy of Sciences, 2023, 120(29): e2221149120. |
[5] |
BRINK H J. Cosmic contributions to the deposition of petroleum source rocks: review and analysis[J]. International Journal of Geosciences, 2023, 14(11): 1123-1145.
DOI URL |
[6] |
RAMPINO M R, CALDEIRA K, RODRIGUEZ S. Cycles of -32.5 Ma and -26.2 Ma in correlated episodes of continental flood basalts (CFBs), hyper-thermal climate pulses, anoxic oceans, and mass extinctions over the last 260 Ma: connections between geological and astronomical cycles[J]. Earth-Science Reviews, 2023, 246: 104548.
DOI URL |
[7] | ALLEN P A, ALLEN J R. Basin analysis: principles and application to petroleum play assessment[M]. 3rd ed. Chichester: Wiley-Blackwell Press, 2013. |
[8] |
IKEDA M, TADA R. Reconstruction of the chaotic behavior of the Solar System from geologic records[J]. Earth and Planetary Science Letters, 2020, 537: 116168.
DOI URL |
[9] |
ZHANG R, JIN Z, LI M, et al. Long-term periodicity of sedimentary basins in response to astronomical forcing: review and perspective[J]. Earth-Science Reviews, 2023, 244: 104533.
DOI URL |
[10] |
BOULILA S, HAQ B U, HARA N, et al. Potential encoding of coupling between Milankovitch forcing and Earth's interior processes in the Phanerozoic eustatic sea-level record[J]. Earth-Science Reviews, 2021, 220: 103727.
DOI URL |
[11] |
JIN Z, WANG X, WANG H, et al. Organic carbon cycling and black shale deposition: an Earth System Science perspective[J]. National Science Review, 2023, 10(11): nwad243.
DOI URL |
[12] | VAN BEMMELEN R W. The undation theory[M]. Berlin, Heidelberg: Springer Press, 1932. |
[13] | 陈书平. 圆动与地动[M]. 北京: 石油工业出版社, 2019. |
[14] | 张伯声, 王战. 中国的镶嵌构造与地壳波浪运动[J]. 西北大学学报(自然科学版), 1974(1): 7-17. |
[15] |
张一伟. 山东西部箕状凹陷形成的探讨: 初论地壳波状运动[J]. 石油学报, 1983(4): 19-25.
DOI |
[16] | 施比伊曼, 张一伟, 金之钧, 等. 波动地质学在黄骅坳陷演化分析中的应用: 再论地壳波状运动[J]. 石油学报, 1994(增刊): 19-26. |
[17] | 刘国臣, 李京昌, 金之钧, 等. 波动地质学研究中资料的收集与整理[J]. 石油大学学报(自然科学版), 1994(6): 1-7. |
[18] | 金之钧, 王清晨. 中国典型叠合盆地与油气成藏研究新进展: 以塔里木盆地为例[J]. 中国科学(D辑: 地球科学), 2004(增刊): 1-12. |
[19] | 金之钧, 张一伟, 陈书平. 塔里木盆地构造-沉积波动过程[J]. 中国科学(D辑: 地球科学), 2005(6): 530-539. |
[20] | 金之钧, 李有柱, 李明宅, 等. 油气聚集成藏理论[M]. 北京: 石油工业出版社, 2000. |
[21] | 张一伟, 李京昌, 金之钧, 等. 原型盆地剥蚀量计算的新方法: 波动分析法[J]. 石油与天然气地质, 2000(1): 88-91. |
[22] | CRAWFORD F S. 伯克利物理学教程(SI版) 第3卷波动学(翻译版)[M]. 北京: 机械工业出版社, 2019. |
[23] | LASKAR J, ROBUTEL P, JOUTEL F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285. |
[24] |
BOULILA S, BRANGE C, CRUZ A M, et al. Astronomical pacing of Late Cretaceous third- and second-order sea-level sequences in the Foz do Amazonas Basin[J]. Marine and Petroleum Geology, 2020, 117: 104382.
DOI URL |
[25] | 张一伟, 李京昌, 金之钧, 等. 中国含油气盆地波状运动特征研究[J]. 地学前缘, 1997(增刊): 309, 311-315. |
[26] | 汤良杰, 马永生, 郭彤楼, 等. 沉积盆地波动过程分析方法与应用: 以四川盆地东北部为例[J]. 海相油气地质, 2005(4): 39-46. |
[27] | BELOZEROV V B, IVANOV I A. Platform deposition in the West Siberian Plate: a kinematic model[J]. Russian Geology and Geophysics, 2003, 44(8): 781-795. |
[28] | 张瑞, 金之钧, GILLMAN M, 等. 太阳系长期旋回在中生代沉积盆地中的记录[J]. 中国科学: 地球科学, 2023, 53(2): 345-362. |
[29] | 李儒峰, 金之钧, 马永生, 等. 盆地波动特征与生储盖层耦合关系分析: 以楚雄盆地为例[J]. 沉积学报, 2004(3): 474-480. |
[30] | 金之钧, 李京昌, 汤良杰, 等. 柴达木盆地新生代波动过程及与油气关系[J]. 地质学报, 2006(3): 359-365. |
[31] | 李儒峰, 杨永强, 张刚雄, 等. 松辽北部徐家围子白垩系不整合剥蚀量系统恢复[J]. 地球科学: 中国地质大学学报, 2012, 37(增刊): 47-54. |
[32] | 孟祥化, 葛铭, 任国选, 等. 宇地系统场沉积响应范例: 蓟县系雾迷山巨旋回层序及节律[J]. 地学前缘, 2011, 18(4): 107-122. |
[33] |
RAMPINO M R, CALDEIRA K. A 32-million year cycle detected in sea-level fluctuations over the last 545 Ma[J]. Geoscience Frontiers, 2020, 11(6): 2061-2065.
DOI URL |
[34] |
IKEDA M, TADA R, OZAKI K. Astronomical pacing of the global silica cycle recorded in Mesozoic bedded cherts[J]. Nature Communications, 2017, 8(1): 15532.
DOI URL |
[35] |
SPROVIERI M, SABATINO N, PELOSI N, et al. Late Cretaceous orbitally-paced carbon isotope stratigraphy from the Bottaccione Gorge (Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 379/380: 81-94.
DOI URL |
[36] | 金之钧, 刘国臣, 李京昌, 等. 塔里木盆地一级演化周期的识别及其意义[J]. 地学前缘, 1998(增刊): 194-200. |
[37] |
MITCHELL R N, SPENCER C J, KIRSCHER U, et al. Harmonic hierarchy of mantle and lithospheric convective cycles: time series analysis of hafnium isotopes of zircon[J]. Gondwana Research, 2019, 75: 239-248.
DOI URL |
[38] |
PUETZ S J, CONDIE K C. A review of methods used to test periodicity of natural processes with a special focus on harmonic periodicities found in global U-Pb detrital zircon age distributions[J]. Earth-Science Reviews, 2022, 224: 103885.
DOI URL |
[39] |
WILSON R W, HOUSEMAN G A, BUITER S J H, et al. Fifty years of the Wilson Cycle concept in plate tectonics: an overview[J]. Geological Society, London, Special Publications, 2019, 470(1): 1-17.
DOI URL |
[40] | 李京昌, 金之钧, 刘国臣. 论塔里木盆地构造反转的周期性[J]. 石油大学学报(自然科学版), 1998(3): 14-17, 28, 4. |
[41] | 李京昌, 金之钧, 刘国臣, 等. 100 Ma: 塔里木盆地演化的重要周期[J]. 地学前缘, 1997(增刊): 316-321. |
[42] |
CHEN S. The earth dynamic system: the earth rotation vs mantle convection[J]. Natural Science, 2010, 2(12): 1333-1340.
DOI URL |
[43] |
FRIEDRICH A M, BUNGE H P, RIEGER S M, et al. Stratigraphic framework for the plume mode of mantle convection and the analysis of interregional unconformities on geological maps[J]. Gondwana Research, 2018, 53: 159-188.
DOI URL |
[44] |
WANG Y, CAO Z, PENG L, et al. Secular craton evolution due to cyclic deformation of underlying dense mantle lithosphere[J]. Nature Geoscience, 2023, 16(7): 637-645.
DOI |
[45] |
GINGERICH P D. Rates of geological processes[J]. Earth-Science Reviews, 2021, 220: 103723.
DOI URL |
[46] |
OPLUŠTIL S, LAURIN J, HÝLOVÁ L, et al. Coal-bearing fluvial cycles of the late Paleozoic tropics: astronomical control on sediment supply constrained by high-precision radioisotopic ages, Upper Silesian Basin[J]. Earth-Science Reviews, 2022, 228: 103998.
DOI URL |
[47] | 吕修祥, 张一伟, 金之钧. 塔里木盆地成藏旋回初论[J]. 科学通报, 1996(22): 2064-2066. |
[48] | 刘国臣, 张一伟. 从波动观点看塔里木盆地的成藏演化史[J]. 石油学报, 1999(2): 15-19+3. |
[49] | 李京昌, 金之钧, 刘国臣. 盆地沉降史研究的新方法: 波动分析[J]. 地球科学进展, 1997(5): 82-86. |
[50] |
KELLER C B, HUSSON J M, MITCHELL R N, et al. Neoproterozoic glacial origin of the Great Unconformity[J]. Proceedings of the National Academy of Sciences, 2019, 116(4): 1136-1145.
DOI URL |
[51] | 刘国臣, 金之钧, 李京昌. 沉积盆地沉积-剥蚀过程定量研究的一种新方法: 盆地波动分析应用之一[J]. 沉积学报, 1995(3): 23-31. |
[52] | 张一伟, 金之钧, 刘国臣, 等. 塔里木盆地环满加尔地区主要不整合形成过程及剥蚀量研究[J]. 地学前缘, 2000(4): 449-457. |
[53] | 范婕, 蒋有录, 崔小君, 等. 恢复不整合剥蚀厚度的旋回分析法[J]. 中国矿业大学学报, 2018, 47(2): 323-331. |
[54] |
SCOTESE C R, SONG H, MILLS B J W, et al. Phanerozoic paleotemperatures: the Earth's changing climate during the last 540 million years[J]. Earth-Science Reviews, 2021, 215: 103503.
DOI URL |
[55] |
HU Y, LI X, BOOS W R, et al. Emergence of the modern global monsoon from the Pangaea megamonsoon set by palaeogeography[J]. Nature Geoscience, 2023, 16(11): 1041-1046.
DOI |
[56] | 邱楠生, 金之钧, 刘国臣, 等. 沉积盆地热演化波动问题初探[J]. 地质论评, 1996, 42(增刊): 302-306. |
[57] | 邱楠生, 金之钧, 李京昌. 塔里木盆地热演化分析中热史波动模型的初探[J]. 地球物理学报, 2002(3): 398-406. |
[58] | 刘全有, 朱东亚, 孟庆强, 等. 深部流体及有机-无机相互作用下油气形成的基本内涵[J]. 中国科学: 地球科学, 2019, 49(3): 499-520. |
[59] | 张瑞, 金之钧, 朱如凯, 等. 中国陆相富有机质页岩沉积速率研究及其页岩油勘探意义[J]. 石油与天然气地质, 2023, 44(4): 829-845. |
[60] | 李儒峰, 郭彤楼, 陈国飞, 等. 米仓山前陆冲断带波动特征与构造沉积演化[J]. 中国科学(D辑: 地球科学), 2008(增刊): 63-69. |
[61] |
WANG M, LI M, KEMP D B, et al. Late Triassic sedimentary records reveal the hydrological response to climate forcing and the history of the chaotic Solar System[J]. Earth and Planetary Science Letters, 2023, 607: 118052.
DOI URL |
[62] |
WEI R, JIN Z, ZHANG R, et al. Orbitally-paced coastal sedimentary records and global sea-level changes in the early Permian[J]. Earth and Planetary Science Letters, 2023, 620: 118356.
DOI URL |
[63] |
WU H, FANG Q, HINNOV L A, et al. Astronomical time scale for the Paleozoic Era[J]. Earth-Science Reviews, 2023, 244: 104510.
DOI URL |
[64] |
MJELDE R, FALEIDE J I. Variation of Icelandic and Hawaiian magmatism: evidence for co-pulsation of mantle plumes?[J]. Marine Geophysical Researches, 2009, 30(1): 61-72.
DOI URL |
[65] | 陈凌, 王旭, 梁晓峰, 等. 俯冲构造vs.地幔柱构造: 板块运动驱动力探讨[J]. 中国科学: 地球科学, 2020, 50(4): 501-514. |
[66] |
MÜLLER R D, MATHER B, DUTKIEWICZ A, et al. Evolution of Earth's tectonic carbon conveyor belt[J]. Nature, 2022, 605(7911): 629-639.
DOI |
[67] | 朱日祥, 赵盼, 万博, 等. 新特提斯单向俯冲的动力学机制[J]. 科学通报, 2023, 68(13): 1699-1708. |
[68] | 何治亮, 李双建, 刘全有, 等. 盆地深部地质作用与深层资源: 科学问题与攻关方向[J]. 石油实验地质, 2020, 42(5): 767-779. |
[69] |
SADLER P M. Sediment accumulation rates and the completeness of stratigraphic sections[J]. The Journal of Geology, 1981, 89(5): 569-584.
DOI URL |
[70] | LICCIARDI A, GALLAGHER K, CLARK S A. A bayesian approach for thermal history reconstruction in basin modeling[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(7): e2020JB019384. |
[71] | 陈昌锦, 程晓敢, 林秀斌, 等. 基于弹性板模型的塔里木盆地北部新生代沉降模拟: 对南天山隆升的启示[J/OL]. 地学前缘, [2024-01-20]. DOI: 10.13745/j.esf.sf.2023.9.43. |
[72] |
刘可禹, 刘建良. 盆地沉积充填演化与含油气系统耦合模拟方法在超深层油气成藏模拟中的应用: 以四川盆地中部震旦系灯影组为例[J]. 石油学报, 2023, 44(9): 1445-1458.
DOI |
[73] |
PETERS S E, QUINN D P, HUSSON J M, et al. Macrostratigraphy: insights into cyclic and secular evolution of the earth-life system[J]. Annual Review of Earth and Planetary Sciences, 2022, 50(1): 419-449.
DOI URL |
[74] | 金之钧, 等. 中国页岩油资源发展战略研究[M]. 北京: 石油工业出版社, 2022. |
[75] |
赵文智, 朱如凯, 刘伟, 等. 我国陆相中高熟页岩油富集条件与分布特征[J]. 地学前缘, 2023, 30(1): 116-127, 242-259.
DOI |
[1] | DENG Jun, WANG Chang-Meng, LI Wen-Chang, YANG Li-Jiang, WANG Qiang-Fei. The situation and enlightenment of the research of the tectonic evolution and metallogenesis in the Sanjiang Tethys. [J]. Earth Science Frontiers, 20140101, 21(1): 52-64. |
[2] | LIU Demin, WANG Jie, JIANG Huai, ZHAO Yue, GUO Tieying, YANG Weiran. Evolutionary geodynamics and remote effects of the uplift of the Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2024, 31(1): 154-169. |
[3] | DENG Yan, XU Yuchao, FAN Ye, SUN Guicheng, DONG Zeyi, HAN Bing. Application of the magnetotelluric method in the Sichuan-Yunnan region—a review [J]. Earth Science Frontiers, 2024, 31(1): 181-200. |
[4] | ZHANG Yanbin, ZHAI Mingguo, ZHOU Yanyan, ZHOU Ligang. The continental lower crust [J]. Earth Science Frontiers, 2024, 31(1): 28-45. |
[5] | LI Dan, CHANG Jian, QIU Nansheng, XIONG Yujie. Thermal analysis of ultra-deep layers and its influence on reservoir utilization in platform area, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 135-149. |
[6] | GAO Jian, LI Huili, HE Zhiliang, CAI Xunyu, LI Shuangjian, LIU Guangxiang, YUAN Yusong, LIN Juanhua, LI Zhi. Multi-stage hydrocarbon accumulation in Cambrian Xixiangchi Group, Pingqiao area, southeastern Sichuan and its implications for hydrocarbon exploration [J]. Earth Science Frontiers, 2023, 30(6): 263-276. |
[7] | LI Huili, GAO Jian, CAO Zicheng, ZHU Xiuxiang, GUO Xiaowen, ZENG Shuai. Spatial-temporal distribution of fluid activities and its significance for hydrocarbon accumulation in the strike-slip fault zones, Shuntuoguole low-uplift, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 316-328. |
[8] | ZHANG Baojian, LEI Yude, ZHAO Zhen, TANG Xianchun, LUO Yinfei, WANG Guiling, GAO Jun, ZHANG Dailei. Geodynamic processes and mechanisms of the formation of hot dry rock in the Gonghe Basin [J]. Earth Science Frontiers, 2023, 30(5): 384-401. |
[9] | YANG Debin, LU Xinbian, GAO Zhiqian, CAO Fei, WANG Yan, BAO Dian, LI Shengqing. Hydrocarbon accumulation and reservoir characteristics of deep marine fault-karst reservoirs in northern Tarim Basin [J]. Earth Science Frontiers, 2023, 30(4): 43-50. |
[10] | HE Chencheng, CHEN Honghan, XIAO Xuewei, LIU Xiuyan, SU Ao. Differential shale gas generation in the Lower Cambrian Qiongzhusi stage in the Middle-Upper Yangtze region [J]. Earth Science Frontiers, 2023, 30(3): 44-65. |
[11] | FU Jinhua. Accumulation characteristics and exploration potential of tight limestone gas in the Taiyuan Formation of the Ordos Basin [J]. Earth Science Frontiers, 2023, 30(1): 20-29. |
[12] | BAO Hongping, WANG Qianping, YAN Wei, CAI Zhenghong, ZHENG Jie, WEI Liubin, HUANG Zhengliang, GUO Wei. Sedimentary characteristics and gas accumulation potential of the Ordovician carbonate-evaporite paragenesis system in central and eastern Ordos Basin [J]. Earth Science Frontiers, 2023, 30(1): 30-44. |
[13] | WEI Haoyuan, ZHU Zongliang, XIAO Wenhua, WEI Jun, WEI Deqiang, YUAN Bochao, XIANG Xin. Oil-gas geological features and exploration direction in the Qingxi Sag, Jiuquan Basin [J]. Earth Science Frontiers, 2023, 30(1): 69-80. |
[14] | ZHAO Xianzheng, JIN Fengming, PU Xiugang, LUO Qun, ZHOU Lihong, JIANG Wenya, DONG Xiongying, SHI Zhannan, HAN Wenzhong, ZHANG Wei, WANG Hu. “Hydrocarbon accumulation chain”—concept, characteristics and application [J]. Earth Science Frontiers, 2022, 29(6): 120-135. |
[15] | ZHENG Herong, HU Zongquan, YUN Lu, LIN Huixi, DENG Shang, JIA Huichong, PU Yong. Strike-slip faults in marine cratonic basins in China: Development characteristics and controls on hydrocarbon accumulation [J]. Earth Science Frontiers, 2022, 29(6): 224-238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||