Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (6): 224-234.DOI: 10.13745/j.esf.sf.2024.7.21
Previous Articles Next Articles
QI Xiaofei1(), XIAO Yong2,*(
), SHANGGUAN Shuantong1, SU Ye1, WANG Hongke3, LI Yingying1, HU Zhixing1
Received:
2024-01-05
Revised:
2024-04-17
Online:
2024-11-25
Published:
2024-11-25
CLC Number:
QI Xiaofei, XIAO Yong, SHANGGUAN Shuantong, SU Ye, WANG Hongke, LI Yingying, HU Zhixing. Fracture propagation mechanism in artificial reservoir of deep hot dry rock, Matouying and its applications[J]. Earth Science Frontiers, 2024, 31(6): 224-234.
[1] | 郭建春, 肖勇, 蒋恕, 等. 深层干热岩水力剪切压裂认识与实践[J]. 地质学报, 2021, 95(5): 1582-1593. |
[2] | WANG G L, GAN H N, LIN W J, et al. Hydrothermal systems characterized by crustal thermally-dominated structures of southeastern China[J]. Acta Geologica Sinica-English Edition, 2023, 97(4): 1003-1013. |
[3] | LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259. |
[4] | KELKAR S, WOLDEGABRIEL G, REHFELDT K. Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA[J]. Geothermics, 2016, 63: 5-14. |
[5] | NORBECK J H, MCCLURE M W, HORNE R N. Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation[J]. Geothermics, 2018, 74: 135-149. |
[6] | STOBER I. Depth- and pressure-dependent permeability in the upper continental crust: data from the Urach 3 geothermal borehole, southwest Germany[J]. Hydrogeology Journal, 2011, 19(3): 685-699. |
[7] | BUCHER K, STOBER I. Large-scale chemical stratification of fluids in the crust: hydraulic and chemical data from the geothermal research site Urach, Germany[J]. Geofluids, 2016, 16(5): 813-825. |
[8] | GENTER A, FRITSCH D, CUENOT N, et al. Overview of the current activities of the European EGS Soultz project: from exploration to electricity production[C]//Proceedings of the 34th workshop on geothermal reservoir engineering. Palo Alto: Standford University,2009:1-7. |
[9] | GENTER A, EVANS K, CUENOT N, et al. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS)[J]. Comptes Rendus Geoscience, 2010, 342(7/8): 502-516. |
[10] | TERAKAWA T, MILLER S A, DEICHMANN N. High fluid pressure and triggered earthquakes in the enhanced geothermal system in Basel, Switzerland[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B7): B07305-1-B07305-15. |
[11] | MCMAHON A, BAISCH S, PARADE L. Case study of the seismicity associated with the stimulation of the enhanced geothermal system at Habanero, Australia[C]∥Proceedings of Australian geothermal energy conferences 2013. Brisbane, Australia: AGEC Congress,2013:29-36. |
[12] | ZARROUK S J, MOON H. Efficiency of geothermal power plants: a worldwide review[J]. Geothermics, 2014, 51: 142-153. |
[13] | PORTIER N, HINDERER J, RICCARDI U, et al. Hybrid gravimetry monitoring of Soultz-sous-Forêts and Rittershoffen geothermal sites (Alsace, France)[J]. Geothermics, 2018, 76: 201-219. |
[14] | HACKSTEINF V, MADLENER R. Sustainable operation of geothermal power plants: why economics matters[J]. Geothermal Energy, 2021, 9(1): 10. |
[15] | HUANG S P. Geothermal energy in China[J]. Nature Climate Change, 2012, 2(8): 557-560. |
[16] | 许天福, 胡子旭, 李胜涛, 等. 增强型地热系统: 国际研究进展与我国研究现状[J]. 地质学报, 2018, 92(9): 1936-1947. |
[17] | 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937. |
[18] | 王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660. |
[19] | 李德威, 王焰新. 干热岩地热能研究与开发的若干重大问题[J]. 地球科学:中国地质大学学报, 2015, 40(11): 1858-1869. |
[20] | 王贵玲, 刘峰, 蔺文静, 等. 我国陆区地壳生热率分布与壳幔热流特征研究[J]. 地球物理学报, 2023, 66(12): 5041-5056. |
[21] | 王贵玲, 马峰, 侯贺晟, 等. 松辽盆地坳陷层控地热系统研究[J]. 地球学报, 2023, 44(1): 21-32. |
[22] | 蔺文静, 王贵玲, 甘浩男. 华南陆缘火成岩区差异性地壳热结构及地热意义[J]. 地质学报, 2024, 98(2): 544-557. |
[23] | 郭茂生, 姬长发, 刘宗鑫, 等. 青海共和盆地干热岩热储层人工水力致裂裂缝扩展规律[J]. 西安科技大学学报, 2023, 43(3): 514-522. |
[24] | 刘汉青, 胡才博, 赵桂萍, 等. 利用热—孔隙流体耦合有限元数值模拟研究干热岩开发温度下降过程: 以青海共和盆地恰卜恰地区干热岩开发为例[J]. 地球物理学报, 2023, 66(7): 2887-2902. |
[25] |
文冬光, 宋健, 刁玉杰, 等. 深部水文地质研究的机遇与挑战[J]. 地学前缘, 2022, 29(3): 11-24.
DOI |
[26] |
齐晓飞, 上官拴通, 张国斌, 等. 河北省乐亭县马头营区干热岩资源孔位选址及开发前景分析[J]. 地学前缘, 2020, 27(1): 94-102.
DOI |
[27] | GUO J C, ZHAO Z H, XIAO Y. The challenge and future development of hydraulic fracturing in deep hot-dry rock in EGS[C]∥Proceedings of ARMA-CUPB geothermal international conference. Beijing: ARMA Congress,2019:9898. |
[28] | WANG D B, BIAN X B, QIN H, et al. Experimental investigation of mechanical properties and failure behavior of fluid-saturated hot dry rocks[J]. Natural Resources Research, 2021, 30(1): 289-305. |
[29] | XIAO Y, GUO J C, WANG H H, et al. Elastoplastic constitutive model for hydraulic aperture analysis of hydro-shearing in geothermal energy development[J]. SIMULATION: Transactions of The Society for Modeling and Simulation International, 2018. |
[30] | 肖勇. 增强地热系统中干热岩水力剪切压裂THMC耦合研究[D]. 成都: 西南石油大学, 2017. |
[31] | 范勇, 赵彦琳, 朱哲明, 等. 基于井筒—射孔模型的地层破裂压力及起裂角的理论研究[J]. 中南大学学报(自然科学版), 2019, 50(3): 669-678. |
[32] | SALIMZADEH S, NICK H M. A coupled model for reactive flow through deformable fractures in Enhanced Geothermal Systems[J]. Geothermics, 2019, 81: 88-100. |
[33] | 孙强, 高千, 张玉良, 等. 干热岩开发中高温水—岩作用下岩石应力腐蚀及多场损伤问题[J]. 地球科学与环境学报, 2023, 45(3): 460-473. |
[34] | YOON J S, ZANG A, STEPHANSSON O, et al. Discrete element modelling of hydraulic fracture propagation and dynamic interaction with natural fractures in hard rock[J]. Procedia Engineering, 2017, 191: 1023-1031. |
[35] | 王涛, 柳占立, 高岳, 等. 基于给定参数的水力裂缝与天然裂缝相互作用结果的预测准则[J]. 工程力学, 2018, 35(11): 216-222. |
[36] |
路千里, 刘壮, 郭建春, 等. 水力压裂致套管剪切变形机理及套变量计算模型[J]. 石油勘探与开发, 2021, 48(2): 394-401.
DOI |
[37] | GISCHIG V, PREISIG G. Hydro-fracturing versus hydro-shearing: a critical assessment of two distinct reservoir stimulation mechanisms[C]//Proceedings of the 13th international congress of rock mechanics. Salzburg, Austria: ISRM Congress,2015:103. |
[1] | XU Jiading, ZHANG Chongyuan, ZHANG Hao, BAI Jinpeng, ZHANG Shi’an, ZHANG Shengsheng, QIN Xianghui, SUN Dongsheng, HE Manchao, WU Manlu. In-situ stress measurements in hot dry rock, Qinghai Gonghe Basin and simulation analysis of reservoir fracture modification [J]. Earth Science Frontiers, 2024, 31(6): 130-144. |
[2] | JIANG Zheng, SHU Biao, TAN Jingqiang. Heat transfer in geothermal reservoir of CO2-based enhanced geothermal systems—current research status and prospects [J]. Earth Science Frontiers, 2024, 31(6): 235-251. |
[3] | SHANGGUAN Shuantong, TIAN Lanlan, PAN Miaomiao, YANG Fengliang, YUE Gaofan, SU Ye, QI Xiaofei. Fault slip tendency and induced-earthquake risks in hot dry rock development: A case study in the Tangshan Matouying HDR site [J]. Earth Science Frontiers, 2024, 31(6): 252-260. |
[4] | ZHANG Baojian, LEI Yude, ZHAO Zhen, TANG Xianchun, LUO Yinfei, WANG Guiling, GAO Jun, ZHANG Dailei. Geodynamic processes and mechanisms of the formation of hot dry rock in the Gonghe Basin [J]. Earth Science Frontiers, 2023, 30(5): 384-401. |
[5] | HE Bizhu, ZHENG Menglin, YUN Xiaorui, CAI Zhihui, JIAO Cunli, CHEN Xijie, ZHENG Yong, MA Xuxuan, LIU Ruohan, CHEN Huiming, ZHANG Shengsheng, LEI Min, FU Guoqiang, LI Zhenyu. Structural architecture and energy resource potential of Gonghe Basin, NE Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2023, 30(1): 81-105. |
[6] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
[7] | KANG Fangchao, TANG Chun’an. Overview of enhanced geothermal system (EGS) based on excavation in China [J]. Earth Science Frontiers, 2020, 27(1): 185-193. |
[8] | GUO Qinghai, HE Tong, ZHUANG Yaqin, LUO Jin, ZHANG Canhai. Expansion of fracture network in granites via chemical stimulation: a laboratory study [J]. Earth Science Frontiers, 2020, 27(1): 159-169. |
[9] | PANG Zhonghe, LUO Ji, CHENG Yuanzhi, DUAN Zhongfeng, TIAN Jiao, KONG Yanlong, LI Yiman, HU Shengbiao, WANG Jiyang. Evaluation of geological conditions for the development of deep geothermal energy in China [J]. Earth Science Frontiers, 2020, 27(1): 134-151. |
[10] | TIAN Jiao, PANG Zhonghe, ZHANG Rui. The application of FixAl and isotopic methods in the study of flowback fluids from Enhanced Geothermal Systems (EGS) [J]. Earth Science Frontiers, 2020, 27(1): 112-122. |
[11] | QI Xiaofei, SHANGGUAN Shuantong, ZHANG Guobin, PAN Miaomiao, SU Ye, TIAN Lanlan, LI Xiang, QIAO Yongchao, ZHANG Jianyong. Site selection and developmental prospect of a hot dry rock resource project in the Matouying Uplift, Hebei Province [J]. Earth Science Frontiers, 2020, 27(1): 94-102. |
[12] | HE Zhiliang, ZHANG Ying, FENG Jianyun, LUO Jun, LI Pengwei. Classification of geothermal resources based on engineering considerations and HDR EGS site screening in China [J]. Earth Science Frontiers, 2020, 27(1): 81-93. |
[13] | SUN Minghang, LIU Demin, KANG Zhiqiang, GUAN Yanwu, LIANG Guoke, HUANG Xiqiang, YE Jiahui, GUO Shangyu, SUN Xingting, TANG Wei, FENG Minhao. Analysis of hot-dry geothermal resource potential in southeastern Guangxi [J]. Earth Science Frontiers, 2020, 27(1): 72-80. |
[14] | KANG Zhiqiang, ZHANG Qizuan, GUAN Yanwu, LIU Demin, YUAN Jinfu, YANG Zhiqiang, LU Jipu, WANG Xinyu, ZHANG Qinjun, ZHANG Meiling, FENG Minhao. Analysis on the occurrence condition of geothermal resources of hot dry rock in Guangxi [J]. Earth Science Frontiers, 2020, 27(1): 55-62. |
[15] | LIU Demin, ZHANG Genyuan, GUAN Junpeng, ZHANG Shuo, ZHANG Jingqi, KONG Linghao, SHAO Junqi. Analysis of geothermal resources potential for hot dry rock in the Subei Basin [J]. Earth Science Frontiers, 2020, 27(1): 48-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||