[1] |
Panel M L. The future of geothermal energy: impact of enhanced geothermal systems (EGS) on the United States in the 21st century[R]. Cambridge, USA: Massachusetts Institute of Technology, 2006.
|
[2] |
许天福, 胡子旭, 李胜涛, 等. 增强型地热系统: 国际研究进展与我国研究现状[J]. 地质学报, 2018, 92(9): 1936-1947.
|
[3] |
蔺文静, 王贵玲, 邵景力, 等. 我国干热岩资源分布及勘探: 进展与启示[J]. 地质学报, 2021, 95(5): 1366-1381.
|
[4] |
王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660.
|
[5] |
王贵玲, 刘峰, 蔺文静, 等. 我国陆区地壳生热率分布与壳幔热流特征研究[J]. 地球物理学报, 2023, 66(12): 5041-5056.
|
[6] |
LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122:243-259.
|
[7] |
LEI Z H, ZHANG Y J, YU Z W, et al. Exploratory research into the enhanced geothermal system power generation project: the Qiabuqia geothermal field, Northwest China[J]. Renewable Energy, 2019, 139: 52-70.
|
[8] |
ZHANG C, JIANG G Z, JIA X F, et al. Parametric study of the production performance of an enhanced geothermal system: a case study at the Qiabuqia geothermal area, northeast Tibetan Plateau[J]. Renewable Energy, 2019, 132: 959-978.
|
[9] |
程钰翔. EGS诱发地震特征及风险评价研究[D]. 长春: 吉林大学, 2021.
|
[10] |
RATHNAWEERA T D, WU W, JI Y L, et al. Understanding injection-induced seismicity in enhanced geothermal systems: from the coupled thermo-hydro-mechanical-chemical process to anthropogenic earthquake prediction[J]. Earth-Science Reviews, 2020, 205: 103182.
|
[11] |
甘浩男, 王贵玲, 蔺文静, 等. 增强型地热系统环境地质影响现状研究与对策建议[J]. 地质力学学报, 2020, 26(2): 211-220.
|
[12] |
KRAFT T, DEICHMANN N. High-precision relocation and focal mechanism of the injection-induced seismicity at the Basel EGS[J]. Geothermics, 2014, 52: 59-73.
|
[13] |
GRIGOLI F, CESCA S, RINALDI A P, et al. The November 2017 Mw 5.5 Pohang earthquake: a possible case of induced seismicity in South Korea[J]. Science, 2018, 360(6392): 1003-1006.
|
[14] |
BREEDE K, DZEBISASHVILI K, LIU X L, et al. A systematic review of enhanced (or engineered) geothermal systems: past, present and future[J]. Geothermal Energy, 2013, 1(1): 4.
|
[15] |
ZANG A, OYE V, JOUSSET P, et al. Analysis of induced seismicity in geothermal reservoirs-an overview[J]. Geothermics, 2014, 52: 6-21.
|
[16] |
YUE G F, LI X Y, ZHANG W. Risk assessment of earthquakes induced during hdr development: a case study in the Gonghe Basin, Qinghai Province, China[J]. Geothermics, 2023, 111: 102721.
|
[17] |
FENG C J, GAO G L, ZHANG S H, et al. Fault slip potential induced by fluid injection in the Matouying EGS field, Tangshan seismic region, North China[J]. Natural Hazards and Earth System Sciences, 2022, 22(7): 2257-2287.
|
[18] |
王宁, 王亚玲, 张晓刚, 等. 马头营干热岩开采试验场地人工注水诱发地震探讨[J]. 大地测量与地球动力学, 2024: 1-8.
|
[19] |
上官拴通. 马头营区干热岩地热资源赋存分布特征及开发利用前景[J]. 能源与环保, 2017, 39(5): 155-159, 165.
|
[20] |
齐晓飞, 上官拴通, 张国斌, 等. 河北省乐亭县马头营区干热岩资源孔位选址及开发前景分析[J]. 地学前缘, 2020, 27(1): 94-102.
DOI
|
[21] |
江娃利. 有关1976年唐山地震发震断层的讨论[J]. 地震地质, 2006, 28(2): 312-318.
|
[22] |
丰成君, 戚帮申, 王晓山, 等. 基于原地应力实测数据探讨华北典型强震区断裂活动危险性及其对雄安新区的影响[J]. 地学前缘, 2019, 26(4): 170-190.
DOI
|
[23] |
张素欣, 王晓山, 陈婷, 等. 唐山老震区40年地震时空演化特征分析[J]. 华北地震科学, 2017, 35(1): 32-37.
|
[24] |
上官拴通, 孙东生, 张国斌, 等. 唐山地区3-4 km深部地应力测量及断层稳定性分析[J]. 地质学报, 2021, 95(12): 3915-3925.
|
[25] |
王丹, 文冬光, 杨用彪, 等. 干热岩开发循环试验的研究进展和发展建议[J]. 地质科技通报, 2024: 1-15.
|
[26] |
MORRIS A, FERRILL D A, BRENT HENDERSON D B. Slip-tendency analysis and fault reactivation[J]. Geology, 1996, 24(3): 275.
|
[27] |
BYERLEE J. Friction of rocks[M]. Basel: Birkhäuser Basel, 1978.
|
[28] |
ZOBACK M D. Reservoir geomechanics[M]. Cambridge: Cambridge University Press, 2007.
|
[29] |
BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164.
|
[30] |
LI Q, AGUILERA R, CINCO-LEY H. A correlation for estimating the Biot coefficient[J]. SPE Drilling and Completion, 2020, 35(2): 151-163.
|
[31] |
MCGARR A. Maximum magnitude earthquakes induced by fluid injection[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(2): 1008-1019.
|
[32] |
GALIS M, AMPUERO J P, MAI P M, et al. Induced seismicity provides insight into why earthquake ruptures stop[J]. Science Advances, 2017, 3(12): eaap7528.
|
[33] |
ABERCROMBIE R. Earthquake source scaling relationships from -1 to 5 ML using seismograms recorded at 2.5 km depth[J]. Journal of Geophysical Research, 1995, 100(24): 15-24,36.
|
[34] |
XIAO W W, HUANG Q, WANG R J. Distribution and fractal characteristics of stress drop in different earthquake regions[J]. Acta Seismology Sinica, 1992, 14: 281-288.
|
[35] |
TROISE C, DE NATALE G, PINGUE F, et al. Evidence for static stress interaction among earthquakes in the south-central Apennines (Italy)[J]. Geophysical Journal International, 1998, 134(3): 809-817.
|
[36] |
HANKS T C, KANAMORI H. A moment magnitude scale[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B5): 2348-2350.
|
[37] |
VAN DER ELST N J, PAGE M T, WEISER D A, et al. Induced earthquake magnitudes are as large as (statistically) expected[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4575-4590.
|
[38] |
SHAPIRO S A, DINSKE C, LANGENBRUCH C, et al. Seismogenic index and magnitude probability of earthquakes induced during reservoir fluid stimulations[J]. The Leading Edge, 2010, 29(3): 304-309.
|
[39] |
杜航, 王俊, 朱音杰, 等. 2020年河北唐山MS 5.1地震b值时空变化特征[J]. 华北地震科学, 2021, 39(3): 92-98.
|