Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1): 154-169.DOI: 10.13745/j.esf.sf.2024.1.146
Previous Articles Next Articles
LIU Demin1(), WANG Jie2,3,*(), JIANG Huai1, ZHAO Yue1, GUO Tieying1, YANG Weiran1
Received:
2024-01-04
Revised:
2024-01-20
Online:
2024-01-25
Published:
2024-01-25
CLC Number:
LIU Demin, WANG Jie, JIANG Huai, ZHAO Yue, GUO Tieying, YANG Weiran. Evolutionary geodynamics and remote effects of the uplift of the Qinghai-Tibet Plateau[J]. Earth Science Frontiers, 2024, 31(1): 154-169.
Fig.6 Sectional map showing the relationship between the interal structure, fragmented stnucture, and dep structure of the Qinghai-Tibet Plateau. Modiied after [21].
[1] |
ADLAKHA V, LANG K A, PATEL R C. Rapid long-term erosion in the rain shadow of the Shilong Plateau, Eastern Himalaya[J]. Tectonophysics, 2013, 582: 76-83.
DOI URL |
[2] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.
DOI URL |
[3] |
赵俊猛, 张培震, 张先康, 等. 中国西部壳幔结构与动力学过程及其对资源环境的制约: “羚羊计划” 研究进展[J]. 地学前缘, 2021, 28(5): 230-259.
DOI |
[4] | 潘桂棠, 刘宇平, 郑来林, 等. 青藏高原碰撞构造与效应[M]. 广州: 广东科技出版社, 2013. |
[5] | 潘桂棠, 王立全, 尹福光, 等. 青藏高原形成演化研究回顾、 进展与展望[J]. 沉积与特提斯地质, 2022, 42(2): 151-175. |
[6] | 吴珍汉, 吴中海, 胡道功, 等. 青藏高原新生代构造演化与隆升过程[M]. 北京: 地质出版社, 2009. |
[7] | 韩慕康. 构造地貌学[J]. 地球科学进展, 1992, 7(5): 61-62. |
[8] | 刘德民, 李德威, 谢德凡, 等. 喜马拉雅造山带中段北坡构造地貌初步研究[J]. 地球科学: 中国地质大学学报, 2003, 28(6): 639-644. |
[9] | 马宗晋, 杜品仁, 高祥林. 全球构造研究的思考[J]. 地学前缘, 2003(增刊): 1-4. |
[10] | 马瑾, 郭彦双. 失稳前断层加速协同化的实验室证据和地震实例[J]. 地震地质, 2014, 36(3): 547-560. |
[11] |
BURKE K. Plate tectonics the Wilson Cycle and mantle plumes: geodynamics from the Top[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 1-29.
DOI URL |
[12] | 马宗晋, 郑大林. 中蒙大陆中轴构造带及其地震活动[J]. 地震研究, 1981(4): 421-436. |
[13] |
刘德民, 杨巍然, 郭铁鹰. 藏南地区新生代多阶段构造演化及其动力学的探讨[J]. 地学前缘, 2020, 27(1): 194-203.
DOI |
[14] | 任纪舜. 1∶500万国际亚洲地质图[CM]. 北京: 地质出版社, 2013. |
[15] | 许志琴, 马绪宣. 中国大陆显生宙俯冲型、 碰撞型和复合型片麻岩穹窿(群)[J]. 岩石学报, 2015, 31(12): 3509-3523. |
[16] | 李江海. 全球中新生代大地构造图及说明书[M]. 北京: 科学出版社, 2017. |
[17] |
杨巍然, 姜春发, 张抗, 等. 运用开合旋构造观探究地球内部是如何运行的[J]. 地学前缘, 2020, 27(1): 204-210.
DOI |
[18] | 杨巍然, 王新华, 徐文燕. 怀柔汤河口地区推覆构造特征. 地质科技情报, 1973(5): 102-113. |
[19] | 杨巍然. 论造山作用和造山带[J]. 地学前缘, 1999, 6(1): 10-14. |
[20] |
任雅琼, 马瑾, 刘培洵, 等. 平直断层黏滑过程热场演化及失稳部位识别的实验研究[J]. 地震地质, 2016, 38(1): 65-76.
DOI |
[21] | 杨巍然, 王杰, 梁晓. 亚洲大地构造基本特征和演化规律[J]. 地学前缘, 2012, 19(5): 1-17. |
[22] |
TURNER S, HAWKESWORTH C, LIU J, et al. Timing of Tibetan uplift constrained by analysis of volcanic rocks[J]. Nature, 1993, 364: 50-54.
DOI |
[23] |
AN Z S, JOHN E K, WARREN L P, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411: 62-66.
DOI |
[24] |
SPICER R A, HARRIS N B W, WIDDOWSON M, et al. Constant elevation of southern Tibet over the past 15 million years[J]. Nature, 2003, 421: 622-624.
DOI |
[25] |
CURRIE B S, ROWLEY D B, TABOR N J. Middle Miocene paleoaltimetry of southern Tibet: implications for the role of mantle thickening and delamination in the Himalayan orogen[J]. Geology, 2005, 33: 181-184.
DOI URL |
[26] |
COLEMAN M E, HODGES K V. Evidence for Tibetan Plateau uplift before 14 m.y. ago from a new minimum estimate for east-west extension[J]. Nature, 1995, 374(6517): 49-52.
DOI |
[27] | 李晓蓉, 张波, 张进江, 等. 喜马拉雅造山带亚东地区晚新生代剥露历史及其构造意义: 来自磷灰石和锆石(U-Th)/He数据的约束[J]. 岩石学报, 2022, 96(4): 1143-1162. |
[28] |
GRUJIC D, COUTAND I, BOOKHAGEN B, et al. Climate forcing of erosion, landscape, and tectonics in the Bhutan Himalayas[J]. Geology, 2006, 34: 801-804.
DOI URL |
[29] |
FANG X M, ZHANG W L, MENG Q Q, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258: 293-306.
DOI URL |
[30] | 杨巍然, 李志新, 王勇新, 等. 世界七大洲最高峰构造对比[J]. 地学前缘, 2000, 7(2): 587-603. |
[31] |
BEAUMONT C, JAMIESON R, NGUYEN M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414(6865): 738-742.
DOI |
[32] | 刘树根, 李智武, PETER J J, 等. 青藏高原东缘中生代若尔盖古高原的发现及其地质意义[J]. 成都理工大学学报(自然科学版), 2019, 46(1): 1-28. |
[33] | NEGREDO A M, REPLUMAZ A, VILLASENOR A, et al. Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region[J]. Earth and Planetary Sciene Letters, 2007, 259: 212-225. |
[34] | VILLASENOR A, SPAKMAN W, ENGDAHL E R. Influence of regional travel times in global tomographic models[J]. Geophysical Research Abstracts, 2003, 5: EAE03-A-08614. |
[35] |
梁光河. 贝加尔裂谷和汾渭地堑成因与印度欧亚碰撞的远程效应[J]. 地学前缘, 2023, 30(3): 282-293.
DOI |
[36] | 马瑾, 刘力强, 刘培洵, 等. 断层失稳错动热场前兆模式: 雁列断层的实验研究[J]. 地球物理学报, 2007, 50(4): 1141-1149. |
[37] |
TSEKHMISTRENKO M, SIGLOCH K, HOSSEINI K, et al. A tree of Indo-African mantle plumes imaged by seismic tomography[J]. Nature Geoscience, 2021, 14: 612-619.
DOI |
[38] | LIU H, LENG W. Plume-tree structure induced by low-viscosity layers in the upper mantle[J]. Geophysical Research Letters, 2020, 47: e2019GL086508. |
[39] | 於文辉, 何发岐, 袁茂山, 等. 超级地幔树对全球构造的控制作用[J/OL]. 地质学报, 2024, 98[2023-12-20]. http://www.geojournals.cn/dzxb/dzxb/article/abstract/2024040. |
[40] | 杨文采. 从地壳上地幔构造看大陆岩石圈伸展与裂解[J]. 地质论评, 2014, 60(5): 945-961. |
[41] | 杨巍然, 纪克诚, 孙继源, 等. 大陆裂谷研究中的几个前沿课题[J]. 地学前缘, 1995, 2(1/2): 93-102. |
[42] | 冯锐, 马宗晋, 方剑, 等. 发展中的板块边界: 天山—贝加尔活动构造带[J]. 地学前缘, 2007, 14(4): 1-17. |
[43] |
杨巍然, 隋志龙, MATS V D. 俄罗斯贝加尔湖区伸展构造及与中国东部伸展构造对比[J]. 地球科学进展, 2003, 18(1): 45-49.
DOI |
[44] |
赵俊猛, 杜品仁. 印度-亚洲大陆的初始碰撞[J]. 地震地质, 2016, 38(3): 783-796.
DOI |
[45] |
TAPPONNIER P, MOLNAR P. Slip line field theory and large scale continental tectonics[J]. Nature, 1976, 264(5584): 319-324.
DOI |
[46] | XU X W, MA X Y, DENG Q D. Neotectonic activity along the Shanxi rift system, China[J]. Tectonophysics, 1993(219): 305-325. |
[47] | 刘光勋, 马廷著, 黄佩玉, 等. 中国东部活动断裂的现代构造运动[J]. 地震地质, 1982, 4(4): 1-14. |
[48] | ZHANG Y Q, MA Y S, YANG N, et al. Cenozoic extensional stress evolution in North China[J]. Journal of Geodynamics, 2003(36): 591-613. |
[49] | 李德威. 青藏高原南部晚新生代板内造山与动力成矿[J]. 地学前缘, 2004, 11(4): 361-370. |
[50] |
ZHANG P Z, MOLNAR P, DOWNS W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410: 891-897.
DOI URL |
[51] |
FANG X M, GARZIONE C, VAN D V R, et al. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China[J]. Earth and Planetary Science Letters, 2003, 210(3/4): 545-560.
DOI URL |
[52] |
BIHAM R, GAUR V K, MOLNAR P. Himalayan seismic hazard[J]. Science, 2001, 293: 1442-1444.
DOI URL |
[53] |
LIN A, FU B, GUO J, et al. Co-seismic strike-slip and rupture length produced by the 2001 MS 8.1 central Kunlun earthquake[J]. Science, 2002, 296: 2015-2017.
DOI URL |
[54] |
CHEN W P, YANG Z. Earthquakes beneath the Himalayas and Tibet: evidence for strong lithospheric mantle[J]. Science, 2004, 304: 1949-1952.
DOI URL |
[55] | 崔作舟, 尹周勋, 高恩元, 等. 青藏高原速度结构和深部构造[M]. 北京: 地质出版社, 1992. |
[56] | 马杏垣, 游振东, 谭应佳, 等. 中国大地构造的几个基本问题[J]. 地质学报, 1961, 41(1): 30-41. |
[57] | МА С Ю马杏垣, ЯН В Ж杨巍然. Некоторые основные вопросы геотектоники Китая[J]. 中国地质科学院院刊, 1962, 11(4): 529-548. |
[58] |
王谦身, 滕吉文, 陈石, 等. 西构造结: 帕米尔及周边深部结构与构造探榷[J]. 地球物理学报, 2020, 63(8): 2970-2977.
DOI |
[59] | 吴双鹏, 张泽明, 田作林, 等. 东喜马拉雅构造结高压基性麻粒岩成因与构造意义[J]. 地质学报, 2024, 98(1): 96-115. |
[1] | DENG Jun, WANG Chang-Meng, LI Wen-Chang, YANG Li-Jiang, WANG Qiang-Fei. The situation and enlightenment of the research of the tectonic evolution and metallogenesis in the Sanjiang Tethys. [J]. Earth Science Frontiers, 20140101, 21(1): 52-64. |
[2] | DENG Yan, XU Yuchao, FAN Ye, SUN Guicheng, DONG Zeyi, HAN Bing. Application of the magnetotelluric method in the Sichuan-Yunnan region—a review [J]. Earth Science Frontiers, 2024, 31(1): 181-200. |
[3] | ZHANG Yanbin, ZHAI Mingguo, ZHOU Yanyan, ZHOU Ligang. The continental lower crust [J]. Earth Science Frontiers, 2024, 31(1): 28-45. |
[4] | JIN Zhijun, CHEN Shuping, ZHANG Rui. Fluctuation analysis for sedimentary basins: Review and outlook [J]. Earth Science Frontiers, 2024, 31(1): 284-296. |
[5] | SUN Huanquan, MAO Xiang, WU Chenbingjie, GUO Dianbin, WANG Haitao, SUN Shaochuan, ZHANG Ying, LUO Lu. Geothermal resources exploration and development technology: Current status and development directions [J]. Earth Science Frontiers, 2024, 31(1): 400-411. |
[6] | DUAN Jinbao, PAN Lei, SHI Siyu, JIANG Zhenxue, LI Pingping, ZOU Yutao, ZHANG Wenrui. Geometry, kinematic characteristics and evolution of No.15 strike-slip fault zone in Fuling area, eastern Sichuan [J]. Earth Science Frontiers, 2023, 30(6): 57-68. |
[7] | ZHANG Baojian, LEI Yude, ZHAO Zhen, TANG Xianchun, LUO Yinfei, WANG Guiling, GAO Jun, ZHANG Dailei. Geodynamic processes and mechanisms of the formation of hot dry rock in the Gonghe Basin [J]. Earth Science Frontiers, 2023, 30(5): 384-401. |
[8] | WU Chen, CHEN Xuanhua, DING Lin. Tectonic evolution and Cenozoic deformation history of the Qilian orogen [J]. Earth Science Frontiers, 2023, 30(3): 262-281. |
[9] | HE Bizhu, ZHENG Menglin, YUN Xiaorui, CAI Zhihui, JIAO Cunli, CHEN Xijie, ZHENG Yong, MA Xuxuan, LIU Ruohan, CHEN Huiming, ZHANG Shengsheng, LEI Min, FU Guoqiang, LI Zhenyu. Structural architecture and energy resource potential of Gonghe Basin, NE Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2023, 30(1): 81-105. |
[10] | WANG Xiaojun, SONG Yong, ZHENG Menglin, GUO Xuguang, WU Haisheng, REN Haijiao, WANG Tao, CHANG Qiusheng, HE Wunjun, WANG Xiatian, GUO Jianchen, HUO Jinjie. Tectonic evolution of and hydrocarbon accumulation in the western Junggar Basin [J]. Earth Science Frontiers, 2022, 29(6): 188-205. |
[11] | ZHOU Qijie, LIU Yongjiang, WANG Deying, GUAN Qingbin, WANG Guangzeng, WANG Yu, LI Zunting, LI Sanzhong. Mesozoic-Cenozoic tectonic evolution and buried hill formation in central Bohai Bay [J]. Earth Science Frontiers, 2022, 29(5): 147-160. |
[12] | TANG Yu, WANG Genhou, FENG Yipeng, CI Dan, LI Dian, FAN Zhengzhe, GAO Xi, WEI Yufei, HU Jixin, ZHANG Peilie. Tectonostratigraphic properties and evolution of the Yeba volcanic arc in South Gangdese, Tibet [J]. Earth Science Frontiers, 2022, 29(1): 285-302. |
[13] | GUO Jinjing, ZHAO Haitao, LIU Chongqing, WU Yanwang. When the northeastern margin of the Qinghai-Tibet Plateau was involved in its present tectonic system: Constraints from the Cenozoic sedimentary sequence [J]. Earth Science Frontiers, 2021, 28(5): 337-361. |
[14] | WANG Jun, ZHANG Xiao, GAO Yan. The relationships between vegetation dynamics and environmental factors on the Qinghai-Tibet Plateau: A review of research progress and prospect [J]. Earth Science Frontiers, 2021, 28(4): 70-82. |
[15] | MO Xuanxue. Geodynamic background of metallogenesis of large-superlarge ore deposits [J]. Earth Science Frontiers, 2020, 27(2): 13-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||