Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (5): 384-401.DOI: 10.13745/j.esf.sf.2023.2.63
Previous Articles Next Articles
ZHANG Baojian1,2,3(), LEI Yude4,5,6,*(
), ZHAO Zhen4,5,6, TANG Xianchun1,2,3, LUO Yinfei4,5,6, WANG Guiling1,3,*(
), GAO Jun1,2,3, ZHANG Dailei1,2,3
Received:
2022-09-01
Revised:
2023-01-09
Online:
2023-09-25
Published:
2023-10-20
CLC Number:
ZHANG Baojian, LEI Yude, ZHAO Zhen, TANG Xianchun, LUO Yinfei, WANG Guiling, GAO Jun, ZHANG Dailei. Geodynamic processes and mechanisms of the formation of hot dry rock in the Gonghe Basin[J]. Earth Science Frontiers, 2023, 30(5): 384-401.
钻孔位置 | 钻孔编号 | 地理坐标 | 孔深/m | 孔口 海拔/m | 花岗岩 埋深/m | 井底温度/℃ | |
---|---|---|---|---|---|---|---|
经度/(°) | 纬度/(°) | ||||||
共和恰卜恰河谷 | QR1 | 100.61 | 36.29 | 967.0 | 2 786 | 627.29 | 70 |
R1 | 1 203.48 | 未揭露 | 83.08 | ||||
DR1 | 100.61 | 36.24 | 1 453.58 | 2 776 | 1 354 | 87.6 | |
DR2 | 100.60 | 36.24 | 1 852.38 | 2 796 | 1 440 | 98.6 | |
DR3 | 100.62 | 36.26 | 2 927.26 | 2 806 | 1 340.25 | 181.17 | |
DR4 | 100.62 | 36.30 | 3 102 | 2 889 | 1 402 | 182.32 | |
DR5 | 100.61 | 36.28 | 1 501.6 | 2 860 | 1 490 | 86.7 | |
GR1 | 100.65 | 36.25 | 3 705 | 2 863.8 | 1 350 | 236 | |
GR2 | 100.69 | 36.23 | 3 003 | 2 648.7 | 940 | 186 | |
贵德三河平原 及扎仓沟 | R1 | 101.41 | 36.03 | 450.64 | 2 207.00 | 未揭露 | 43 |
R2 | 101.41 | 36.04 | 1 709.56 | 2 206.00 | 1 490.55 | 97 | |
R3 | 101.38 | 36.04 | 2 701.20 | 2 213.00 | 1 400 | 103.74 | |
RK1 | 101.40 | 36.03 | 603.43 | 2 207.48 | 未揭露 | 64 | |
ZR1 | 101.30 | 35.97 | 3 050.68 | 2 510.8 | 0 | 151.3 | |
ZR2 | 101.31 | 35.97 | 4 721.60 | 2 465.52 | 592.07 | 214(4 609 m) |
Table 1 Major deep hot-water and hot dry rock exploration drill holes in the Gonghe Basin
钻孔位置 | 钻孔编号 | 地理坐标 | 孔深/m | 孔口 海拔/m | 花岗岩 埋深/m | 井底温度/℃ | |
---|---|---|---|---|---|---|---|
经度/(°) | 纬度/(°) | ||||||
共和恰卜恰河谷 | QR1 | 100.61 | 36.29 | 967.0 | 2 786 | 627.29 | 70 |
R1 | 1 203.48 | 未揭露 | 83.08 | ||||
DR1 | 100.61 | 36.24 | 1 453.58 | 2 776 | 1 354 | 87.6 | |
DR2 | 100.60 | 36.24 | 1 852.38 | 2 796 | 1 440 | 98.6 | |
DR3 | 100.62 | 36.26 | 2 927.26 | 2 806 | 1 340.25 | 181.17 | |
DR4 | 100.62 | 36.30 | 3 102 | 2 889 | 1 402 | 182.32 | |
DR5 | 100.61 | 36.28 | 1 501.6 | 2 860 | 1 490 | 86.7 | |
GR1 | 100.65 | 36.25 | 3 705 | 2 863.8 | 1 350 | 236 | |
GR2 | 100.69 | 36.23 | 3 003 | 2 648.7 | 940 | 186 | |
贵德三河平原 及扎仓沟 | R1 | 101.41 | 36.03 | 450.64 | 2 207.00 | 未揭露 | 43 |
R2 | 101.41 | 36.04 | 1 709.56 | 2 206.00 | 1 490.55 | 97 | |
R3 | 101.38 | 36.04 | 2 701.20 | 2 213.00 | 1 400 | 103.74 | |
RK1 | 101.40 | 36.03 | 603.43 | 2 207.48 | 未揭露 | 64 | |
ZR1 | 101.30 | 35.97 | 3 050.68 | 2 510.8 | 0 | 151.3 | |
ZR2 | 101.31 | 35.97 | 4 721.60 | 2 465.52 | 592.07 | 214(4 609 m) |
编号 | 岩性 | 热导率 λ/(W·m-1·K-1) | 体积比热容 Cρ/(MJ·m-3·K-1) | 热扩散系数 α/(10-6m2·s-1) | 含水率/% |
---|---|---|---|---|---|
1 | 粉砂岩 | 1.295 7 | 1.505 6 | 0.860 6 | 0.76 |
2 | 砾岩 | 1.374 0 | 1.458 5 | 0.942 1 | 1.45 |
3 | 灰色砂岩 | 2.440 5 | 1.751 3 | 1.393 4 | 1.48 |
4 | 深灰色粉砂岩 | 2.265 5 | 1.770 0 | 1.279 7 | 0.43 |
5 | 灰黑色粉砂岩 | 1.954 2 | 1.424 1 | 0.670 0 | 0.8 |
6 | 灰色变质泥岩 | 1.328 7 | 1.759 6 | 0.755 4 | 2.45 |
7 | 青灰色砂岩 | 1.407 0 | 1.478 0 | 0.951 9 | 0.72 |
8 | 千枚岩化变质板岩 | 1.390 4 | 1.483 2 | 0.937 5 | 2.47 |
9 | 变质砂岩 | 1.542 7 | 1.484 8 | 1.039 6 | 0.03 |
10 | 灰色板岩 | 1.684 0 | 1.481 6 | 1.136 6 | 0.28 |
11 | 粉色变质砂岩 | 1.983 7 | 1.539 0 | 1.289 0 | 0.80 |
12 | 灰色变质砂岩 | 1.635 7 | 1.496 2 | 1.093 2 | 0.13 |
13 | 新近纪黄色黏土岩 | 0.612 1 | 1.529 7 | 0.400 1 | 2.21 |
14 | 新近纪黄色黏土岩 | 0.387 2 | 1.338 8 | 0.289 3 | 2.43 |
15 | 新近纪黄色黏土岩 | 0.341 1 | 1.388 0 | 0.245 7 | 1.72 |
16 | 新近纪黄色黏土岩 | 0.214 2 | 1.341 7 | 0.159 7 | 3.14 |
17 | 新近纪黄色黏土岩 | 0.325 9 | 1.540 0 | 0.211 6 | 2.00 |
18 | 细粒花岗岩 | 3.262 3 | 1.823 7 | 1.788 8 | 1.31 |
19 | 花岗岩 | 2.443 8 | 1.824 4 | 1.339 5 | 1.76 |
20 | 花岗岩 | 2.915 0 | 1.661 8 | 1.754 1 | 0.16 |
21 | 花岗岩 | 2.656 8 | 1.835 3 | 1.447 7 | 1.46 |
22 | 花岗岩 | 3.016 1 | 1.895 9 | 1.590 8 | 0.21 |
23 | 灰色花岗闪长岩 | 3.177 2 | 1.702 1 | 1.866 6 | 0.32 |
24 | 灰色花岗岩 | 2.079 4 | 1.560 5 | 1.332 5 | 1.08 |
Table 2 Statistical table of thermal property parameters for typical lithofacies in the Gonghe Basin
编号 | 岩性 | 热导率 λ/(W·m-1·K-1) | 体积比热容 Cρ/(MJ·m-3·K-1) | 热扩散系数 α/(10-6m2·s-1) | 含水率/% |
---|---|---|---|---|---|
1 | 粉砂岩 | 1.295 7 | 1.505 6 | 0.860 6 | 0.76 |
2 | 砾岩 | 1.374 0 | 1.458 5 | 0.942 1 | 1.45 |
3 | 灰色砂岩 | 2.440 5 | 1.751 3 | 1.393 4 | 1.48 |
4 | 深灰色粉砂岩 | 2.265 5 | 1.770 0 | 1.279 7 | 0.43 |
5 | 灰黑色粉砂岩 | 1.954 2 | 1.424 1 | 0.670 0 | 0.8 |
6 | 灰色变质泥岩 | 1.328 7 | 1.759 6 | 0.755 4 | 2.45 |
7 | 青灰色砂岩 | 1.407 0 | 1.478 0 | 0.951 9 | 0.72 |
8 | 千枚岩化变质板岩 | 1.390 4 | 1.483 2 | 0.937 5 | 2.47 |
9 | 变质砂岩 | 1.542 7 | 1.484 8 | 1.039 6 | 0.03 |
10 | 灰色板岩 | 1.684 0 | 1.481 6 | 1.136 6 | 0.28 |
11 | 粉色变质砂岩 | 1.983 7 | 1.539 0 | 1.289 0 | 0.80 |
12 | 灰色变质砂岩 | 1.635 7 | 1.496 2 | 1.093 2 | 0.13 |
13 | 新近纪黄色黏土岩 | 0.612 1 | 1.529 7 | 0.400 1 | 2.21 |
14 | 新近纪黄色黏土岩 | 0.387 2 | 1.338 8 | 0.289 3 | 2.43 |
15 | 新近纪黄色黏土岩 | 0.341 1 | 1.388 0 | 0.245 7 | 1.72 |
16 | 新近纪黄色黏土岩 | 0.214 2 | 1.341 7 | 0.159 7 | 3.14 |
17 | 新近纪黄色黏土岩 | 0.325 9 | 1.540 0 | 0.211 6 | 2.00 |
18 | 细粒花岗岩 | 3.262 3 | 1.823 7 | 1.788 8 | 1.31 |
19 | 花岗岩 | 2.443 8 | 1.824 4 | 1.339 5 | 1.76 |
20 | 花岗岩 | 2.915 0 | 1.661 8 | 1.754 1 | 0.16 |
21 | 花岗岩 | 2.656 8 | 1.835 3 | 1.447 7 | 1.46 |
22 | 花岗岩 | 3.016 1 | 1.895 9 | 1.590 8 | 0.21 |
23 | 灰色花岗闪长岩 | 3.177 2 | 1.702 1 | 1.866 6 | 0.32 |
24 | 灰色花岗岩 | 2.079 4 | 1.560 5 | 1.332 5 | 1.08 |
Fig.11 Spatial distribution of large low-velocity anomalies in the Tibetan Plateau and its periphery and the indicated mantle flow characteristics. Adapted from [57].
[1] |
张英, 冯建赟, 罗军, 等. 渤海湾盆地中南部干热岩选区方向[J]. 地学前缘, 2020, 27(1): 35-47.
DOI |
[2] | 毛翔, 国殿斌, 罗璐, 等. 世界干热岩地热资源开发进展与地质背景分析[J]. 地质论评, 2019, 65(6): 1472-1492. |
[3] | 李林果, 李百祥. 从青海共和-贵德盆地与山地地温场特征探讨热源机制和地热系统[J]. 物探与化探, 2017, 41(1): 29-34. |
[4] | 张盛生, 张磊, 田成成, 等. 青海共和盆地干热岩赋存地质特征及开发潜力[J]. 地质力学学报, 2019, 25(4): 501-508. |
[5] | 杨冶, 姜志海, 岳建华, 等. 干热岩勘探过程中地球物理方法技术应用探讨[J]. 地球物理学进展, 2019, 34(4): 1556-1567. |
[6] | 张超, 胡圣标, 宋荣彩, 等. 共和盆地干热岩地热资源的成因机制: 来自岩石放射性生热率的约束[J]. 地球物理学报, 2020, 63(7): 2697-2709. |
[7] | 唐显春, 王贵玲, 马岩, 等. 青海共和盆地地热资源热源机制与聚热模式[J]. 地质学报, 2020, 94(7): 2052-2065. |
[8] |
LIN W J, WANG G L, ZHANG S S, et al. Heat aggregation mechanisms of hot dry rocks resources in the Gonghe Basin, northeastern Tibetan Plateau[J]. Acta Geologica Sinica (English Edition), 2021, 95(6): 1793-1804.
DOI URL |
[9] | 蔺文静, 王贵玲, 邵景力, 等. 我国干热岩资源分布及勘探: 进展与启示[J]. 地质学报, 2021, 95(5): 1366-1381. |
[10] | 刘德民, 张昌生, 孙明行, 等. 干热岩勘查评价指标与形成条件[J]. 地质科技通报, 2021, 40(3): 1-11. |
[11] | 龙登红, 周小龙, 杨坤光, 等. 青藏高原东北缘深部地质构造与地热资源分布关系研究[J]. 中国地质, 2021, 48(3): 721-731. |
[12] |
FENG Y F, ZHANG X X, ZHANG B, et al. The geothermal formation mechanism in the Gonghe Basin: discussion and analysis from the geological background[J]. China Geology, 2018, 1(3): 331-345.
DOI URL |
[13] |
何丽娟, 汪集旸. “大地热流”等地热学重要术语的概念与应用[J]. 中国科技术语, 2021, 23(3): 3-9.
DOI |
[14] |
ZHANG C, JIANG G Z, SHI Y Z, et al. Terrestrial heat flow and crustal thermal structure of the Gonghe-Guide area, northeastern Qinghai-Tibetan Plateau[J]. Geothermics, 2018, 72: 182-192.
DOI URL |
[15] |
ZHANG C, HU S B, ZHANG S S, et al. Radiogenic heat production variations in the Gonghe basin, northeastern Tibetan Plateau: implications for the origin of high-temperature geothermal resources[J]. Renewable Energy, 2020, 148: 284-297.
DOI URL |
[16] | PAN S, KONG Y L, WANG K, et al. Magmatic origin of geothermal fluids constrained by geochemical evidence: implications for the heat source in the northeastern Tibetan Plateau[J]. Journal of Hydrology, 2021, 693: 126985. |
[17] | 张国伟, 郭安林, 姚安平. 中国大陆构造中的西秦岭-松潘大陆构造结[J]. 地学前缘, 2004, 11(3): 23-32. |
[18] |
ZHANG K J, ZHANG Y X, TANG X C, et al. Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision[J]. Earth-Science Reviews, 2012, 114: 236-249.
DOI URL |
[19] | 张启胜, 张敏. 青海南山断裂茶卡北山-大水桥形变带地震地质特征[J]. 高原地震, 1996 (2): 68-72. |
[20] |
CRADDOCK W H, KIRBY E, ZHANG H P, et al. Rates and style of Cenozoic deformation around the Gonghe Basin, northeastern Tibetan Plateau[J]. Geosphere, 2014, 10(6): 1255-1282.
DOI URL |
[21] | 王洪, 王成虎, 高桂云, 等. 青海共和盆地地应力状态与断层稳定性分析[J]. 震灾防御技术, 2021, 16(1): 123-133. |
[22] | 李锦轶, 张进. 全国重要矿产成矿地质背景研究系列: 中国大地构造图(1∶2 500 000)[CM]. 北京: 地质出版社, 2015: 1-5. |
[23] | ZHANG K J. Is the Songpan-Ganzi terrane (central China)really underlain by oceanic crust?[J]. Journal of the Geological Society of India, 2001, 57(3): 223-230. |
[24] |
ZENG L, ZHANG K J, TANG X C, et al. Mid-Permian rifting in central China: record of geochronology, geochemistry and Sr-Nd-Hf isotopes of bimodal magmatism on NE Qinghai-Tibetan Plateau[J]. Gondwana Research, 2018, 57: 77-89.
DOI URL |
[25] | 薛建球, 甘斌, 李百祥, 等. 青海共和-贵德盆地增强型地热系统(干热岩)地质-地球物理特征[J]. 物探与化探, 2013, 37(1): 35-41. |
[26] | 严维德, 王焰新, 高学忠, 等. 共和盆地地热能分布特征与聚集机制分析[J]. 西北地质, 2013, 46(4): 223-230. |
[27] | 张森琦, 严维德, 黎敦朋, 等. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质, 2018, 45(6): 1087-1102. |
[28] |
蒋建军, 代立东, 李和平, 等. 地球内部物质电学性质原位测量的影响因素和导电机制: 以地壳矿物为例[J]. 地球科学进展, 2013, 28: 455-466.
DOI |
[29] |
GAO J, ZHANG H J, ZHANG S Q, et al. Three-dimensional magnetotelluric imaging of the geothermal system beneath the Gonghe Basin, Northeast Tibetan Plateau[J]. Geothermics, 2018, 76: 15-25.
DOI URL |
[30] |
罗文行, 孙国强, 周洋, 等. 试论地球深部地热能传输机理[J]. 地学前缘, 2020, 27(1): 10-16.
DOI |
[31] | 李学礼, 孙占学, 周文斌. 古水热系统与铀成矿作用[M]. 北京: 地质出版社, 2000. |
[32] | 汪集旸. 地热学及其应用[M]. 北京: 科学出版社, 2015. |
[33] |
AYLING B F, HOGARTH R A, ROSE P E. Tracer testing at the Habanero EGS site, central Australia[J]. Geothermics, 2016, 63(1): 15-26.
DOI URL |
[34] | 张森琦, 吴海东, 张杨, 等. 青海省贵德县热水泉干热岩体地质-地热地质特征[J]. 地质学报, 2020, 94(5): 1591-1605. |
[35] |
KAWAKATSU H, KUMAR P, TAKEI Y, et al. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates[J]. Science, 2009, 324(5926): 499-502.
DOI PMID |
[36] |
EVANS R, HIRTH G, BABA K, et al. Geophysical evidence from the melt area for compositional controls on oceanic plates[J]. Nature, 2005, 437(7056): 249-252.
DOI |
[37] |
NAIF S, KEY K, CONSTABLE S, et al. Melt-rich channel observed at the lithosphere-asthenosphere boundary[J]. Nature, 2013, 495(7441): 356-359.
DOI |
[38] | 黄金莉, 赵大鹏. 首都圈地区地壳三维P波速度细结构与强震孕育的深部构造环境[J]. 科学通报, 2005, 40(4): 348-355. |
[39] |
ZHAO D P, SANTOSH M and YAMADA A. Dissecting large earthquakes in Japan: role of arc magma and fluids[J]. Island Arc, 2010, 19(1): 4-16.
DOI URL |
[40] | 高平. 中国华北地区壳内低速高导层(体)成因模式的探讨[J]. 中国地震, 1997, 13(3): 223-231. |
[41] | MULLER H J, RAAB S. Elastic wave velocities of granite at experimental simulated partial melting conditions[J]. Physics & Chemistry of the Earth, 1997, 22(1/2): 93-96. |
[42] | 周永胜, 何昌荣. 华北地区壳内低速层与地壳流变的关系及其对强震孕育的影响[J]. 地震地质, 2002, 24(1): 124-132. |
[43] | 罗照华. 流体地球科学与地球系统科学[J]. 地学前缘, 2018, 25(6): 283-288. |
[44] | 金胜, 魏文博, 汪硕, 等. 青藏高原地壳高导层的成因及动力学意义探讨: 大地电磁探测提供的证据[J]. 地球物理学报, 2010, 53(10): 2376-2385. |
[45] | 顾芷娟, 郭才华, 李彪, 等. 壳内低速高导层成因初步探讨[J]. 中国科学(B辑), 1995, 25(1): 108-112. |
[46] | 李振清, 侯增谦, 聂凤军, 等. 西藏地热活动中铯的富集过程探讨[J]. 地质学报, 2006, 80(9): 1457-1464. |
[47] |
DAN W, WANG Q, WHITE W M, et al. Passive-margin magmatism caused by enhanced slab-pull forces in central Tibet[J]. Geology, 2021, 49 (2): 130-134.
DOI URL |
[48] | 施锦, 刘耀炜. 西秦岭北缘深大断裂地热异常区岩石圈内流体通道研究[C]// 中国八级大震研究及防震减灾学术会议文集. 北京: 中国地震学会, 2001: 194-200. |
[49] | 罗仁昱, 陈继锋, 尹欣欣, 等. 青海共和及周边地区的地壳三维速度结构[J]. 地震地质, 2021, 43(1): 232-248. |
[50] |
WANG Q, HAWKESWORTH C J, WYMAN D, et al. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow[J]. Nature Communications, 2016, 7: 11888.
DOI PMID |
[51] |
PETER A, ZIEGLER. Plate tectonics, plate moving mechanisms and rifting[J]. Tectonophysics, 1992, 215(1/2): 9-34. https://doi.org/10.1016/0040-1951(92)90072-E.
DOI URL |
[52] | 沈旭章, 周元泽, 张元生, 等. 青藏高原东北缘地壳结构变化的地球动力学意义[J]. 地球物理学进展, 2013, 28(5): 2273-2282. |
[53] | 王新胜, 方剑, 许厚泽. 青藏高原东北缘岩石圈三维密度结构[J]. 地球物理学报, 2013, 56(11): 3770-3778. |
[54] | 莫宣学, 赵志丹, 邓晋福, 等. 青藏新生代钾质火山活动的时空迁移及向东部玄武岩省的过渡壳幔深部物质流的暗示[J]. 现代地质, 2007, 21(2): 255-264. |
[55] | 许志琴, 姜枚, 杨经绥. 青藏高原北部隆升的深部构造物理作用: 以“格尔木-唐古拉山”地质及地球物理综合剖面为例[J]. 地质学报, 1996, 70: 195-206. |
[56] | 莫宣学, 赵志丹, 喻学忠, 等. 青藏高原新生代碰撞-后碰撞火成岩[M]. 北京: 地质出版社, 2009. |
[57] | 侯增谦, 许博, 郑远川, 等. 地幔通道流: 青藏高原大规模生长的深部机制[J]. 科学通报, 2021, 66: 2671-2690. |
[58] | KLEMPERER S L, ZHAO P, WHYTE C J, et al. Limited underthrusting of India below Tibet: 3He/4He analysis of thermal springs locates the mantle suture in continental collision[J]. Proceedings of the National Academy of Sciences, 2022, 119(12): e2113877119. |
[59] | 李孟洋, 刘少林, 杨顶辉, 等. 基于程函方程的远震成像方法反演青藏高原东北缘速度和径向各向异性结构[J]. 中国科学: 地球科学, 2022, 52(5): 860-881. |
[60] | 万天丰, 李三忠, 杨巍然, 等. 板块运动的机制与动力来源学术争鸣[J]. 地学前缘, 2019, 26(6): 309-319. |
[61] | 李三忠, 王光增, 索艳慧, 等. 板块驱动力: 问题本源与本质[J]. 大地构造与成矿学, 2019, 43(4): 605-643. |
[62] |
SHI D N, KLEMPERER S L, SHI J Y, et al. Localized foundering of Indian lower crust in the India-Tibet collision zone[J]. Proceedings of the National Academy of Sciences, 2020, 117(40) : 24742-24747.
DOI URL |
[63] | 刘光鼎. 探索深部地球物理奥秘, 揭示青藏高原动力机制[J]. 地球物理学报, 2017, 60(6): 1. |
[64] | 许志琴, 杨经绥, 李海兵, 等. 青藏高原与大陆动力学: 地体拼合、碰撞造山及高原隆升的深部驱动力[J]. 中国地质, 2006, 33: 221-238. |
[65] | 张培震, 邓起东, 张竹琪, 等. 中国大陆的活动断裂, 地震灾害及其动力过程[J]. 中国科学: 地球科学, 2013, 43(10): 1607-1620. |
[66] | 祝爱玉, 张东宁, 朱涛, 等. 地幔对流拖曳力影响青藏高原东北缘地壳运动格局的数值模拟研究[J]. 中国科学: 地球科学, 2019, 49(2): 353-367. |
[67] |
张健, 石耀霖. 中国西部地区重力位能与板内变形动力[J]. 中国科学院大学学报, 2001, 18(1): 43-50.
DOI |
[68] | 邓万明. 中昆仑造山带钾玄质火山岩的地质、地球化学和时代[J]. 地质科学, 1991, (3): 201-213. |
[69] | 杨文采, 瞿辰, 任浩然, 等. 青藏高原地壳地震纵波速度的层析成像[J]. 地质论评, 2019, 65(1): 2-14. |
[70] | 杨文采. 全球流体通道网[J]. 地球物理通报, 1998, 15(5): 621-652. |
[71] | 杨辉, 滕吉文, 皮娇龙. 青藏高原通道流模型动力环境的数值模拟[J]. 地球物理学报, 2013, 56(8): 2625-2635. |
[72] | 杨文采, 侯遵泽, 徐义贤, 等. 青藏高原下地壳热变形和管道流研究[J]. 地质论评, 2017, 63(5): 1141-1152. |
[73] |
YANG Y, ABART R, YANG X S, et al. Seismic anisotropy in the Tibetan lithosphere inferred from mantle xenoliths[J]. Earth and Planetary Science Letters, 2019, 515: 260-270.
DOI URL |
[74] | 郑洪伟, 李廷栋, 高锐, 等. 青藏高原北部新生代火山岩区深部结构特征及其成因探讨[J]. 现代地质, 2010, 24(1): 131-139. |
[75] |
WANG Z W, ZHAO D P, GAO R, et al. Complex subduction beneath the Tibetan Plateau: a slab warping model[J]. Physics of the Earth and Planetary Interiors, 2019, 292: 42-54.
DOI |
[76] |
SHEN X Z, LIU M, GAO Y, et al. Lithospheric structure across the northeastern margin of the Tibetan Plateau: implications for the plateau’s lateral growth[J]. Earth and Planetary Science Letters, 2017, 459: 80-92.
DOI URL |
[77] | 喻学惠, 莫宣学, 苏尚国, 等. 甘肃礼县新生代火山喷发碳酸岩的发现及意义[J]. 岩石学报, 2003, 19(1): 105-112. |
[78] | 蔡鹏捷, 许荣科, 刘嘉, 等. 青海省贵德盆地内首次发现新近系火山活动[J]. 资源调查与环境, 2014, 35(2): 129, 156. |
[79] |
梁光河. 贝加尔裂谷和汾渭地堑成因与印度-欧亚碰撞的远程效应[J]. 地学前缘, 2023, 30(3): 282-293.
DOI |
[80] |
文冬光, 宋健, 刁玉杰, 等. 深部水文地质研究的机遇与挑战[J]. 地学前缘, 2022, 29(3): 11-24.
DOI |
[1] | DENG Jun, WANG Chang-Meng, LI Wen-Chang, YANG Li-Jiang, WANG Qiang-Fei. The situation and enlightenment of the research of the tectonic evolution and metallogenesis in the Sanjiang Tethys. [J]. Earth Science Frontiers, 20140101, 21(1): 52-64. |
[2] | XU Jiading, ZHANG Chongyuan, ZHANG Hao, BAI Jinpeng, ZHANG Shi’an, ZHANG Shengsheng, QIN Xianghui, SUN Dongsheng, HE Manchao, WU Manlu. In-situ stress measurements in hot dry rock, Qinghai Gonghe Basin and simulation analysis of reservoir fracture modification [J]. Earth Science Frontiers, 2024, 31(6): 130-144. |
[3] | QI Xiaofei, XIAO Yong, SHANGGUAN Shuantong, SU Ye, WANG Hongke, LI Yingying, HU Zhixing. Fracture propagation mechanism in artificial reservoir of deep hot dry rock, Matouying and its applications [J]. Earth Science Frontiers, 2024, 31(6): 224-234. |
[4] | JIANG Zheng, SHU Biao, TAN Jingqiang. Heat transfer in geothermal reservoir of CO2-based enhanced geothermal systems—current research status and prospects [J]. Earth Science Frontiers, 2024, 31(6): 235-251. |
[5] | SHANGGUAN Shuantong, TIAN Lanlan, PAN Miaomiao, YANG Fengliang, YUE Gaofan, SU Ye, QI Xiaofei. Fault slip tendency and induced-earthquake risks in hot dry rock development: A case study in the Tangshan Matouying HDR site [J]. Earth Science Frontiers, 2024, 31(6): 252-260. |
[6] | LIU Demin, WANG Jie, JIANG Huai, ZHAO Yue, GUO Tieying, YANG Weiran. Evolutionary geodynamics and remote effects of the uplift of the Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2024, 31(1): 154-169. |
[7] | DENG Yan, XU Yuchao, FAN Ye, SUN Guicheng, DONG Zeyi, HAN Bing. Application of the magnetotelluric method in the Sichuan-Yunnan region—a review [J]. Earth Science Frontiers, 2024, 31(1): 181-200. |
[8] | ZHANG Yanbin, ZHAI Mingguo, ZHOU Yanyan, ZHOU Ligang. The continental lower crust [J]. Earth Science Frontiers, 2024, 31(1): 28-45. |
[9] | JIN Zhijun, CHEN Shuping, ZHANG Rui. Fluctuation analysis for sedimentary basins: Review and outlook [J]. Earth Science Frontiers, 2024, 31(1): 284-296. |
[10] | HE Bizhu, ZHENG Menglin, YUN Xiaorui, CAI Zhihui, JIAO Cunli, CHEN Xijie, ZHENG Yong, MA Xuxuan, LIU Ruohan, CHEN Huiming, ZHANG Shengsheng, LEI Min, FU Guoqiang, LI Zhenyu. Structural architecture and energy resource potential of Gonghe Basin, NE Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2023, 30(1): 81-105. |
[11] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
[12] | MO Xuanxue. Geodynamic background of metallogenesis of large-superlarge ore deposits [J]. Earth Science Frontiers, 2020, 27(2): 13-19. |
[13] | LUO Wenxing, SUN Guoqiang, ZHOU Yang, LIU Demin, CHEN Qi. Discussion on the mechanism of deep geothermal energy transmission [J]. Earth Science Frontiers, 2020, 27(1): 10-16. |
[14] | WANG Guiling, LIU Yanguang, ZHU Xi, ZHANG Wei. The status and development trend of geothermal resources in China [J]. Earth Science Frontiers, 2020, 27(1): 1-9. |
[15] | ZHANG Ying, FENG Jianyun, LUO Jun, HE Zhiliang, WU Xiaoling. Screening of hot dry rock in the south-central part of the Bohai Bay Basin [J]. Earth Science Frontiers, 2020, 27(1): 35-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||